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1. INTRODUCTION

In this paper we approach the topology of smooth manifolds using differential
tools, as opposed to algebraic ones such as homology or the fundamental group.
The main result is the Poincaré-Hopf index theorem, which states the sum of the
indices of a vector field with finitely many zeros on a smooth compact oriented
boundaryless manifold is equal to the Euler characteristic of the manifold. To lead
up to this theorem, we will look at smooth maps between manifolds and study
intersection numbers, fixed points, and transversality.

If f: X — Y is a smooth map of oriented manifolds with Z a submanifold of
Y, the intersection number of f with Z, denoted I(f, Z) is the number of points in
f71(Z) counted with signs 1 depending on the way the map f behaves locally with
respect to the orientations on X,Y, and Z. As a simple example, let f : S? — R?
be a simple closed curve and let Z be the unit circle as a submanifold of R?. The
intersection of f with Z is counted positively at a point of intersection if the positive
tangent vector to f and the positively oriented tangent vector to Z together form
a positively oriented basis for the tangent space of R2. Consequently, whenever
f travels from outside the unit circle to inside the unit circle, the intersection is
positive, and whenever f travels from inside the unit circle to outside the unit circle,
the intersection is negative (or vice versa, depending on the chosen orientations).

In order to ensure that the set f~!(Z) is finite, we will have to assume that
dim X +dim Z = dimY and that f is transversal to Z. We say f is transversal to
Z if for all x € f~1(2), imdf, + Ttz)Z = Ty@)Y, where the + denotes the span
of two subspaces. Transversality intuitively means that the tangent plane to f and
the tangent plane to Z at given point in im f N Z is not contained in any hyperplane
in the ambient tangent space.

We will study fixed points and Lefschetz theory as a way of proving the Poincaré-
Hopf theorem. The proof of the Poincaré-Hopf theorem consists of two stages. First
we show that the global Lefschetz number of a smooth map is equal to the sum
of its local Lefschetz numbers, and provide a concrete way to compute these local
Lefschetz numbers as the degrees of maps defined on local spheres.

The second part of the proof involves vector fields. We will show that the degree
of a vector field is equal to the global Lefschetz number of its flow. Rather than
using integral curves or solutions to differential equations, we will construct a more
rudimentary deformation of the of the identity that is only tangent to the vector
field at time zero but that will still suffice. Since a deformation of the identity is
by definition homotopic to the identity and since intersection number is homotopy
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invariant, this will show that the sum of the indices of the vector field is indeed
equal to the self-intersection number of the diagonal of X with itself, which is the
Euler characteristic.

Finally, we will use the Poincaré-Hopf Theorem to provide an intuitive way
of computing the Euler characteristic of smooth orientable compact 2-manifolds
(surfaces of genus g), and to prove the theorem that any vector field on an even-
dimensional sphere has a zero.

This paper is based on my reading of Differential Topology, by Guillemin and
Pollack [1], and many of the proofs and the overall order of presentation are based
on this text.

2. PRELIMINARIES

Definition 2.1. A manifold X is a locally Euclidean, Hausdorff, second-countable,
topological space.

Definition 2.2. A smooth manifold of dimension n is a manifold X together with
an open cover {U,} and homeomorphisms ¢,, : U, — V,, C R™ such that for all
a, 3, the map ¢, o ¢§1 is C* on its domain. The pairs (U,, ¢,) are called charts
and the maps ¢, are called coordinate maps.

All manifolds in this paper will be smooth. If X is a manifold and = € X, the
tangent space to X at x is denoted T,. X and is a vector space of the same dimension
as X. If X is a manifold of dimension n and Y a manifold of dimension m, we
say that a map f : X — Y is smooth if for any coordinate maps ¢ of X and o
of Y the composition 1 o f o ¢! is a C* map R® — R™ on its domain. The
map f : X — Y is a diffeomorphism if it is bijective and both f and f~! are
smooth. The differential of f at a point z € X is denoted df, and is a linear map
dfy : Tp X — Ty(,)Y between the tangent space of x at X and the tangent space
of Y at y. The map f is said to be an immersion if for all x € X, df, is injective.
The map f is said to be a submersion if for all x € X, df, is surjective. We say
that a manifold Z C Y is a submanifold of Y if its inclusion map i : Z — Y is
a smooth, injective immersion. The codimension of Z in Y is the dimension of Y
minus the dimension of Z.

Theorem 2.3. (Inverse Function Theorem) Let f : X — Y be a smooth map. The
differential df, is an isomorphism if and only if there exists an open neighborhood

U of x such that f: U — f(U) is a diffeomorphism.

Definition 2.4. (Regular values) We say that y € Y is a regular value of f : X —
Y if for all x € f~1(y), df, is surjective. We say that y € Y is a critical value if it
is not a regular value.

Theorem 2.5. (Regular Submanifold Theorem) If y € Y is a regular value of the
smooth map f: X — Y, then f~(y) is a smooth submanifold of Y of dimension
equal to dim X —dimY'.

This theorem can be proved using the Implicit Function Theorem to construct
coordinate maps for f~1(Y’). For a proof, see page 21 of [1]. The Regular Subman-
ifold Theorem is the basis for all the results in this paper. One simple application
is to show that if f: X — Y is a map between n-manifolds and y € Y a regular
value, then f~1(y) is a O-manifold, hence a discrete set of points. Thus if X is
compact, f~1(y) is finite.
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Theorem 2.6. (Sard’s theorem) If f : X — Y is a smooth map, then almost all
y €Y are reqular values of f, i.e., the set of critical values has measure 0.

Sard’s theorem will be used routinely to ensure the existence of regular values.
See [1] for a proof.

Let V be an n-dimensional vector space. If vq,...,v, and wy,...,w, are two
ordered bases of V. Define a linear map A by setting A(v;) = w; fori =1,...,n. We
say that the bases vy, ...,v, and wy,...,w, are equivalently oriented if det A > 0.

This determines an equivalence relation on the set of ordered bases of V having two
equivalence classes. An orientation on V is the choice to call one equivalence class
positive and the other negative.

Example 2.7. The standard orientation on R™ is the equivalence class containing
the standard ordered basis eq,...,e,.

Definition 2.8. A smooth manifold X orientable if there is a smooth choice of
orientations for all the tangent spaces T, X.

The choice of orientations on the tangent spaces is said to be smooth if for all
xo € X, there is a neighborhood U of xy and a coordinate map ¢ : U — R”™ such
that for all x € U the differential d¢, sends any positively oriented basis of T, X to
a basis in the same equivalence class as the standard basis on R™.

Example 2.9. The circle S is orientable. Its two orientations are clockwise and
counterclockwise. The Md&bius band M is not orientable, since one ordered basis
can be smoothly slid around the band so that when it returns to its starting point,
its orientation has reversed.

We can define an orientation on direct products. If Vi and V5 are two oriented
vector spaces, the direct sum orientation on V;®V; is defined as follows. If vy, ..., v,
is a positively oriented basis for Vi and wy, ..., w,, is a positively oriented basis for
Vo, then vy, ... vy, w1,. .., wy, is positively oriented for V1 & V5. If X and Y are two
oriented manifolds, for any point (z,y) € X x Y, T,z X x Y =T, X x T,)Y, thus
the product orientation on X X Y is defined by taking the direct sum orientation
on tangent spaces.

second summand

V;\/ vy n(x)

+1 +1

first summand

VZ/\Vw

Direct sum orientation on Rx R S™ oriented as the boundary of the unit disk

If X = OW and W is an oriented manifold, X inherits a natural boundary
orientation from W. For a point € X, let n(z) denote any outward pointing
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vector in T, W. Then we say that a basis vy, ..., v of T, X is positively oriented if
and only if n(x),v1,..., v is a positively oriented basis for T, W.

3. SUBMANIFOLDS AND TRANSVERSALITY

Let Z be a submanifold of Y. Then for any point y € Z, and any vector v
tangent to Z at y, the vector v is also tangent to Y at y. More precisely, the
inclusion map i : Z — Y is an immersion, meaning that for any point y € Y,
the map diy : T,Z — T,Y is an injective linear map. Thus we can view T, Z as
a linear subspace of T,,Y" via the natural inclusion map di,. In particular, if Z is
a submanifold of R™, then for any z € Z, T.Z can be viewed as all the vectors
in R™ starting at z and tangent to Z, i.e., as a linear subspace of R™ with origin
translated to z.

Example 3.1. Consider the unit circle S' as a submanifold of RZ. The tangent
space to R? at the point (1,0) is the set of vectors v starting at (1,0) and ending
at any point in R%. Thus 7{; ¢yR? can be identified with R? with the origin moved
to (1,0). The tangent space to S at (1,0) is the set of vectors starting at (1,0)
and ending at any point (1,z), and thus can be identified with the line z = 1.

Recall that if f : X — Y is a smooth map, we say that y € Y is a regular value
if for all € f~1(y), df, is surjective. Since T} {y} is the zero vector space, we can
reword the statement that y is a regular value as the following: for all z € f~1(y),

imdf, + T,{y} = T,Y,

where the + sign denotes the linear span of two subspaces. This equation leads to
the following generalization of regular values.

Definition 3.2. (Transversality) Let Z be a submanifold of Y. We say the map
f: X — Y is transversal to Z, denoted f M Z, if for allx € f~1(2) with y = f(z),

imdf, +T,7Z = T,Y.

This means that at each point in imf N Z, the vectors tangent to f and the
vectors tangent to Z together span the ambient tangent space. See the figure on
the next page for examples.

Example 3.3. Consider the submanifold S' as the unit circle in R2. The maps
R — R? sending x — (z,0) or x — (1/2, ) are transversal to S!, but the maps
sending = — (x,2%+1) and x — (z, /2 —z) are not transversal to S* because they
are tangent to S'. The map sending x +— (x,2? + 2) is trivially transversal to S!
because it does not intersect S*.

The following theorem illustrates how a submanifold transversal to f is analogous
to a regular value.

Theorem 3.4. (Transversal Submanifold Theorem) If f : X — Y is transversal
to the submanifold Z of Y, then f~1(Z) is a submanifold of X of codimension equal
to the codimension of Z in'Y .

Proof. The idea of the proof is to rewrite f~!(Z) as the preimage of a regular
value under another function, and then apply the Regular Submanifold Theorem.
Suppose dimY = n and dim Z = k. Locally Z looks like R* inside R™. Thus for
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Transversal Not transversal

dimensions do not
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RZ

disjoint, hence
trivially transversal

each y € Z, there is a neighborhood U of y and a diffeomorphism ¢ : U — V C R™
such that ¢(y) = 0 and

H(UNZ)={0,_1} x R*,
If ¢ = (¢d1,...,0n), let
Y= (¢17 .- '7¢n*k)
be the first n — k coordinates of ¢. Then clearly f~1(Z) N f~1(U) = (¢ o f)~1(0).
Thus it suffices to show that 0 is a regular value of ¥ o f.
Since f is transversal to Z, for any z € f~(Z)N f~1(U) with f(z) = y, we have

imdf, +T,7Z = T,Y.

Note that 1) = 7o ¢ where 7 is the projection R” — R"~* sending (z1,...,2,) —
(1,...,%n—k). Thus dyp, = dmg o d¢p, is the composition of the surjection dmy and
the isomorphism d¢,, hence surjective. Furthermore, since i vanishes on Z, the
kernel of di), contains T}, Z. Thus applying di), to both sides of the above equation
gives
imd(1) o f), +0 = TyR"*,

which shows that 0 is a regular value of ¥ o f. (I

An important property of transversality is for any smooth map f: X — Y and
any submanifold Z of Y, it is possible to perturb f by an arbitrarily small amount
such that it becomes transversal to Z.
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Theorem 3.5. (Transversality Homotopy Theorem) Let f : X — Y be a smooth
map with Z a submanifold of Y, where X may have boundary. Then there exists a
smooth map g : X — Y homotopic to f such that both g and Og are transversal
to Z.

The theorem is a corollary of Sard’s Theorem. See [1] pages 68-70 for a proof.
The claim is fairly intuitive, for the following reason. The map f is not transversal
to Z only if for some point z € f~1(Z) with f(z) = y there is sufficient linear
dependence between imdf, and T, Z that the span of these two subspaces is not all
of T,Y or dimX 4+ dim Z < dim Y. In the first case, the linear dependence can be
removed by a slight perturbation. In the second case, it is possible to perturb f
slightly so that it avoids Z altogether.

Example 3.6. Consider the map = — (z,2%) of R — R2. This map is not
transversal to the z-axis at (0, 0), but it can be perturbed slightly so that it becomes
transversal. The map x — (z,2%,0) of R — R? is also not transversal to the -
axis, but it can be perturbed slightly so that it does not intersect the x-axis at
all.

In fact, if we know that the map f : X — Y is transversal to Z on some closed
subset C of X, then it is possible to perturb f so that it is transversal to Z all over
without changing its values on a neighborhood of C.

The map f can be made transversal to Z by perturbing it only outside of the closed region C.

Theorem 3.7. (Transversal extension theorem) Let f : X — Y and let Z be a
closed submanifold of Y, where only X has boundary. Suppose that f is transversal
to Z on a closed set C C X. Then there exists a smooth map g : X — Y homotopic
to f such that g and Og are transversal to Z and such that g agrees with f on a
neighborhood of C.

See [1] page 72 for a proof. The above theorem shows that it suffices to perturb
f only on a neighborhood of the set on which transversally fails.

4. INTERSECTION NUMBERS

We now apply the previous ideas of orientation and transversality to topological
properties of manifolds and smooth maps. Let f : X — Y be a map of smooth
manifolds, with Z a submanifold of Y and let only X have boundary. For this
entire section, we shall assume that f M Z and that dim X + dim Z = dim Y, that
X is compact, and that Z,Y, Z are all oriented. We aim to study the points of
intersection of f with Z, i.e., the solutions of the equation f(x) € Z.
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Since dim X + dim Z = dimY, the Regular Submanifold Theorem says that
f~1(Z) is a 0-dimensional submanifold of X, hence a discrete set of points. Since
X is compact, f~1(Z) is finite. Thus a naive approach would be just to count the
number of points in f~1(Z). We would like however to come up with a number that
depends only on the homotopy class of f. Clearly f can be perturbed to intersect
Z arbitrarily many times. However, if we count these intersections with signs +1
depending on the direction f crosses Z, we can indeed obtain a number with the
desired homotopy invariance. In order to assign signs to intersections, we use the
orientations of X,Y, and Z.

For a point € f~1(Z) with f(z) = y, the dimensional constraint dim X +
dim Z = dim Y and transversality implies that

imdf, @ T,Z =T,Y
is a direct sum and that the map df, is an injective linear map. Thus the iso-
morphism df, : T, X — imdf, induces an orientation on imdf, coming from the

orientation on T, X. We say that a basis of vy, ..., v, of imdf, is positively oriented
if and only if it is the image under df, of a positively oriented basis for T, X.

Definition 4.1. (Orientation number) Let f : X — Y be transversal to Z with
X,Y, Z oriented and dim X + dim Z = dimY. The orientation number of f with
respect to Z at a point x € f~1(Z) with f(x) = y (denoted i,(f)) is defined to be
+1 if the direct sum orientation on imdf, © T,,Z agrees with the given orientation
on T,Y and —1 otherwise.

Definition 4.2. (Intersection number) Let f be transversal to Z as above. The
intersection number of f with respect to Z is defined to be

15.2)= 3 ),
z€f~1(2)
the sum of the orientation numbers of f with respect to Z at each point in f~1(2).

Our immediate goal is to show that intersection number is homotopy invariant
in f. Suppose that F': I x X — Y is a homotopy of fy to fi. The boundary of
IxXis X x {1} — X x {0}, and thus

1(0F, Z) = I(F’Xx{l}—Xx{O}’
= I(f1>Z) _I(fO7Z)
Thus to prove homotopy invariance it suffices to show that I(0F, Z) = 0, which

follows from:

Theorem 4.3. If X = OW (with W compact and oriented) and f : X — Y
extends smoothly to W, then for any submanifold Z of Y satisfying f & Z and
dim X +dim Z =dimY, we have I(f,Z) = 0.

2)

Proof. Let F: W — Y be an extension of f. By the Transversal Extension Theo-
rem, we may assume that F' and OF are transversal to Z. Thus by the Transversal
Submanifold Theorem, F~1(Z) is a submanifold of W of dimension 1. Further-
more, F~1(Z) is a closed submanifold of a compact manifold, hence compact. It
is a well known theorem that any smooth compact 1-manifold is the disjoint union
of circles and arcs; see the appendix of [1] for a proof. The circle components of
F~1(Z) do not intersect X, and thus does not contribute to I(f, Z).
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Thus it suffices to show that each arc component of L := F~1(Z) contributes
zero to I(f,Z). To do this, we will show that the intersection number of f at a
given endpoint x of one arc is +1 depending on whether the positively oriented
tangent vector to L at z is inward or outward pointing on the boundary of W.
Since on each arc, the positively oriented tangent vector to L points inward at one
end and outward at the other, this will show the contribution from each arc is 0.

Before proceeding, we need orientations on X and L. First we define an orienta-
tion on L. Let € L and f(x) = y. The idea is to show that dF, is an isomorphism
from any complementary subspace of T, L C T,WW onto a corresponding comple-
mentary subspace of T,Z C T,)Y. Let vp,... v, be a positively oriented basis for
T, W with vy tangent to L. Then vy, ..., vy is a basis for a complementary subspace
of T,L C T,W. Since F th Z, we have

dF,(vo) + dFy(v1) + ...+ dFy(vg) + T, Z =T, Y.

But since I’ maps L into Z, dF, maps vg into T,Z. Hence the above equation
becomes

dFy(v1) + ...+ dFy(vp) + TyZ = T,Y.
By the assumed dimensional constraints, k 4+ dim Z = dim Y’; hence the above sum
is in fact a direct sum. We say that vy is positively oriented in 7, L if and only if
the direct sum orientation on the left side of the above equation agrees with the
given orientation on T,Y.

Next we orient X as the boundary of W. For any point « € X, let n(z) be any
outward pointing vector. We say a basis vy, ..., v of T,, X is positively oriented if
and only if vg, vy, ..., v is positively oriented for T, W.

Now let z be one endpoint of L. We will compute i,(f). Since L intersects X
precisely at its endpoints, € X. Since L and X intersect at a discrete set of
points and have complimentary dimension in W, T, L. and T, X are complimentary
in T,W. At x, the positively oriented vector vy for T,L is either an outward or
inward pointing vector.

Suppose first that vy is an outward pointing vector. Let vy, ..., v be a positively
oriented basis for T, X. By definition of the boundary orientation on W, since vg
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is outward pointing,
Vo, V1, ---, Uk

is a positively oriented basis for 7,,WW. Hence by the definition of the orientation
on L defined above, the direct sum orientation on

dF,(01) @ ... ® dF,(vy) ® T, Z

agrees with the given orientation on 7,Y". Since dF, = df, when restricted to T, X,
the above statement is true if and only if the direct sum orientation on

imdf, ® T,Z = T,Y

agrees with the given orientation on 7Y, which by definition just means that the
intersection number of f at = is +1.

If vy were instead inward pointing, the same argument shows that the intersection
number of f at z would be —1. Since L is an arc, its positively oriented tangent
vector must point outward at one endpoint and inward at the other endpoint.
Hence the intersection numbers at the two endpoints are +1 and —1, which sum to
0. Adding the contributions from each arc, we have I(f,Z) = 0. O

Thus I(f, Z) is homotopy invariant in f. This allows us to extend the defini-
tion of intersection number to arbitrary maps f. By the Transversality Homotopy
Theorem, there exists a map f M Z homotopic to f. We then define I(f,Z) to be

I(f,2).

5. TRANSVERSAL MAPS

We would like to show that the intersection number I(f, Z) is homotopy invariant
in not only f but also Z. If 7 is the inclusion map Z — Y, we can view I(f, Z) as
the intersection number of the maps f and 7. To this end, we define transversality
and intersection numbers of maps.

Definition 5.1. (Transversality of maps) Let f: X — Y and g: Z — Y. The
maps f and g are transversal (denoted f M g) if for all x € X and z € Z such that
f(z) = g(z) =: y, we have

imdf, +imdg, = T,Y.

The definitions of orientation number and intersection number for f Mg are
analogous to that for f m Z.

Definition 5.2. (orientation number for maps) Let f : X — Y and g: Z — Y
be transversal with dim X +dimY = dim Z. For points z € X and z € Z such that
f(x) = g(z) =y, the orientation number of f and g at (z,z) (denoted i, .)(f,9))
is defined to be +1 if the direct sum orientation of imdf, & imdg, agrees with the
orientation of T, Y and —1 otherwise.

Definition 5.3. (intersection number of maps) The intersection number of the
maps f and g is defined to be

I(f7g) = Z Z(at,z)(fag)
f(@)=g(2)eZ

To prove that I(f, g) is homotopy invariant in both f and g, we will relate I(f, g)
to I(f x g, A(Y)).
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Theorem 5.4. Let f: X — Y and g: Z — Y with dim X +dimZ = dim Y.
Then f g < fxgmA, where A(Y) is the diagonal of Y x Y.

Proof. Suppose f M g. Then transversality and dimensional constraints imply that
imdf, ®imdg, = T,Y is a direct sum and both df, and dg. are injective. Hence

fhg < imdf, ®dg. = T,Y
(by transversality and dimensional constraints)
<= imdf, Nimdg, =0
< imd(f x g)(z,2) N A(T,Y) = imdf, & imdg. N A(T,Y) =0
<= imd(f x g)(z,2) ® A(T,Y) =T,Y xT,,Y =T, (Y xY).

(]

Hence if the maps f: X — Y and g : Z — Y are transversal with dim X +

dimY =dimZ, f xg: X x Z — Y x Y is transversal to A(Y). Since dim(X x

Z)+dim(A(Y)) = dim(Y x Y), we know by the Transversal Submanifold Theorem

that (f x g)"1(A(Y)) is a 0-dimensional submanifold of X x Z. Thus the collection

of points (z,z) € X x Z such that f(z) = g(z) is discrete. If X and Z are compact,
this set is finite.

Theorem 5.5. If f: X — Y and g: Z — Y are transversal, dim X +dimY =
dim Z, and X, Z are compact, then

I(f,9) = I(f x g, A(Y))(=1)4mZ,

This is just a computation. See [1] page 113 for a proof.

Thus I(f,g) is homotopy invariant in both f and g. Furthermore, even if f is
not transversal to g, we may define I(f,g) by the above equation.

An immediate application of the homotopy invariance of I(f, g) is showing that
the degree of a smooth map f : X — Y between n-manifolds is well-defined.

Definition 5.6. (degree) If f: X — Y is a smooth map of n-dimensional mani-
folds and Y is connected, the degree of f is defined to be

deg f = I(f,{y}),

where y € Y is any point.

Since Y is a connected manifold, it is path connected (this is true for manifolds,
but not in general), so the inclusion maps of any two points y € Y are homotopic.
Hence deg f does not depend on the point y chosen. The classic example is the
map S' — S! sending z — 2", which has degree n because it is an orientation
preserving n-sheeted covering map (so the intersection number at each preimage
point of y is +1). We shall use this definition of degree later in defining the index
of a vector field at an isolated zero. For now, we turn to the Euler characteristic of
a manifold.

6. EULER CHARACTERISTIC

If X is a compact C'W-complex, its Euler characteristic is classically defined by
the equation

X(X) = # even cells — # odd cells.
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Instead of the above combinatorial definition, we shall define Euler characteristic
using intersection theory.

Definition 6.1. If X is a compact manifold, the Euler characteristic of X is
X(X) =1I(A, A).

For now, one should note how the above definition is immediately relevant to
vector fields. If v is a vector field on X with finitely many zeros, the flow tangent to
v will consist of a homotopic family of transformations f; : X — X with fy = id.
Hence graph f; is homotopic to graph id = A(X), so

I(fe; A) = I(A, A) = x(X).

The intersection points of graph f; and A are by definition the fixed points of f;,
and for small ¢, these fixed points are precisely the zeros of v. The Poincaré-Hopf
Theorem will make precise this connection between y(X) and the zeros of v. To
this end, we will study the fixed points of maps.

7. LEFSCHETZ FIXED POINT THEORY

Let f: X — X be a smooth self-mapping of a smooth k—manifold. We wish to
study the fixed points of f. Note that a point x € X is a fixed point of f if and only
if (z, f(x)) € A, where A is the diagonal of X. Thus fixed points of f correspond
to intersection points of graph f and A, both of which are smooth k-dimensional
submanifolds of the 2k-dimensional manifold X x X. Thus we can reformulate the
study of fixed points in terms of an intersection number.

Definition 7.1. (Global Lefschetz number) Given a smooth self-mapping f :
X — X, with X compact, the global Lefschetz number of f is defined to be

L(f) = I(A, graph f).

A(X)

X

Note that if f is homotopic to g, the inclusion maps id x f and id x g of graph f
and graph g are homotopic. Thus the global Lefschetz number of a map is homo-
topy invariant.

Definition 7.2. (Lefschetz map) The map f : X — X is Lefschetz if graph f M A.

Lemma 7.3. The map f: X — X is Lefschetz at a fixed point x € X if and only
ifdfy — 1 :1T,X — T,X is an isomorphism.
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Proof. The statement that f is Lefschetz at x is
im(d(id x f)(w,gg)) + T(ZJ)A(X) =Tlz,z) (X x X).
This can be rewritten as
im(I xdfy) + AT, X) =T, X x T, X.

Since im(I x dfy) and A(T,X) have complementary dimension inside T, X x T X,
the above equation holds

<— im(I xdf;) NA(T,X)=0

<= df, has no nonzero fixed points

<= ker(dfy —I)=0

<= df, — I is injective, and hence an isomorphism.

O

Definition 7.4. (local Lefschetz number) If z is a Lefschetz fixed point of the map
f: X — X, the local Lefschetz number of f at x (denoted L, (f)) is defined to
be the orientation number of (z,x) in the intersection of A with graph f, with A
counted first.

Theorem 7.5. If x is a Lefschetz fized point of f : X — X, with X compact and
oriented, then L, (f) is equal to +1 if the isomorphism df, — I preserves orientation
and —1 if df,, — I reverses orientation.

Proof. Let vy, ...v; be a positively oriented basis for T, X. Then vy Xwvq,..., v XUk
is a positively oriented basis for T(, ,)A(X) and vy X dfy(v1),...vp X dfz(vg) is a
positively oriented basis for T\, f(,))( graph f). Hence L.(f) is equal to the sign
of the basis

V1 X V1, .e e, U X Uk, U1 X dfp(v1), ..., 0% X dfz(vk)
with respect to the product orientation on T, (X x X). The above basis can be

viewed as a matrix with 2k columns. Thus by Gaussian elimination we can subtract
the first £ columns from the last k& columns to obtain the basis

V1 X V1,0 X Uk, 0 X (dfy — I)(v1),...0 X (dfy — I)(vg)

with the same sign. Because df, — I is an isomorphism, the last k columns above
span 0 x T, X. Thus by Gaussian elimination again we obtain the basis

vy X 0,...0 X 0,0 x (dfy — I)(v1),...0x (dfy — I)(vi),

with the same sign. Hence the above basis is positively oriented in the product
X x X if and only if the isomorphism df, — I preserves orientation. 0
Note that if f: X — X is a Lefschetz map, by definition

L(f)= > Lu(f)
z=f(2)

If f: X — X is smooth, then f may have fixed points z € X that are not
Lefschetz. In this case the total contribution of x to the global Lefschetz number
L(f) can be any integer (not just +1). Nonetheless, it is possible to perturb the
map f on a neighborhood of x such that the fixed point x splits into finitely many
Lefschetz fixed points. This property is described in the following theorem.
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Theorem 7.6. (Splitting of a fized point into Lefschetz fized points) Let f : X —
X be a smooth map and X be compact. Let U be a neighborhood of the fized point x
that contains no other fized points. Then there exists a homotopy f; of f such that
each f; equals f outside a compact subset of U and such that fi1 has only Lefschetz
fixed points inside U .

Proof. (From page 126 of [1].) Passing to charts, it suffices to prove the claim in
RF. Let f : U — R* be a smooth map fixing 0 but not fixing any other points,
with U open in R¥. Let ¢ : R¥ — [0,1] be a smooth map that is equal to 1 on a
neighborhood V' of 0 and with support contained in the compact K C U. We claim
that for some point a € U, the homotopy

fi(x) = f(z) +to(z)a
will allow us to split the fixed point z into finitely many Lefschetz fixed points. Since

f has no fixed points on the compact K\V, |f(z) — x| has an absolute minimum
¢ > 0 on this set. If |a| < ¢/2, then

[fe(@) — x| = [f(z) -z + to(x)| = [f(2) — x| — [(x)] > c = ¢/2 =¢/2,

so fi has no fixed points for € K\V and ¢ € [0, 1].

Now by Sard’s theorem, there exists a point a such that |a| < ¢/2 and such that
a is a regular value of id — f. Now as above the only fixed points of f; in U occur
within V. Suppose in particular that x is a fixed point of f;. Then z € V, so
fi(x) = f(z) + a near x. Hence df, = (df1)s, so to show that z is a Lefschetz fixed
point of f; it suffices to show that df, —I is nonsingular. Since fi(z) = f(z)+a = z,
then @ = x — f(x). Since a is a regular value of id — f, this implies that I — df,
is surjective and hence an isomorphism. Thus df, — I is an isomorphism, which
proves that x is a Lefschetz fixed point of f;. O

The above theorem allows us to define local Lefschetz number for non-Lefschetz
fixed points. If x is a fixed point of f and U a neighborhood of x containing no
other fixed points, let f; be a map homotopic to f that agrees with f outside U
and that has only Lefschetz fixed points in U. The local Lefschetz number of f at
x is defined to be the sum of the local Lefschetz numbers of f; at all the Lefschetz
fixed points in U. This definition is well-defined because global Lefschetz number
is homotopy invariant

The following theorem is a key part of the proof of the Poincaré-Hopf Theorem,
because it equates the local Lefschetz number at an isolated Lefschetz fixed point
x of f to the degree of the map I;Ei;:; on a small sphere centered at z, and hence
will allow us to equate the index at an isolated zero of a vector field v with the
local Lefschetz number of its flow at that that point.

Theorem 7.7. Let f : U — R* be a smooth map, with U a neighborhood of 0
in R* and such that 0 is a Lefschetz fized point of f, where f has no other fized
points in U. Let B, be an epsilon neighborhood of 0 whose closure is contained in
U. Then Lo(f) is equal to the degree of the map

dB, —> Sk—1
@) -
T @) —a]

Proof. (From page 128 of [1].) Taking a first order Taylor approximation of f, we
have f(z) = dfo(x) + R(z), where R(x)/|x| — 0 as & — 0. Since the map df, — I
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is an isomorphism, its kernel is 0 and hence it attains an absolute minimum ¢ > 0
on the compact unit ball. Now choose a radius € > 0 such that |R(x)|/|z| < ¢/2 on
B.. Define the homotopy

fe(x) = dfo(z) + tR(x)
where t € [0,1]. Note that for |z| = ¢,

|fe(z) — =] = |dfo(x) — x + tR(x)| = |(dfo(x) — I)(z)| — |R(z)| = ce — ce/2 = ce/2,
so on 0B, the map

_ file) —

‘ft(m)

@) -
T @) =l
(whose degree is is degy(f)) to the map

_ dfo(z) -1

|dfo(z) — I
(whose degree is simply the sign +1 of the determinant of the linear map dfy — I).
By Theorem 7.5, the sign of dfy — I is simply Lo(f). We are using here the easy
linear algebra result that if A is an invertible linear map, the degree of A(z)/|A(z)]|
on the unit ball is equal to £1 depending upon whether it preserves or reverses
orientation. O
Recall that we previously extended the definition of local Lefschetz number to
non-Lefschetz fixed points by splitting the fixed point into finitely many Lefschetz
fixed points by a local perturbation, and then letting L, (f) be the sum of the local
Lefschetz numbers at these points. The above theorem provides alternative way
to extend the definition of local Lefschetz number to non-Lefschetz fixed points. If
x is an isolated, non-Lefschetz fixed point of f, we simply define L, (f) to be the
degree of the map x — % on a small sphere centered at x. The following

theorem shows that that these two definitions agree

is a homotopy from the map

Theorem 7.8. Let xo be an isolated fized point of f : RF — R* and let B be a
closed ball centered at xo that contains no fized points other than xo. Let fi1 be any
map that agrees with f outside some compact subset of the interior of B that has
only Lefschetz fized points in B. Then

La:o(f>: Z Lw(fl)

fi1(z)=xcU

Proof. Let x1,...,x, be the fixed points of f; in B and let By,..., B, be small

disjoint spheres centered at xi,...,x, and contained in the interior of B. By
Theorem 7.7, L,(f) is equal to the degree of

L J@) -

T @) 4]
on 0B. But on 0B, this map is equal to

fl(x) —x

T A@) el
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Since f; has no fixed points on B—(B;U...UB,,) and since (B —(B1U...UB,)) =
OB — (0B U...U0dB,,), Theorem 4.3 tells us that

0 =deg(filo(B—B,u...uB,))

=deg(filon) — Y _ deg(filos,)

i=1
=Luo (1) = D La,(f1),
=1

where last line follows from Theorem 7.7. O
‘We have thus proven:

Corollary 7.9. If f : X — X is a smooth map with finitely many fized points
and X is compact, then
L(f)= > L(f)
f@)=z
The above equation holds even if f is not a Lefschetz map.

Proof. Let By, ..., By be disjoint closed balls containing the fixed points z1, ..., x,
of f. Perturb f inside each ball to obtain a Lefschetz map f; homotopic to f. First
since f and f; are homotopic, we have L(f) = L(f1).

Next since the claim is trivially true for the Lefschetz map fi,

L(f)= Y Li(fr).
fi(z)==z
By Theorem 7.8, the sum of the local Lefschetz numbers of f; inside each B; is
simply L, (f), so the above sum is equal to

> La(f)

flz)==
Hence L(f) =3 ()=, La(f), as claimed. O

8. VECTORS FIELDS

Definition 8.1. A wvector field on a manifold X is a smooth assignment of a vector
tangent to X at each point of z, i.e., a smooth map v : X — TX such that
v(z) € Ty X for all x.

Definition 8.2. (pullback of a vector field) Let ¢ : U — X be diffeomorphism
and v a vector field on X. Then the pullback of v by ¢ is defined by

o*v:U—TU
U — d¢;1(v(¢(u))).

Definition 8.3. (index at an isolated zero of a vector field) Let v be a vector field
on R¥. If z is an isolated zero of v, let B, be a ball around z containing no zeros of
v other than z. The indezx of v at z (denoted ind,v) is defined to be the degree of
the map
9B, —> S*
v(z) —x
v(z) — x|



16 ARIEL HAFFTKA

The definition of index can immediately be extended to vector fields on an arbi-
trary smooth manifold X. If z is an isolated zero, choose a chart ¢ : U — V with
V a neighborhood of z and U a neighborhood in R* with ¢(0) = z. Now define
ind,v := indg¢*v. It is somewhat nontrivial to show that that the index of a vector
field is invariant under pullback by a diffeomorphism. For a proof, see [2] page 33.

Theorem 8.4. (Poincaré-Hopf Index Theorem) If v is a smooth vector field on the
compact oriented boundaryless manifold X with finitely many zeros, then the sum
of the indices of the zeros of v is equal to the Fuler characteristic of X.

We shall prove the index theorem in the following way. The vector field v gives
rise to a flow, a homotopic family of maps f; : X — X such that fy = idx and
such that for any fixed z € X, the curve fi(x) is tangent to the vector field v. We
shall show that the index of an isolated zero of v is equal to the local Lefschetz
number of any of the flow maps f; for small ¢ # 0. Note that for small ¢ the
flow map f; will have fixed points precisely at the zeros of v. Hence the sum of
the indices at the zeros of v is equal to the sum of the local Lefschetz numbers of
ft- The sum of local Lefschetz numbers, however, is equal to the global Lefschetz
number L(f;). Since f; is homotopic to the identity transformation of X, then
L(f:) = I(A, graph f) = I(A,A) = x(X), proving the claim.

Lemma 8.5. Let U be a neighborhood of 0 in RF and let v be a vector field on
U that vanishes only at 0. Let f; be a homotopic family of maps with fo = idx
and assume that for all t # 0, the map f; has no fixed points in U except at 0.
Furthermore, assume that the maps f; are tangent to v at time zero, i.e., for all
x € U, the curve fi(x) is tangent to v(x) at time t = 0. This means that at each
point x, %ft (2)|t=0 is a positive scalar multiple of v. Then for each fi with t # 0,
we have
ind(ﬂ) = L()(ft)

Proof. (From page 135 of [1].) Taking a coordinate-wise second order Taylor ex-
pansion of f;(z), we may write

fi(x) = fo(z) + to(x) + t2ry(x),
where r4(x) is smooth in both t and x. Since for ¢t # 0 we have fi(x) — 2 # 0, we
obtain

fi(x) —x _ v(x) + try(x)
|fe(z) =zl Ju(z) —try(z)]

Letting ¢ = 0, the right hand side becomes x +— ﬁggw the map whose degree is

indgv. Letting ¢t # 0, the left hand side gives us Lo(f), by Theorem 7.7. Since
the degree on the right and the Lefschetz number on the left are both homotopy
invariant, we obtain the desired equality. ([

We have thus proved that that the sum of the indices of a vector field v with
finitely many zeros is the sum of the local Lefschetz numbers of its flow, which is
just the Euler characteristic of X. Thus to prove Poincaré-Hopf, all that remains
is to construct a deformation of the identity tangent to v.

Using the existence and uniqueness for solutions to ordinary differential equa-
tions, this construction would be trivial. However, we present a more elementary
construction which makes use of the Tubular Neighborhood Theorem.
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Construction 8.6. Let v: X — T'X be a smooth vector field, with X compact.
Then there exists a homotopic family of maps f; : X — X tangent to v at time
zero and such that fy = idx and for all ¢ # 0, the fixed points of f; are precisely
the zeros of v.

Proof. (From page 137 of [1].) It is a theorem that any smooth connected manifold
can be embedded as a submanifold of R", for some n. Thus we may assume that
X is a submanifold of R™. Since X is a compact submanifold of R™, then by the
Tubular Neighborhood Theorem there exists e > 0 such that the normal bundle
N(X,e) := {(z,v)]r € X and v € (T, X)* and |[v| < ¢} is diffeomorphic to the
epsilon neighborhood N, := {z € R"|d(z,X) < €} via the map (z,v) — = + v.
Thus each point in the ¢ neighborhood of X can be written uniquely as = + v,
where x € X and v € (T, X)%. Hence there is a projection map 7 : N, — X
sending z 4+ v — x. It is not difficult to show that = is a submersion.
We can thus define the family of maps f; by the formula

fi: X —X

x — m(x + to(z)).

At time ¢, the map f; acts on a point € X by sliding it along the vector v(x)
a distance of t|v(x)| and then projecting the resulting point back onto X via the
projection map 7. Since the manifold X is compact, for sufficiently small ¢ we can
be sure that x + tv(z) always lies in the tubular neighborhood, thus the map is
well-defined for small ¢.

Note that by construction, the map fy is the identity of X. Furthermore, for
t #0, z € X is a fixed point of f; if and only if 7 projects x 4 tv(z) back down onto
x. But this can only happen if tv(x) is perpendicular to X, i.e., if tv(z) € (T, X)*.
But by definition, tv(z) is a tangent vector to X at x, so it cannot be perpendicular
to X unless it is zero. Thus tv(z) = 0 and since ¢ # 0, we have v(x) = 0. This
shows that for ¢ # 0, fixed points of f; are zeros of v. Conversely, if x is a zero of
v, then trivially z is fixed by f;.

It only remains to show that f; is tangent to v at time zero. Fix a point z € X
and consider the curve f;(z) = w(x + tv(z)). By the differentiating with respect to
t and using the chain rule we have

0
—(fi(z = dm; ov(x).
5 (i(@)| = dmsov(z)
But 7 is the identity on X, so dm, is the identity map when restricted to T, X.
Since v(x) € Ty X, we have dm, owv(z) = v(z), thus proving that fi(x) is tangent
to v at time zero. (]
This proves the Poincaré-Hopf theorem.

9. CONCLUSION: SOME IMMEDIATE APPLICATIONS

The Poincaré-Hopf Theorem provides a visually intuitive way to compute the
Euler characteristic of a smooth manifold, simply by constructing a smooth vector
field with finitely many zeros. Note that in two dimensions, the index of a vector
field at a sink or source is +1, and the index at a saddle is —1.

It is easy to construct a vector field on S? with a source at the north pole and
a sink at the south pole, thus x(S?) = 2. Similarly, on the surface of genus g, a
flow from one end to the other gives rise to a vector field with a source at one end,
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2¢g saddles, and a sink at the other end. Thus the surface of genus g has Euler
characteristic 2 — 2g.

Note that by the Poincaré-Hopf Theorem, any smooth orientable manifold that
admits a non-vanishing vector field has Euler Characteristic zero. For even n, the
sphere S™ has one 0O-cell and one even n-cell, hence has Euler characteristic 2,
which is non-zero. This proves the Hairy Ball Theorem in the smooth case: that
any smooth vector field on S™ with n even has a zero.
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