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Abstract. This paper will look at the relationship between high girth and
high chromatic number in both its finite and transfinite incarnations. On the

one hand, we will demonstrate that it is possible to construct graphs with

high oddgirth and high chromatic number in all cases. We will then look at
a theorem which tells us why, at least in the transfinite case, it is impossible

to generalize this to include even cycles. Finally, we will use the probabilistic
method to show why it is possible to construct graphs of any given finite girth

and finite chromatic number.
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1. Introduction

We begin with a few basic definitions:

Definition 1.1. A graph G is defined as a set of vertices V = {v1, v2, ..., vn} and
edges E that connect the vertices to each other. We signify that two vertices v, w
are connected by writing {v, w}.

Note that even though G is here defined as having only a countable number of
vertices, we will later allow G to have an uncountable number of vertices.

Definition 1.2. On any graph G, we can impose a coloring wherein we color each
of the vertices in such a way that if two vertices are connected to each other, then
they cannot have the same color.

Definition 1.3. The Chromatic Number χ of a graph is the smallest number of
colors needed to fully color the graph.

Definition 1.4. A subgraph G′ of a graph G is a graph that can be obtained by
deleting edges and/or vertices from G.
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Definition 1.5. An n-cycle is a graph on n distinct vertices v1, v2, ..., vn with the
edges {v1, v2}, {v2, v3}, {v3, v4}, ... , {vn−1, vn}, {vn, v1}. We say that G contains a
cycle whenever there is a subgraph of G that is a cycle. For the present purposes,
we will restrict our attention to n-cycles with n ≥ 3. We occasionally call cycles
with three vertices triangles and cycles with five vertices pentagons, etc..

Definition 1.6. The girth of a graph G, denoted girth(G) is the size of the smallest
cycle in the graph. As we might expect, the oddgirth of a graph is the size of the
smallest odd cycle in the graph.

One might think that if we do not have any “small” cycles in our graph, then
we could get away with coloring our graph with just a few colors. After all, if the
girth is high, then at any point the graph will locally look like a tree (i.e., a graph
without any cycles at all, which would always have a chromatic number of two);
however, this paper will show that it is not the case that the chromatic number can
be determined by looking at what happens locally around any point. The chromatic
number is actually a much more global property of the graph.

2. Oddgirth and Chromatic Number

In this section we will present a construction of a graph with high chromatic
number and high oddgirth. We begin this section with yet another

Definition 2.1. A directed graph ~G is a graph, each of whose edges have associated
to it a direction. The directions of the edges is entirely independent of the coloring
of the graph, i.e. directed graphs may be colored in the same way that non-directed
graphs are colored. Because of this, we may still talk about the chromatic number
of a directed graph ~G as being the size of the minimal coloring of ~G.

Definition 2.2. A directed acyclic graph or DAG is a graph without any directed
cycles, so beginning at a point v there is no directed path that leads back to v.
Note that there may be cycles in the undirected sense, however.

We will look at the following

Construction 2.3. The Line Graph
−−−→
L(G) of a directed graph ~G is created by

replacing each edge in ~G with a vertex in
−−−→
L(G). Two vertices representing directed

edges from u to v and from w to x in ~G are connected by an edge from uv to wx
in the line graph when v = w. That is, each edge in

−−−→
L(G) represents a length-two

directed path in ~G.

The goal of this section will be to prove that this construction does indeed
generate graphs with a high oddgirth and high chromatic number. In order to do
this we will need these important facts:

(1) 2χ(
−−−→
L(G)) = χ(~G)

(2) If ~G has no directed cycles then oddgirth(
−−−→
L(G)) > oddgirth(~G)

(3) ∀ cardinals ζ,∀n < ω, ∃G such that χ(G) ≥ ζ and oddgirth(G) ≥ n.
(1) is the easiest to prove. Suppose that we are given a coloring of

−−−→
L(G) which

colors each s′ ∈
−−−→
L(G) with a color col′(s′). Simply associate to each vertex v of

~G in(v) = {edges {w, v}, or edges going into v} and col(v) = {col′(e) | e ∈ in(v)}.
Since edges in ~G are vertices in

−−−→
L(G), this associates to each vertex v ∈ ~G the set
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of colors of all edges that end in v. This is an association between the colors of ~G
and the power set of the colors of

−−−→
L(G). Since this latter has cardinality 2χ(

−−−→
L(G)),

this will give us the inequality that we see in (1). We need only prove that this is
well-defined, i.e. that this does indeed give us a legal coloring of ~G.

Suppose that we are given two adjacent points v, w ∈ ~G with c connecting v to
w.

'&%$ !"#v c // '&%$ !"#w
If we call c′ the set of all vertices that go into v, then we wish to show that col(v) 6=
col(w). Suppose that this is not the case, that col(v) = col(w). By the way we
defined the coloring of ~G, we know that col′(c) = col(w), and that col′(c′) = col(v).
Putting these together yields

col(v) = col(w)⇒ col′(c) = col′(c′).

This means that we have two points in
−−−→
L(G) , namely c, c′ that are connected

but are the same color. This is a contradiction, proving that this coloring is indeed
well-defined.

Proving (2) will be a bit more tricky. If we restrict our view to triangles, it
is easy to see that all of the triangles in

−−−→
L(G) must have come from a directed

triangle in ~G. So by making ~G be acyclic, we can make
−−−→
L(G) have no triangles.

Generalizing, suppose oddgirth(
−−−→
L(G)) = 2k + 1. We then need to show that the

shortest odd cycle in ~G has length ≤ 2k−1. Suppose that we are given the shortest
odd cycle in

−−−→
L(G). Then we can pick the first point that has an edge from it, say

v1, and continue along that edge. Because we said that this was the smallest graph
in
−−−→
L(G), we know that there can be nothing of the following form (We leave this

fact as an easy exercise to the reader):

· · · en // 76540123vn ONMLHIJKvn+1
en+1

oo
en+2

// · · ·

Restricting our view of
−−−→
L(G) to this cycle, we can look at each of the points

where the cycle “changes direction”, a vertex in the cycle where there are two
ingoing edges or two outgoing edges, vertices which we will call turning points.
Because of the shape that this will impose on ~G, the exercise amounts to showing
that we will be able to construct a new, smaller cycle of

−−−→
L(G) if we have two turning

points that are next to each other.
~G being assumed to be without any directed cycles, we know that

−−−→
L(G) also has

no directed cycles. Therefore, we know that our cycle must contain at least one
turning point, else we would have a directed cycle in

−−−→
L(G). Not only that, but

there must be an even number of turning points in the graph since every time that
the cycle is turned around, that must be undone at some other turning point. We
can select those points that are not turning points, and discover that the graph in
~G that corresponds to our cycle is made up of only these points (exercise). This
gives us the shortest odd cycle in ~G, a smaller cycle than the shortest odd cycle in−−−→
L(G), proving (2).
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After all of that, in order to prove (3), we need only put (1) and (2) together.
Let’s do it first for the case where n = 5. Consider ~H = K(2ζ)+ , the complete graph
on (2ζ)+ many vertices, where (2ζ)+ denotes the successor cardinal of 2ζ . Then we
can make this graph a DAG by orienting all of the edges in one direction, say left.
In particular, ~H has no directed triangles, so we can be certain that

−−−→
L(H) does not

have any triangles at all. Because ~H is a complete graph, χ( ~H) = (2ζ)+. Then by
(1), χ(

−−−→
L(H)) > ζ, and by (2),

−−−→
L(H) > 3, exactly what we wanted.

We can do this for n > 5 as well by taking repeated iterations of the line graph
function. That is, given n we can take

~H = K(
22...

2ζ︸ ︷︷ ︸
n−1

2 times

)+
and consider

~H ′ = L(L(· · ·L︸ ︷︷ ︸
n−1

2 times

(H))).

Then by repeated iterations of (1), χ( ~H ′) = ζ and by repeated iterations of (2),
~H ′ has no cycles of size n or smaller, exactly what we are looking for. �

3. Graphs with Uncountable Chromatic Number

In the last section we constructed graphs with a large oddgirth and with high,
even infinitely high, chromatic number. It is not immediately obvious though why
it is that we cannot generalize this to include the even cycles as well, to girth from
oddgirth.

The goal of this section will be to prove a theorem stating that any graph with
an uncountable chromatic number, χ(G) ≥ ℵ1 must also contain a four-cycle, K2,2.

We first require the following lemma:

Lemma 3.1. If G = H1 ∪H2 then χ(G) ≤ χ(H1)χ(H2)

Proof. Let’s take λ1 = χ(H1) and λ2 = χ(H2). Now, H1 already has a coloring c1
on it which takes the vertices and maps them to the set of colors, that is c1 : v1 → λ1,
and simlarly for H2 we have that c2 : v → λ2. In order to combine the coloring of
these two graphs we can take their euclidean product |λ1×λ2| and take as our new
coloring c(v) = (c1(v), c2(v)). Then this coloring is a legal coloring, an easy fact
the proof of which we leave to the reader. �

The proof of this section’s theorem will hinge on the concept of closure of an
operation. Suppose that we are given an operation

◦ : A×A → A

(a, b) 7→ a ◦ b
Even without imposing any further conditions such as associativity or commuta-

tivity on this operation, given B ⊂ A, |B| = λ, we can still look at the substructure
generated by B, and ask about the size of this new substructure. This quantity,
|〈B〉| will be found by looking at all possible words composed of the ai ∈ B for
a given length k. Since we did not assume any associativity we must also look at
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the number of ways of inserting parentheses into the word. Summing over all the
lengths k will tell us the final size. This method gives us that

|〈B〉| =
∑
k<ω

λ = λ ∗ ℵ0 = λ

For λ any infinite ordinal. We are now ready to begin the proof of the theorem
that is the star of this section.

Theorem 3.2. (Erdős and Hajnal)
If χ(G) ≥ ℵ1, then G ⊇ K2,2.

Proof. We will prove this thoerem in the equivalent contrapositive form: If G does
not contain a four-cycle, i.e. G ⊇ K2,2 then the chromatic number of G is at most
countable, which we denote by χ(G) ≤ ℵ0. In addition we will at first assume that
|V | = ℵ1.

The proof proceeds by taking the so-called closure operation, which takes any
two points and gives any points that are connected to both of them. Now, if two
points were to share at least two common neighbors then these four points would
form a four-cycle, which we have assumed do not appear in our graph. Thus,
any two points may share at most one common neighbor, and hence the closure
operation will give us at most one new point per pair of points. That is, given our
set B we are taking any two points a and b and getting at most one new point a◦ b.
If |B| = λ and λ is an infinite cardinal, then there are λ2 ways of doing this, so we
form a new set B′ which has at most λ2 = λ cardinality. We can iterate this to get
B′′ which will have (λ2)2 = λ4 = λ cardinality. After repeated iterations we get
that the total cardinality is

λ+ λ2 + λ4 + ... =
λ+ λ+ λ+ ... =

λ ∗ ℵ0 = λ

This method of iterating the closure operation to ω we will call the closure
process. The proof proceeds by creating Cα such that C1 ⊃ ω and C1 is closed,
where we say that a set T is closed if ∀x, y ∈ T, z x, y ⇒ z ∈ T . To make C2, we
take v1 = min{ω \ C1} and apply the closure process to both C1 and v1 to form
C2. Along these lines, we define

Cα =

closure(Cβ ∪ vβ) for α = β + 1⋃
β<α

Cβ for α a limit ordinal

This defines Cα for all ordinals α < ω1. From this definition we can see that
C1 ⊂ C2 ⊂ C3 ⊂ ... and we can look at this transfinitely. From this we make the
following claim:

|Cα| = ℵ0, ∀ α.
We will prove this claim by making use of transfinite induction. Because we are
using induction, we can assume that the claim is true for all ordinals less than α.
Case 1: If α is a succesor ordinal, then α = β + 1. Then Cα = closure(Cβ ∪ vβ)
And by the induction hypothesis, Cβ is countable, hence Cα is the closure of two
countable sets, hence is itself countable, as we have seen. Case 2: If α is a limit
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ordinal, then Cα is defined as the union of countably many sets, hence is again
itself countable as we have seen.

The next fact about these Cα’s that we will prove is that they “take up” the
entire set ω1. We will show, in other words, that

⋃
α<ω1

Cα = ω1. To see this, we
first need to understand why it is that, for all ordinals γ, vγ ≥ γ. We formulate
this claim as a lemma.

Lemma 3.3. For any ordinal γ, vγ ≥ γ.

Proof. To prove this, we need first show that for any given ordinals γ, δ; γ ≤ δ ⇒
vγ ≤ vδ. This is accomplished by recalling that, ∀α,C1 ⊂ C2 ⊂ ... ⊂ Cα ⊂ ...
and that the vβ ’s are chosen by picking the point that is just after the set Cβ . So
whenever γ ≤ δ, so too Cγ ≤ Cδ, hence we will choose vγ before we choose vδ, so
we see that vγ ≤ vδ.

We are now ready to prove the lemma, by transfinite induction. The base case
here is easy, for 1 ∈ ω ⊂ C1, and v1 was chosen as the element just after C1, so
v1 must be greater than C1, in particular greater than 1. Now suppose that ∀ρ <
γ, vρ ≥ ρ, the induction hypothesis. Then, by what we just proved, vγ > vρ ≥ ρ.
Since this is true for all ρ < γ, we have proved that vγ ≥ γ. �

Essentially what this means is that our method of creating Cα’s does not “back-
track” on itself, but always picks up more points as it continues, telling us that we
will have exhausted ℵ1 after ω1 many steps (and not sooner since the cofinality of
ω1 is ω1).

We are now ready to attempt to color in the graph. From the Cα’s, we define
Dα = Cα \Cα−1. These Dα’s cover ω1, but each Dα is countable. Let’s color all of
the edges that connect two points within a Dα red, and all of the edges connecting
points that are in different Dα’s blue.

The chromatic number of the red graph is not difficult to determine. Because
each Dα contains only a countable number of points, we can color each Dα with at
most countable colors. We’ll color each Dα as a separate componenent, and since
we can color all of the Dα’s separately, we can thereby color their union with at
most countable colors. We now have only the coloring of the blue graph to worry
about.

We will prove that the blue graph is, in fact, two-colorable. We picked the blue
graph as the connections between the Dα’s, and how many of these can there be?
Well, suppose that there is a vertex wα ∈ Dα connected to both wβ ∈ Dβ and
wγ ∈ Dγ with β, γ < α. This means that ∃δ such that wβ , wγ ∈ Cδ, but wα 6∈ Cδ.
This is a contradiction with the way that the Cα’s were constructed. so from this
argument we can see that any point wα in the blue graph can only be connected to
one point less than itself in the blue graph.

Suppose we had a cycle in the blue graph. Then every point in the cycle would
have degree at least two. In particular, we can look at the maximum point in the
cycle. This max point must be connected to two other points in the cycle, but
because it is the max point, these other two points must be less than itself. Thus,
there is a point connected to two points less than itself, contradicting the previous
argument. Therefore, the blue graph can have no cycles in it, hence it forms a tree,
and is therefore two-colorable.
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We have thus far shown that the whole graph is the union of two graphs: the
red graph and the blue graph. By Lemma 3.1,

χ(G) ≤ χ(Blue Graph) ∗ χ(Red Graph) = 2 ∗ ℵ0 = ℵ0,

thereby completing the proof in the case that |G| = ℵ1.
To generalize this for |G| = ℵ2 we need to repeat the same proof with an impor-

tant modification. We choose our new C1 ⊃ ω1 instead of ω0. Then by the case
that we have just proven C1 is countably-colorable, and so we can cover all of ℵ2

with these new Cα’s, and repeat the rest of the proof. And in a similar fashion we
can prove the theorem for all uncountable cardinalities. �

4. The Probabilistic Method

We still want to construct graphs with high girth and high chromatic number,
even if that is impossible in the case of uncountable chromatic number. Is it pos-
sible to construct finite graphs with high girth and high chromatic number? By
the previous theorem, any method that could generate such graphs could not be
generalizable to the transfinite case. For this reason, a method such as the one that
we attempted in section 2 will not work. What does work is method called the
probabilistic method. The following theorem, due to Erdös, proves that there are
graphs with as high a finite chromatic number as we want even if we demand that
the graph not have any cycles less than a given size.

Theorem 4.1. (Erdős)
Given any k, l ∈ N there is a graph G such that χ(G) > k and girth(G) > l.

Proof. The proof makes use of a technique called the probabilistic method. This
proceeds as follows: rather than actually constructing such a graph, the idea will be
to look at a random graph and prove that the probability that this graph will satisfy
the hypotheses is greater than zero. Even though we will not actually construct
such a graph, since the graph exists with positive probability, then we know that
it must exist.

To do this, we first pick a θ so that 0 < θ < 1/l. Then we take our graph G on
n vertices, and we say that the probability of any two vertices being connected is
p = nθ−1. This forms a random graph on n vertices and we now want to look at X,
the number of cycles in the graph that are of length at most l. Now, since we are
taking our graph on n vertices, the number of cycles of a given length i is certainly
no more than ni and the probability of each of them occuring is pi, so

E[X] ≤
l∑
i=3

nipi

where E[X] is the expected value of X. This yields the following geometric series:

E[x] ≤
l∑
i=3

nin(θ−1)∗i =
l∑
i=3

niθ ≤ nlθ

1− n−θ

Since lθ < 1, we see that this fraction approaches zero as n → ∞. Therefore,
we know that there is some n so large that E[X] < n/4. We then use Markov’s In-
equality to relate this expected value to the actual probability. Markov’s Inequality
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states that for a random variable Y, and for t > 0,

Pr[Y ≥ t] ≤ E[Y ]
t

.

Applying this to the situation at hand, we see that

Pr[X ≥ n/2] <
n/4
n/2

= 1/2.

What about chromatic number? Instead of looking at the chromatic number
directly, we will only look at α(G), the size of the largest independent set in G. An
independent set is a set of vertices in G that are not connected to each other. For
example, if we colored a graph, then all of the red points in our graph would form
an independent set. Of course, the other way around may not work: it may be
that we can pick an independent set that cannot be colored by only one color. But
there cannot be more points of any one color than there are points in the largest
independent set. This leads us to the following formula:

(4.2) χ(G) ≥ |V |
α(G)

How do we find a bound on α? In any set of size a the probability that any two
points will be unconnected is 1−p, and there are

(
a
2

)
ways of picking out two points

within this set of a points. Since there are
(
n
a

)
such sets of size a, we see that

Pr[α(G) ≥ a] ≤
(
n

a

)
(1− p)(

a
2)

We can get a bound on the right hand side of this by realizing that
(
n
a

)
≤ na

and that (1− p)(
a
2) ≤ e−pa(a−1)/2. Putting these together tells us that

Pr[α(G) ≥ a] ≤ nae−
pa(a−1)

2 .

To further refine this, we note that so far we have left a undefined. If we set
a = d 3p lnne then we get that

Pr[α(G) ≥ a] ≤ nan−
3(a−1)

2

And we can see that as n gets very large, the right hand side of this inequality
gets closer and closer to zero. Therefore, there is some n large enough so that
Pr[α(G) ≥ a] < 1/2. We now have a bound for both the number of cycles that
have length at most l, and a bound for α(G) ≥ a, telling us that we can take the
union bound to get that

Pr[X ≥ n/2 and α(G) ≥ a] <
1
2

+
1
2

= 1

Because this probability is less than one, the probability that it won’t take place
will be greater than zero, telling us that there is a graph H with the number of
short cycles is X < n/2 and the size of the largest independent set is α(G) < a.
From this graph we look at all those cycles, and randomly pick one of them out,
which we then delete. The resulting graph H ′ will have no cycles of length less than
l and since there are less than n/2 such cycles, H ′ will have at least n/2 vertices
left in it. There is no way that deleting vertices in this way will ever increase the



GIRTH AND CHROMATIC NUMBER OF GRAPHS 9

size of the large independent set, so we get that α(H ′) < a. Using the formula that
we saw before, 4.2, we get

χ(H ′) ≥ |V (H ′)|
α(H ′)

≥ n/2
3n1−θ lnn

=
nθ

6 lnn
.

By making n very large, we can increase the size of the right hand size of this
equation, thereby increasing chromatic number of our graph. In particular, we can
make so large that χ(H ′) > k. This tells us that there is a graph H ′ without any
cycles of length l or less and with a chromatic number greater than k, exactly what
we wanted. �
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