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Abstract. We discuss Sperner’s Lemma in the form of two differ-
ent proofs. Connections can be made to graph theory and cochains
in simplicial complexes. This result is then used to prove Brouwer’s
Fixed Point Theorem in a nontraditional manner. Our method
provides a more constructive approach to the theorem in contrast
to the usual proof. We also mention the connection to the No-
Retraction Theorem which is used in the usual proof.
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1. Introduction

Sperner’s Lemma is a combinatorial result about a triangulation of
an n-simplex. More specifically, it deals with colorings of vertices of
a triangulation and counting full color simplexes. There are various
proofs of Sperner’s Lemma, many of which use vastly different tech-
niques. In this paper we discuss two different methods of proving the
result and the connections between them.

On the other hand, Brouwer’s Fixed Point Theorem is a well known
result dealing with continuous functions on the closed unit ball in Rn.
While at first these theorems seem unrelated, it turns out that we can
use Sperner’s Lemma to directly prove Brouwer’s Theorem.
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2. Sperner’s Lemma

We now present two proofs of Sperner’s Lemma. The first is a com-
binatorial proof involving graphs, while the second relies on cochains
and simplicial complexes. First we establish some notation which will
be used in both proofs. Let T be the standard n-simplex in Rn+1. Let
T k be the face of T which doesn’t contain the kth vertex of T . That
is, T k is the face opposite the kth vertex. Let T be a triangulation of
T . We can color the vertices of T in a particular way. Namely, color
the n + 1 vertices of T with colors c1, . . . cn+1 respectively. Color each
vertex of T in such a way that if a vertex of T lies on T k then it is not
colored ck. We call such a coloring of T a Sperner labeling or Sperner
coloring. The first proof of Sperner’s Lemma follows.

Theorem 2.1 (Sperner’s Lemma). Suppose T is given a Sperner La-
beling. Then there are an odd number of simplexes in T which contain
a vertex of every color.

Proof. First consider the case n = 1. Then T is the line segment with
ends colored c1 and c2, and the triangulation T consists of finitely many
points on T which are colored c1 or c2. Since T starts with c1 and ends
with c2, there must be an odd number of segments with both colors.

Induct on n and assume that any such triangulation of an (n − 1)-
simplex has an odd number of (n−1)-simplexes with full color. Create
a graph where each vertex corresponds to an n-simplex in T and there
is one additional vertex. Two vertices are connected by an edge if the
two simplexes they represent share a face which is colored with every
color except cn+1. The external vertex is connected by an edge to any
n-simplex whose intersection with ∂T is an (n − 1)-simplex with all
colors but cn+1. Note that every such boundary (n− 1)-simplex must
be contained in T n+1 and that T n+1 is an (n−1)-simplex whose induced
colored triangulation is a Sperner labeling with colors c1, c2, . . . , cn. It
follows that T n+1 has an odd number of (n − 1)-simplexes with full
color. Note that here “full color” means colors c1 through cn, but not
cn+1. Thus the degree of the external vertex is odd. Since in any simple
graph there are an even number of vertices with odd degree, there must
be an odd number of simplexes in T with odd degree.

Let σ = {v1, v2, . . . , vn+1} be a simplex of T with degree at least 2.
Without loss of generality, let j = {v1, v2, . . . , vn} and k = {v2, v3, . . . , vn+1}
be the vertex sets of two full color faces. It follows that v1 and vn+1

must be the same color, but since any other face will contain both these
vertices, σ can have degree at most 2. Therefore each simplex with odd
degree must have degree 1 and, consequently, exactly once face with
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colors c1, . . . , cn. Since these are exactly the full-colored simplexes, we
see that there are an odd number of simplexes in T with full color. �

We now consider a proof of Sperner’s Lemma using cochains. For
the purposes of this proof, we take cochains with values in F2. For a
simplicial complex X, a cochain in Cn(X) is a map from the set of
n-simplexes in X to F2. If α is an n-simplex in X, then there exists a
cochain in Cn(X) which has value 1 on α and 0 on all other simplexes.
and we can identify α with this cochain. In this way we will identify
cochains in Cn(X) with formal sums of n-simplexes.

For a simplicial complex X, the coboundary map ∂∗ : Cn−1(X) →
Cn(X) is defined as follows: If α ∈ Cn−1(X) is an (n−1)-simplex, then
∂∗(α) is the sum of all simplexes in Cn(X) which have α as a face. We
can extend ∂∗ to all of Cn−1 using linearity. If α ∈ ker(∂∗) then α is a
cocyle.

Given another simplicial complex Y and a simplicial map γ : X → Y ,
we can also define the map γ∗ : Cn(Y )→ Cn(X). If β is an n-simplex
in Y , then γ∗(β) is the sum of all n-simplexes in X which are mapped
on to β by γ. We extend γ∗ to all of Cn(X) by linearity. It can be
checked that γ∗ ◦ ∂∗ = ∂∗ ◦ γ∗.

For a simplicial complex X and a subcomplex A ⊆ X, let α be
a cocycle in Cn−1(A). Then we can extend α arbitrarily to obtain
α ∈ Cn−1(X). If we take ∂∗(α), then this coboundary is a cocycle
in Cn(X,A). Although this assignment is not unique for cochains,
it can be checked that it gives a well-defined map in cohomology δ :
Hn−1(A)→ Hn(X,A). Here δ(α) = ∂∗(α) is the connecting homomor-
phism in the long exact sequence of cohomology coming from the short
exact sequence

0← Cn(A)← Cn(X)← Cn(X,A)← 0.

It follows that given a simplicial map of pairs γ : (X ′, A′) → (X,A),
we have the following commutative diagram.

Hn−1(A′)
δ−−−→ Hn(X ′, A′)x(γ|A)∗

xγ∗

Hn−1(A)
δ−−−→ Hn(X,A)

We will now use the equality

γ∗(∂∗(α)) = ∂∗(γ∗(α)), (1)

to prove Sperner’s Lemma using cochains.
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Cochain Level Proof of Sperner’s Lemma. As in the combinatorial proof,
we proceed by induction on n, where n = 1 is clear. Suppose that for
n > 1 we have an odd number of full colored n-simplexes in any such
triangulation T .

Let φ : (T , ∂T ),→ (T, ∂T ) be the simplicial map which sends a
vertex of T to the vertex of T with the same color. Note that a simplex
of T has full color if and only if its image under φ is T . Let ∂T be the
boundary of T , defined as the union of all its faces. Recall that T n+1

is the face of T which does not contain the color cn+1. We proceed by
using equation (1) with φ in place of γ and T n+1 in place of α.

We can consider T n+1 as an (n−1)-cochain of ∂T . Since Cn(∂T ) = 0,
we have T n+1 is cocycle. If we extend T n+1 to a cochain in Cn−1(T ),

we find that the only choice is T n+1 = T n+1 since all (n− 1)-simplexes
are contained in ∂T . We then have

φ∗(∂∗(T n+1)) = ∂∗(φ∗(T n+1)). (2)

Label the n-simplexes in T which have full color as ρ1, . . . ρe. Now
consider all (n − 1)-simplexes in T which φ maps to T n+1. These
are precisely the (n − 1)-simplexes which have every color but cn+1.
Let σ1, . . . , σh be the (n − 1)-simplexes in T contained in T n+1 which
are mapped onto T n+1 by φ. Likewise, let τ1, . . . , τg be the (n − 1)-
simplexes of T that are not in T n+1 which are mapped onto T n+1 by φ.
Note that τ1, . . . , τg are contained within the interior of T . Moreover,
σ1, . . . , σh, τ1, . . . , τg constitute all (n− 1)-simplexes in T whose image
under φ is precisely T n+1. We know this because T is given a Sperner
coloring.

Now, note that by definition ∂∗(T n+1) is the sum of all n-simplexes
which have T n+1 as a face. Thus ∂∗(T n+1) = T . Recall also that for a
simplex β we have that φ∗(β) is the sum of all simplexes which φ maps
onto β. It follows then that

φ∗(∂∗(T n+1)) = φ∗(T ) = ρ1 + · · ·+ ρe.

On the other hand φ∗(T n+1) is precisely σ1 + · · · + σh + τ1 + · · · + τg.
Then equation (2) becomes

ρ1 + · · ·+ ρe = ∂∗(σ1 + · · ·+ σh + τ1 + · · ·+ τg).

Note that each σi is contained in T n+1 and so it is contained in precisely
one n-simplex, σ̂i, in T . Also, since each of these simplexes has unique
intersection with ∂T the h n-simplexes, σ̂1, . . . , σ̂h are distinct. Using
this, and the linearity of ∂∗, we now have

ρ1 + · · ·+ ρe = σ̂1 + · · ·+ σ̂h + ∂∗(τ1) + · · ·+ ∂∗(τg).
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Since each τi is contained in the interior of T , it is the face of exactly
two n-simplexes. Thus ∂∗(τi) is the sum of two n-simplexes. Since our
cochains have values in F2, when we sum this equation mod 2 we obtain
h + 2g ≡ e (mod 2) which simplifies to h ≡ e (mod 2). Therefore the
parity of h is always the same as that of e. Since we’ve inductively
assumed h is odd, it must also be the case that e is odd. But ρ1, . . . , ρe
are precisely the simplexes in T with full color. �

3. Brouwer’s Fixed Point Theorem

The usual proof of Brouwer’s Fixed Point Theorem is founded on
the No-Retraction Theorem. Using this and the homology of the n-
ball, one obtains the result through contradiction. The general idea
is to construct a retraction from the closed n-ball to its boundary.
Assuming there are no fixed points, this is done by considering the line
defined by x and f(x); this must intersect the boundary at some point
and so x gets mapped to the boundary in this way. Since there are
no fixed points, the map is valid for each x in the ball. But it can
be shown that the n-ball has trivial homology while its boundary has
infinite homology. Since the retraction induces a homomorphism on
homology, we arrive at a contradiction.

Here we present a proof of Brouwer’s Theorem using Sperner’s Lemma.
The proof is more straightforward and direct, and it also uses familiar
and simple concepts. It should be noted that while the standard proof
is non-constructive, this proof both allows for a more intuitive view
of why the theorem is true and gives a semi-constructive approach to
finding the fixed point.

Theorem 3.1 (Brouwer’s Fixed Point Theorem). Every continuous
function from the closed unit ball in Rn to itself has a fixed point.

Proof. Let T be the n-simplex in Rn+1 defined by the set of points

T =

{
(x1, x2, . . . , xn+1) | xi ≥ 0,

n+1∑
i=1

xi = 1

}
.

Let f : T → T be continuous and define

f(x) = f((x1, x2, . . . , xn+1)) = (f(x)1, f(x)2, . . . , f(x)n+1).

We first make the observation that for a point x ∈ T , if f(x)i − xi ≥ 0
for all 1 ≤ i ≤ n + 1, then x must be a fixed point. This follows from
the fact that both x and f(x) are in T and so both points must have
coordinates which sum to 1.

For a point x ∈ T , define k to be any index i which minimizes the
quantity f(x)i − xi. Note that k is defined for each point in T . Assign
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the color ck to each vertex of T based on its value of k. Note that
the jth vertex of T is the point with xj = 1 and xi = 0 for all i 6= j.
Thus the jth vertex of T has the property that f(x)j − xj ≤ 0 and
f(x)i − xi ≥ 0 for all i 6= j. Moreover, in the case of equality, the
jth vertex is a fixed point and we’re done. Assuming inequality, this
vertex must be colored cj. This shows that each vertex of T is colored
a distinct color according to its index.

Take the Barycentric subdivision T1 of T . Color all vertices of T1 in
the same way as the vertices of T were colored. If x is a vertex of T1
on T j, then xj = 0. Then f(x)j − xj ≥ 0 and we see that x cannot be
colored cj unless it is a fixed point. Thus, we have a Sperner coloring
of T1. One simplex of T1, by Sperner’s Lemma, has full color, so call
this simplex σ1. Now take the Barycentric subdivision of T1 to obtain
T2. By the same argument, labeling the vertices in the same fashion
gives a Sperner coloring of T2 and so there exists some simplex σ2 with
full color. Continue in this way to obtain a sequence of simplexes,
T = σ0, σ1, σ2, . . . .

Consider the sequence of vertices from σ0, σ1, σ2 . . . which are colored
ck. Call this sequence (pkn). Since (p1

n) is bounded, it has a convergent
subsequence (p1

nj
). Now let p be the limit of (p1

nj
). Note that since

the diameter of σi goes to 0 as i goes to ∞, any neighborhood of p
will contain all but finitely many of the simplexes (σnj

). Thus the

induced subsequences of each (pkn) all converge to p. Note that because
of how each sequence is defined, we have, f(pknj

)i ≤ (pknj
)i for each

i = 1, 2, . . . , n + 1. Since f is continuous, we can take the limit and
obtain f(p)i ≤ pi. But this is only possible if f(p) = p. �
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