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Abstract. This paper will introduce the topic of dynamical systems with

both discrete and continuous time variables. Fixed points will be discussed,

along with their properties such as stability or topological type. The paper
will continue on to define the concept of hyperbolicity and its relevance in

determining the structural stability of the system. It will conclude with a

definition of a bifurcation as well as a brief description of bifurcation theory
and its applications.

1. Introduction

A dynamical system is a system that changes with time. The time variable can
either be discrete or continuous. With a discrete time variable, the system can be
an iterated function based on time t in the integers (Z) or the natural numbers
(N). With a continuous time variable, the system can be viewed as a differential
equation with time t in the reals (R). With such systems, variable x refers to the
state of the system at a given time t.

Definition 1.1. A homeomorphism f is a bijection where both f and f−1 are
continuous mappings.

Definition 1.2. A diffeomorphism f is a homeomorphism that is not only contin-
uous, but differentiable. If f and f−1 are Ck, f is called a Ck-diffeomorphism.

These dynamical systems occur in differentiable manifolds, which resemble Eu-
clidean spaces in small neighborhoods. This means that we can locally map an
n-dimensional manifold onto Rn using a homeomorphism to construct a chart.

Definition 1.3. Given an n-dimensional manifold M , one can define a homeomor-
phism f from a neighborhood U ⊆ M around a point x ∈ M to a neighborhood
V ⊆ Rn around f(x) ∈ Rn. (V, f) is a chart that defines differentiability on U .

Diffeomorphisms can be used to represent systems with a discrete time variable
by taking f : M → M with the initial value of x0 ∈ M . When looking at a
diffeomorphism f : M → M , each point x ∈ M is moved along an orbit under f .
Since diffeomorphisms concern discrete units of time, for s ∈ Z, fs is:

• f composed with itself s times for s ∈ Z+

• (f−1)s for s ∈ Z−
• identity map on M (idM ) for s = 0.

The inverse of f , f−1 is known to exist by the definition of a diffeomorphism. This
creates an action of Z on the differentiable manifold M generated by f . For a
continuous time variable, one needs to create an action of R on M , or a flow.
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Definition 1.4. A flow on M is a continuously differentiable function φ : R×M →
M such that for every t ∈ R, the restriction φ(t, ·) = φt(·) has the properties that
φ0 = idM and φt ∗ φs = φt+s for t, s ∈ R.

The definition of flow implies that the inverse of φt exists, which is φ−t. Given
that φ is C1, one can conclude that for each t ∈ R, φt : M →M is a diffeomorphism.

Definition 1.5. The orbit of a point x ∈ M under f is the set of points that f
sends x to, or {fm(x)|m ∈ Z}. For a flow, the orbit of φ through x is {φt(x)|t ∈ R},
oriented in the direction that t is increasing.

Definition 1.6. A fixed point of f is a point x ∈ M such that fs(x) = x for all
s ∈ Z. For a flow, if φt(x) = x for all t ∈ R, x is a fixed point.

The orbit of a fixed point is just the point itself.

Definition 1.7. A periodic point of f is a point x ∈ M such that fr(x) = x for
some integer r ≥ 1.

The smallest r such that fr(x) = x is referred to as the period of x. The orbit of
this x is then an r-cycle, with each point in it having period r. In a similar manner,
closed orbits of flows give rise to periodic points.

Definition 1.8. A closed orbit of a flow is an orbit γ which is not a fixed point,
but satisfies φt(x) = x for some x ∈ γ and some t 6= 0.

If τ is the smallest time after which φt(x) returns to x, then x is periodic with
period τ . In fact, the entire orbit γ is periodic of order τ . A concept similar to
fixed points can be created for sets in M . Invariant sets are not moved by the
diffeomorphism or flow in question.

Definition 1.9. A set A ⊆M is invariant under the diffeomorphism f if F s(x) ∈ A
for each x ∈ A and all s ∈ Z. Similarly, A would be invariant under the flow φ if
φt(x) ∈ A for all x ∈ A and all t ∈ R. This is denoted by:

(1.10) fs(A) ⊆ A, ∀s ∈ Z

or

(1.11) φt(A) ⊆ A, ∀t ∈ R

The orbit of any point is always an example of an invariant set. Closed orbits
and fixed points are special examples of invariant sets that are periodic and do not
have invariant subsets.

2. Stability and Topological Type

Since the object of this paper is to study bifurcations, or points with neigh-
borhoods containing diffeomorphisms that are distinct topologically, the notions of
fixed point stability and topological types must be explained. The stability of a
point is established by looking at the orbit of points around it.

Definition 2.1. A fixed point x is said to be stable if for every neighborhood N
of x, there is a neighborhood N ′ ⊆ N of x such that if x ∈ N ′ then fs(x) ∈ N for
all s ≥ 1.
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If y is a stable fixed point and lim
s→∞

fs(x) = y for x ∈ N, then y is referred to
as being asymptotically stable. As s approaches infinity, the orbits of points in the
neighborhood of y approach y. If a point is stable but not asymptotically so, it is
referred to as being neutrally stable. Fixed points that do not satisfy the definition
of stable are called unstable.

Flows become solutions to a differential equation by defining the vector field X
of a flow φ for every x ∈M to be

(2.2) X(x) =
dφt
dt

(x)|t=0 = lim
ε→0

φ(ε, x)− φ(0, x)
ε

.

A flow is just a curve through a point x ∈ M . The vector X(x) is like a velocity
curve in that it is tangent to the manifold M at the point x and has a magni-
tude proportional to speed under parametrization by t. Essentially, the differential
equation, vector field, and flow represent the same system in different ways.

Definition 2.3. Two diffeomorphisms, f, g : M → M are topologically conjugate
if there exists a homeomorphism h : M →M such that

h ◦ f = g ◦ h

Topological conjugacy is similarly defined for two flows, φt, ψt, but this definition
is not as good for the continuous time variable. When looking at the orbits of a
diffeomorphism, given the discrete time variable, it makes sense to require that
two orbits be considered alike only if they match up completely in size. However,
with a continuous time variable, intuitively, a stretched out orbit (i.e. differing
by multiplication of a constant) should be considered similar to the original. So,
another definition for comparison is made for flows.

Definition 2.4. Two flows, φt and ψt are topologically equivalent if there exists
a homeomorphism h that takes orbits of φt to orbits of ψt while preserving their
orientation.

Given two fixed points, y1 and y2 associated with diffeomorphisms f1 and f2
respectively, the fixed points are of the same topological type if the associated dif-
feomorphisms are topologically conjugate. Similarly, two fixed points of flows are
of the same topological type if the flows are topologically equivalent. Although the
systems discussed here are occurring on differentiable manifolds, the neighborhoods
around the fixed points in question are small enough to be in a single chart, so it
is equivalent (and much simpler) to talk about open sets in Rn.

3. Hyperbolicity

Definition 3.1. A linear diffeomorphism is hyperbolic if it has no eigenvalues with
modulus equal to unity.

Since not all diffeomorphisms are linear, a method to view a non-linear diffeo-
morphism in a linear way is defined.

Definition 3.2. Given U , an open subset of Rn and f : U → Rn a non-linear
diffeomorphism with an isolated fixed point at y ∈ U , the linearization of f at y is

(3.3) Df(y) =
[
∂fi
∂xj

]n
i,j=1

∣∣∣
x=y

where x1, ..., xn are coordinates on U .
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With this definition, the concept of hyperbolicity can be generalized to apply to
non-linear diffeomorphisms as well.

Definition 3.4. A fixed point y of f is hyperbolic if Df(y) is a hyperbolic linear
diffeomorphism.

Theorem 3.5. If A : M → M is a hyperbolic linear diffeomorphism, then there
are subspaces Es and Eu ⊆ Rn invariant under A such that A|Es is a contraction,
A|Eu is an expansion, and Es ⊕ Eu = Rn.

Definition 3.6. A contraction (expansion) is a linear diffeomorphism L : Rn → Rn
such that all of its eigenvalues have modulus less than (greater than) unity.

The subspaces Es and Eu are the eigenspaces of A with eigenvalues of modulus
less than and greater than unity respectively. They are referred to as the stable
(Es) and unstable (Eu) eigenspaces of A. If A is hyperbolic, then there are no
eigenvalues of unit modulus, meaning that Es ⊕ Eu = Rn.

For a linear transformation (or linearization) A : Rn → Rn, there is a corre-
sponding linear flow on Rn, denoted

(3.7) φt(x) = exp(At)x

where exp(At), the exponential matrix, is

(3.8) exp(At) =
∞∑
k=0

(At)k

k!

Definition 3.9. The linear flow exp(At)x is hyperbolic if A has no eigenvalues with
real part zero.

Proposition 3.10. A linear flow exp(At)x is hyperbolic iff the diffeomorphisms
that make up the flow exp(At) are hyperbolic.

Proof. (⇐) If exp(At)x is hyperbolic, by definition 3.9, A has no eigenvalues with
real part zero. This implies that the matrix exp(At) has no eigenvalues with unit
modulus, meaning that by definition 3.1, the diffeomorphisms exp(At) are hyper-
bolic.
(⇒) If the diffeomorphisms exp(At) are hyperbolic, by definition 3.1, the matrix
has no eigenvalues of unit modulus. Subsequently, the matrix A has no eigenvalues
with zero as the real part. Therefore, the flow exp(At)x is hyperbolic by definition
3.9. �

If exp(At)x is hyperbolic then Ax = 0 has only the trivial solution, making A
non-singular. This implies that the only fixed point of the flow is the origin. When
this happens, both the fixed point and the vector field Ax are hyperbolic as well.

If A is a hyperbolic linear diffeomorphism with stable and unstable eigenspaces
EsA and EuA respectively, define Ai = A|EiA, i = s, u. Then Ai is called orientation-
preserving if Det(Ai) > 0. Ai is orientation-reversing if Det(Ai) < 0.

Theorem 3.11. Let A,B : Rn → Rn be hyperbolic linear diffeomorphisms. Then
A and B are topologically conjugate if and only if

• dimEsA = dimEsB
• for i = s, u, Ai and Bi are both either orientation-preserving or both

orientation-reversing.
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Theorem 3.12. If x∗ is a hyperbolic fixed point of diffeomorphism f : U → Rn,
then there is a neighborhood N ⊆ U of x∗ and a neighborhood N ′ ⊆ Rn containing
the origin such that f |N is topologically conjugate to Df(x∗)|N ′.

Theorem 3.13. If ẋ = Ax defines a hyperbolic linear flow on Rn with dimEs = ns,
then ẋ = Ax is topologically equivalent to the system

ẋs = −xs xs ∈ Rns

ẋu = xu xu ∈ Rnu

where nu = n− ns.

This theorem implies that two hyperbolic, linear flows exp(At)x and exp(Bt)x
are topologically equivalent if A and B have the same number of eigenvalues with
positive (or negative) real part because each will be topologically equivalent to
3.16. Theorem 3.13 indicates that exp(At)|Ei, i = s, u is orientation-preserving
for all t, meaning there is only one planar saddle-type flow (up to topological
equivalence). However, theorems 3.11 and 3.12 imply that there are 4 topologically
distinct saddle-type diffeomorphisms each depending on whether As and Au are
each orientation-preserving or orientation-reversing. The general implication is that
there are n + 1 distinct topological types of hyperbolic linear flows in Rn and 4n
distinct topological types of hyperbolic linear diffeomorphisms in Rn.

Theorem 3.14. If x∗ is a hyperbolic fixed point of ẋ = X(x) with flow φt : U ⊆
Rn → Rn, then there is a neighborhood N of x∗ on which φ is topologically conjugate
to the linear flow exp(DX(x∗)t)x.

This theorem allows for a generalized version of theorem 3.13 that provides a
classification of hyperbolic fixed points.

Theorem 3.15. If x∗ is a hyperbolic fixed point of ẋ = X(x) with flow φt : U ⊆
Rn → Rn, then there is a neighborhood N of x∗ on which φt is topologically equiv-
alent to the flow of the linear differential equation

ẋs = −xs xs ∈ Rns

ẋu = xu xu ∈ Rnu

where nu = n − ns. The number ns is the dimension of the stable eigenspace of
exp(DX(x∗)t).

4. Structural Stability

Ideally, when using mathematics to model the real world, it would be best for the
model to not change too much even if the quantities involved are slightly changed
(or perturbed). In a space of dynamical systems, a concept of ’closeness’ can be
developed to determine if a small perturbation results in a significantly different
system. Like hyperbolicity, structural stability is a property of a dynamical system,
but not necessarily typical of all systems in the space. First, a few definitions are
needed to reach the definition of structural stability. Let L(Rn) be the set of real
linear transformation of Rn to itself. These transformations are written as n × n

matrices. The norm of such a matrix A = [aij ] is defined to be ‖A‖ =
n∑

i,j=1

|aij |. A

very small area around A called an ε-neighborhood and is defined to be Nε(A) =
{B ∈ L(Rn|‖B −A‖ < ε}. Every B ∈ Nε is said to be ε-close to A.
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Definition 4.1. A linear flow, exp(At) : Rn → Rn, is said to be structurally
stable in L(Rn) if there exists an ε-neighborhood of A, Nε(A) ⊆ L(Rn), such that
for every B ∈ Nε(A), exp(Bt) is topologically equivalent to exp(At). Similarly, a
diffeomorphism A is said to be structurally stable if for every B ∈ Nε(A), B is
topologically conjugate to A.

Theorem 4.2. A linear flow or diffeomorphism on Rn is structurally stable in
L(Rn) if and only if it is hyperbolic.

Proof. (⇐) If exp(At) is hyperbolic, all of the eigenvalues of matrix A have non-
zero real part. Also, if a matrix B is ε-close to A, then its eigenvalues differ from
those of A by a term O(ε) (i.e. of order ε). Because of this fact, if ε is small
enough, the eigenvalues of B must also have non-zero real part, and the eigenvalues
corresponding to those of matrix A with negative (positive) real parts will also
have negative (positive) real parts. This means that A and B will both have stable
(unstable) eigenspace of dimension ns(nu). Now, by theorem 3.13, exp(At) and
exp(Bt) are both equivalent to the same flow, making them equivalent to each
other. Therefore A is structurally stable.
(⇒) On the other hand, if the flow exp(At) is not hyperbolic, then the matrix A has
at least one eigenvalue with zero real part. Then a matrix B = A+εI is hyperbolic
for most ε 6= 0, and with ε small enough, B can be made arbitrarily close to A.
This indicates that exp(At) is not structurally stable. Therefore, if a linear flow is
structurally stable, it must be hyperbolic. The proof for a diffeomorphism follows
similar lines. �

The next step is to discuss structural stability of non-linear dynamical systems.
For an open set U in Rn, let V ec1(U) be the set of C1-vector fields on U . The size
of a vector field X ∈ V ec1(U) is given by its C1-norm, ‖X‖1,

‖X‖1 = sup
x∈U


n∑
i=1

|Xi(x)|+
n∑

i,j=1

∣∣∣∣∂Xi(x)
∂xj

∣∣∣∣
 .

With this definition, if X(x) = (X1(x), ..., Xn(x))T , then ‖X‖1 is small when Xi(x)
and ∂Xi(x)/∂xj , i, j = 1, ..., n, are small for all x ∈ U . An ε-neighborhood of X in
V ec1(U) can be defined as

Nε(X) = {Y ∈ V ec1(U)|‖X − Y ‖1 < ε}.
A vector field Y ∈ V ec1(U) is called specifically ε − C1-close to X to make clear
that not only the values are close, but the values of the first-order partial derivatives
are also close.

Theorem 4.3. If X ∈ V ec1(U) has a hyperbolic singularity x∗, then there is a
neighborhood V of x∗ in U and a neighborhood N of X in V ec1(U) such that each
Y ∈ N has a unique hyperbolic singularity y∗ ∈ V . In addition, the stable (unstable)
eigenspace of the linearized flow exp(DY (y∗)t) is of the same dimension as that of
exp(DX(x∗)t).

Looking at this theorem with theorem 3.14, it is clear that X and Y are topo-
logically equivalent on neighborhoods around their respective hyperbolic singular-
ities. This theorem also gives that the dimensions of the stable eigenspaces of
exp(DY (y∗)t) and exp(DX(x∗)t) are equal, meaning that they are topologically
equivalent by theorem 3.13. Using theorem 3.14 again to assert that there is a
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neighborhood of the hyperbolic singularities on which flows ẋ = X(x) and ẏ = Y (y)
are topologically conjugate to exp(DX(x∗)t) and exp(DY (y∗)t), Ux∗ and Uy∗ can
be defined to be the respective neighborhoods on which theorem 3.14 holds. Then
a local C0-equivalence comes from

(4.4) φt|Ux∗ exp(DX(x∗)t) exp(DY (y∗)t) ψt|Uy∗ ,

where φt is the flow on X and ψt is the flow on Y . In other words, φt : U → Rn
is locally structurally stable, since for every Y ∈ N , there is a neighborhood Uy∗ on
which the flow of Y is C0-equivalent to the flow on X. The equation 4.4 can also
be interpreted to say that the topological type of the fixed point x∗ is structurally
stable. Hyperbolic fixed points are maintained with small C1-perturbations for
diffeomorphisms as well as flows. Let Diff1(U) is the set of C1-diffeomorphisms
f : U ⊆ Rn → Rn, with the C1-norm.

Theorem 4.5. If x∗ is a hyperbolic fixed point of a diffeomorphism f : U → Rn,
then there exists a neighborhoods V ∈ U and N ∈ Diff1(U) such that every g ∈ N
has a unique hyperbolic fixed point y∗ ∈ V with the same topological type as x∗.

5. Bifurcations

With the established definitions and theorems, the topic of bifurcations can now
be approached. Dynamical systems often involve more than just a single differential
equation or diffeomorphism, but rather a group or family of them. A bifurcation
refers to when a topological change occurs in a neighborhood, creating distinct
topological types in the family.

Definition 5.1. Let X : Rm × Rn → Rn be a Cr-family of vector fields with m
parameters on Rn, or (µ, x) 7→ X(µ, x), µ ∈ Rm, x ∈ Rn. The family X has a
bifurcation point at µ∗ if in every neighborhood of µ∗ there exists values of µ such
that the corresponding vector fields X(µ, ·) = Xµ(·) have topologically distinct
behavior. A similar definition can be constructed using diffeomorphisms.

Bifurcations clearly do not occur in structurally stable members of the family.
In systems with continuous time (flows), bifurcations occur when the real part of
an eigenvalue of a fixed point is zero. They also occur in systems with discrete
time (diffeomorphisms) when the function has an eigenvalue of modulus one. Es-
sentially, non-hyperbolic fixed points of flows and diffeomorphisms are structurally
unstable (as can be inferred from theorem 4.2) and can lead to bifurcations. Dif-
ferent bifurcation types are classified based on the actual value of eigenvalues of
non-hyperbolic fixed points. The study of bifurcations, known as bifurcation theory
is used to study structural stability in different regions of a dynamical system. The
known information can be used to construct a map showing the properties within
systems of the same bifurcation type. Such maps can be used to create models to
analyze data gathered from dynamical systems such as human behavior, morpho-
genesis, or fluid dynamics. Understanding properties of bifurcations can ultimately
help in understanding how systems in nature operate.
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