
BROWNIAN MOTION

JUSTIN HARTMANN

Abstract. This paper begins to explore a rigorous introduction to probability
theory using ideas from algebra, measure theory, and other areas. We start
with a basic explanation of terms and ideas and then move onto an attempt
at explaining Brownian motion.

Contents

1. Measure Theory 1
2. Working with the Probability Triple 2
3. Independence and Expectation 5
4. Brownian Motion 6
Acknowledgments 9
References 9

This paper attempts to explain the phenomenon known as Brownian motion. As
a result, a thorough knowledge of probability theory is needed. We will assume the
reader has a cursory knowledge of probability terms and ideas. Therefore, we will
provide an introduction to probability theory, but by no means a complete one. We
begin with an introduction to measure theory.

1. Measure Theory

Before we get to what a measure is, we must have some objects to measure:

Definition 1.1. An algebra is essentially a family of sets closed under finitely many
set operations. That is, if S is a set then a collection Σ0 of subsets of S is an algebra
if:

(1) S ∈ Σ0

(2) F ∈ Σ0 =⇒ F c ∈ Σ0

(3) F, G ∈ Σ0 =⇒ F ∪ G ∈ Σ0.

Definition 1.2. A sigma algebra Σ is an algebra closed under countably many set
operations, i.e. whenever Fn ∈ Σ, then

⋃

n

Fn ∈ Σ.

Of course A ∩ B = (Ac ∪ Bc)c, so both algebras and sigma algebras are closed
under finite and countable intersections, respectively. Now let us consider what we
can do if our set, S, is a topological space.
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Definition 1.3. If S is a topological space, then the sigma algebra generated by
the family of open sets of S is called the Borel algebra. We will write simply B for
the Borel algebra generated by the open sets of R, B(R).

Now, this definition is a bit hard to digest. For instance, wha does the ”sigma
algebra generated by the family of open sets” really mean? Let us discuss this. Take
a general set X and a subset of that set A. Then let’s set ξ to be the collection of
all σ -algebras on X that contain A. Then, by the definition, the intersection of
all the σ-algebras in ξ is a σ-algebra itself. We’ll denote it by σ(A). Then, we call
σ(A) the sigma algebra generated by A. Now, replace A with the family of open
sets of S, and we have the Borel algebra.

Now we have the objects we need, so we can define the space that we will use
for the measure.

Definition 1.4. A pair (S,Σ) where S is a set and Σ is a sigma algebra is a
measurable space.

Definitions 1.5. A measureµ is a countably additive map µ: Σ→ [0,∞] where Σ is
a sigma algebra. By countably additive, we mean that for a sequence A1, A2, . . . ∈
Σ, µ (∪∞

n=1An) = Σ∞
n=1µ(An). We also require that µ(∅) = 0. A triple (S,Σ, µ) is

a measure space.

Now, to begin to work with probability, we need a specific type of measure. We
need a probability measure and a corresponding probability triple.

Definition 1.6. If µ(S) = 1, then µ is a probability measure. Then, the triple
(S,Σ, µ) is a probability triple. In probability theory it is common to denote S by
Ω, Σ by F , and µ by P. Thus we have the triple (Ω,F , P).

2. Working with the Probability Triple

Now that we have our triple, (Ω,F , P), we must begin to work with our triple
in order to perform experiments and find probabilities of outcomes. First, we must
introduce some terminology.

Definitions 2.1. We call Ω the sample space and a point ω ∈ Ω is called a
sample point . The σ − algebra F on Ω is called the family of events. Then, an
event F is a member of F , or a F − measurable subset of Ω.

Intuitively, we can think of Ω as the set of all possible outcomes and ω as one of
these outcomes. Then, P(F ) is the probability that ω ∈ F .

Example 2.2. Consider rolling a fair, six-sided die. Then, Ω = {1, 2, 3, 4, 5, 6} and
F is the set of all subsets of Ω, in other words, the power set. Take the event F
that you roll a prime number. Then F = 2, 3, 5 and P(F ) = 3

6 = 1
2 .

Let us notice a few things about this example. First of all, the σ-algebra F is
the power set of Ω. This is true because our example is discrete. If, for example,
Ω were uncountable, then F really could not be the power set. If we did try to set
F to the power set, it would be impossible to give a unique measure to each set in
F . It is simply too large. Think of it this way: when Ω is discrete, the size of the
power set, and thus of F , is 2Ω. What happens if Ω is uncountable? It is easy to
see that we quickly run into problems. In this case we use B(Ω) for F .
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Another thing to notice here is that the probability measure, P is uniform. Every
set of F with the same number of elements has the same measure. This is only true
becasue we have assumed a ”fair” die. If we instead assumed the die was weighted
so that a 6 showed up half of the time, then the measure would not be uniform.
Every set with a 6 would have at least a probability of 1

2 .
So, we can now calculate the probabilities of events. This is nice and useful, but

most often we will not be working with events that have such a clear distinction.
Interesting probability theory makes use of random variables, which we will now
define. Intuitevely, we shall think of random variables as possible data. They
represent what an outcome may or may not be, and the realization of a random
variable is an event. So, one may think of the random variable before the experiment
being replaced by an event after the experiment is performed. For instance, the
number of heads in 5 tosses of a coin is a random variable, and one realization of
that random variable might be {H, H, T, H, T }.

Definition 2.3. Given a measurable space (S,Σ) and a function h : Σ→ R we say
h is Σ − measurable if h−1 : B → Σ. mΣ then denotes the class of Σ-measurable
functions on S.

Definition 2.4. Then, using our probability triple (Ω,F , P), we define a random
variable to be an element of mF . So, for the random variable X , X : Ω → R and
X−1 : B → F .

Example 2.5. Let us now consider an example of coin tossing. Say we toss a coin
N times and record the results. Then our sample space Ω is a collection of N-tuples
of all combinations of H, heads, and T, tails: Ω = {H, T }N . Then,

ω = (ω1,ω2, ...,ωN ) where ωn ∈ {H, T },

And the random variable Xn(ω) can be defined as:

Xn(ω) :=

{
1 if ωn = H

0 if ωn = T

We then also have the random variable SN = X1 + X2 + · · · + XN = number of
heads in N tosses of the coin. One must of course check Xn and SN to make sure
they are measurable, which is easy.

So, thus far, we have a probability triple (Ω,F , P), with a sample space Ω, a
sigma algebra F generated by the sample space, and a probability measure P on
F . We have also seen how to create events from the sample space and also random
variables out of the σ-measurable functions on the sample space. Now, we will see
how to put these ideas together to create a probability distribution function.

As we have seen, X−1 maps from the Borel algebra, B, to σ(X) ∈ F and the
probability measure, P, maps from F to [0, 1]. By σ(X), we mean the σ-algebra
generated by the random variable X . That is, σ(X) := X−1(B). It is the σ-algebra
that is the result of taking the inverse function, X−1, on B. Thus, we have:

[0, 1] P←− σ(X) X−1

←−−− B
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Thus, it is quite natural to think of the composition function of P and X−1.

Definition 2.6. We will define the law, LX , of X to be: LX = P ◦ X−1.

Definition 2.7. Now, to work with this, we will want to use a π-system on R.
This we will define as a non-empty family subsets of R that is closed under finite
intersection.

Then, LX : B → [0, 1] and, following directly from the definition, LX is a
probability measure on (R,B). Now, we can generate B by using the π-system
π(R) = {(−∞, c] : c ∈ R}. Thus, we can specify the law by using a corresponding
function FX : R → [0, 1].

Definition 2.8. We will define this function as FX(c) := LX(−∞, c] and name it
the distribution function of X .

Intuitively, we can think of this function in probabilistic terms. It is simply the
probability that the random variable X is less than or equal to c. Another way to
think of it is the probability of the collection of sample points ω such that X(ω) ≤ c.
Thus we have:

FX(c) = P(X ≤ c) = P{ω : X(ω) ≤ c}.
This is nice to have. Now, given any experiment, we can determine that the

probability that a given random variable takes on a certain value is less than or
equal to a given c. This allows for many applications itself. To work with the
distribution function, we need the following properties:

For a probability triple (Ω,F , P), a random variable X , and a distribution func-
tion FX :

(1) FX : R → [0, 1].

Proof. The distribution function FX is a composition function of the law,
LX(−∞, c], which is composed of two functions: P◦X−1. Since the proba-
bility measure, P, goes from the σ-algebra to [0, 1], the distribution function
must go from R to [0, 1]. Intuitively, this makes sense because the random
variable can take on any value in R but the probability that it takes on
that value can be no less than 0 and no greater than 1. !

(2) FX is increasing. That is, x ≤ y ⇒ FX(x) ≤ FX(y).

Proof. This comes from the definition of the probability measure. From
this, we know that if A ⊂ B ⇒ P(A) ≤ P(B). Well, if x ≤ y, and we
take the events A = {X ≤ x} and B = {X ≤ y} , then A ⊂ B and then
P(A) ≤ P(B). Then, from the definition of a distribution function, we know
that FX(x) ≤ FX(y). !

(3) limx→∞FX(x) = 1 and limx→−∞FX(x) = 0.

Proof. First, limx→∞FX(x) = P(X ≤ +∞) = P(X ∈ R) = P(S) = 1, using
the definition of a probability measure.
Similarly, limx→−∞FX(x) = P(X ≤ −∞) = P(∅) = 0. !
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(4) FX is right-continuous.

Proof. A property of measures is the monotone-convergence property. Ba-
sically, it means that if Gn ∈ F , with Gn ↓ G and for some k P(Gk) < ∞,
then P(Gk) ↓ P(G). Then, we see that P(X ≤ x + n−1) ↓ P(X ≤ x). So,
this, along with (2) give that FX is right-continuous. !

3. Independence and Expectation

Now we begin a discussion of the topic of independence. We will define what
it means for algebras, random variables, and events to be independent. These
definitions will allow us great flexibility and problem solving abilities when we
discuss the specifics of Brownian motion. For now, let us simply define the terms
so we will have them later.

Definition 3.1. Suppose we have our probability triple (Ω,F , P). Consider sub-
σ-algebras from F . So, take F1, F2, . . . as sub-σ-algebras of F . Then, we say that
F1, F2, . . . are independent if for Gi ∈ Fi and i ∈ N we have:

P(G1 ∩ G2 ∩ · · · ∩ Gn) =
n∏

1

P(Gi)

We will now define independence for random variables and events. These will
be much easier to define, as they pretty much follow from the independence of
σ-algebras.

Definition 3.2. We say that the random variables X1, X2, . . . are independent if
their corresponding σ-algebras are independent. That is, X1, X2, . . . are indepen-
dent if σ(X1),σ(X2), . . . are independent.

Definition 3.3. We call events E1, E2, . . . independent if the σ-algebras E1, E2, . . .
are independent where (Ω,F , P) is the probability triple and Ei = {∅, Ei,Ω\Ei,Ω}.
Definition 3.4. Given a probability triple (Ω,F , P), the expectation of a random
variable X , E(X) is:

E(X) :=
∫

Ω
X dP =

∫

Ω
X(ω) P(dω)

Definition 3.5. Given two random variables X and Y and their expectations,
E(X) = µx and E(Y ) = µY , the covariance of X and Y , is:

Cov(X, Y ) := E[(X − µX)(Y − µY )]

We would like to think of the expectation as the mean, or average, of the random
variable. In a sense, it is the most likely value that the random variable will have.
The covariance, intuitively, will be a measure for how related two random variables
are. So, a positive covariance will mean that there is a direct relationship between
how the two variables vary and a negative covariance will mean that there is an
indirect relationship between how the two variables vary. We will find both values
to be extraordinarily useful. The variance of a random variable, defined below, also
has an intuitive meaning. We think of it as a measure of dispersion. That is, it is
a measure of how far a random variable is from its mean.

Definition 3.6. The variance of a random variable x, Var(X), is:

Var(X) := E[(X − µX)2] = Cov(X, X)
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4. Brownian Motion

Now we come to the main subject of the paper, that is, Brownian motion. Brow-
nian motion was ”discovered” when the English scientist Brown noticed that when
he observed pollen particles in water under a microscope slide the pollen was con-
stantly in motion. In fact, pollen slides as old as 100 years were still moving! This
was a very surprising fact at the time. Over the years numerous mathematicians
and statisticians have constructed Brownian motion with little more than a prob-
ability distribution, means, and covariances. So, we begin our discussion now with
the definition of Brownian motion for one dimension:

Definition 4.1. A stochastic process {B(t) : t ≥ 0} is called a Brownian motion
with an initial point x ∈ R if:

(1) B(0) = X
(2) B(t) has independent increments, meaning that ∀ t the increments B(tn)−

B(tn−1), B(tn−1)−B(tn−2), . . . , B(t2)−B(t1) are independent random vari-
ables.

(3) ∀ t ≥ 0 andh > 0 the random variables B(t + h) − B(t) have a normal
probability distribution with expectation 0 and variance h.

(4) the map t → B(t) is continuous.

Notice that in the definition we reference the normal probability distribution.
Intuitively, the normal distribution describes a random process that centers around
a mean. Mathematically, we define it as follows:

Definition 4.2. A random variable X has a normal distribution with mean µ and
variance σ2 if:

P(X ≤ x) =
1√

2πσ2

∫ x

−∞
e

−(u−µ)2

2σ2 du ∀x ∈ R

So, this is nice, but why is this characterization a good model for the random
movement discovered by Brown? Well, intuitively, we see that there is a starting
point, X , and then that each increment is independent of the other. Later, we will
see that this is related to the Markov property. The idea is that if the increments
are independent, then the movement of the ”particle” has nothing to do with past
locations of the particle, only current locations. This is good for randomness. Then,
continuity is also good for randomness, since it means that rather than having a
definite point at each time t, our ”particle” has a probability distribution for being
at that point. That probability being the normal distribution is good, because
this means that that our ”particle” will move more or less randomly. It will be
centered around a mean, 0, but vary in each movement with a variation related to
its variance, h.

Now that we have a firm definition of Brownian motion, we would like to dis-
cover a few properties that make it especially interesting to discover. The first
is this, Brownian motion is nowhere differentiable. This statement will of course
require some explanation, and a proof. The interesting thing about this statement
is this: from the definition we can see that there is some inherent regularity and
overall ”niceness” to Brownian motion. We need few inputs, really just a starting
point, a mean, and the variance, and the increments are not only independent, but
normally distributed. On top of that, the function is continuous. Yet, it is nowhere
differentiable. That is remarkable.
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Theorem 4.3. For a standard Brownian motion {B(t) : t ≥ 0}, almost surely
B(t) is not differentiable at t, and the upper and lower derivatives are +∞,−∞,
respectively.

Proof. First, we create another process, also a Brownian motion, {X(t) : t ≥ 0}
such that:

X(t) =

{
0 if t = 0,

tB(1/t) if t > 0

Now, X(s) = B(t + s) − B(t) is a standard Brownian motion with the fact that
the derivative of X at 0 is the same as the derivative of B at t. So, we simply need
to show that X is not differentiable at 0.

Now, we’ll define what we mean by upper and lower derivatives. For the upper
derivative, we have:

Dtf(t) = lim sup
h↓0

f(t + h) − f(t)
h

And the lower derivative will be:

Dtf(t) = lim inf
h↓0

f(t + h) − f(t)
h

Now, to find the derivatives of X(0):

DtX(0) ≥ lim sup
n→∞

X( 1
n ) − X(0)

1
n

≥ lim sup
n→∞

√
nX(

1
n

) = lim sup
n→∞

B(n)√
n

Then, similarly:

DtX(0) = lim inf
n→∞

B(n)√
n

Thus, we simply need to show:

lim sup
n→∞

B(n)√
n

= ∞ and lim inf
n→∞

B(n)√
n

= −∞

Proposition 4.4.

lim sup
n→∞

B(n)√
n

= ∞ and lim inf
n→∞

B(n)√
n

= −∞

Proof. Now, the reason we have this in a separate proposition, is that it is quite
complicated. We need a few different ideas. First off, we will use Fatou’s Lemma
and the Hewitt-Savage 0-1 Law. The proof for these are out of the scope of this
paper, but they will be extraordinarily useful to use.

Lemma 4.5 (Fatou’s Lemma). Fatou’s Lemma simply states that for non-negative
measurable functions, fn, on a measure space (Ω,F , P):

∫

Ω
lim sup fndP ≥ lim sup

∫

Ω
fndP.
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Lemma 4.6 (Hewitt-Savage 0-1 Law). Set (Xi)i≥1 to be a sequence of independent
and identically-distributed sequence of random variables. Then, set the σ-algebra ξ
to be all events which depend on (Xi)i≥1 and whose probabilities are unchanged by
finite permutations of i. Then, for all E ∈ ξ, P(E) = 0 or 1.

With this, we can now prove the proposition, and thus the theorem. To do this,
we want to show that B(n) > c

√
n with probability one. So:

P(B(n) > c
√

n infinitely often) = P(lim sup
n→∞

B(n) > c
√

n) ≥ lim sup
n→∞

P(B(n) > c
√

n)

Where c is some positive integer and the last step uses Fatou’s Lemma. Then, by
the scaling property, lim supn→∞ P(B(n) > c

√
n) becomes lim supn→∞ P(B(1) >

c), which is clearly positive, so the conditions for Fatou’s Lemma are satisfied.
Now, set Xn = B(n) − B(n − 1). Then we have:

P(B(n) > c
√

n infinitely often) = P(Σn
i=1Xi > c

√
n infinitely often)

Well, this is an exchangeable event, so we can use the Hewitt-Savage 0-1 Law to get
that P(B(n) > c

√
n) = 1. Then, if we take the intersection for all positive integers

c, we get the first part of the proposition, i.e.:

lim sup
n→∞

B(n)√
n

= ∞

The second part we prove similarly.
!

And this proves the theorem. !
The other property of Brownian motion that we would like to discuss is the

idea that the zero set is uncountable. That is, for a standard linear Brownian
motion, {B(t) : t ≥ 0}, the zero set, {t ≥ 0 : B(t) = 0} is uncountable. This
result makes sense: standard Brownian motion is a random process with normally
distributed increments with mean 0. So, throughout the process, it makes sense
that the function would cross of 0 many times. In fact, an uncountable number of
times. We will prove this in two steps. First, we show that the zero set is closed
with no isolated points. Then, we show that such sets are uncountable.

Theorem 4.7. For a Brownian motion {B(t) : t ≥ 0}, denote the zero set by:
O = {t ≥ 0 : B(t) = 0}. Then, O is a closed set with no isolated points.

Proof. For this proof, we first need two definitions:

Definition 4.8. A stopping time for a sequence of random variables, X1, X2, . . ., is
a random variable itself, call it ρ, such that ∀t ∈ N the event that ρ = t is dependent
only on X1, X2, . . . , Xt.

Definition 4.9. The strong Markov property states that given a Brownian motion
{B(t) : t ≥ 0}, for every finite stopping time ρ, the process {B(ρ+t)−B(ρ) : t ≥ 0}
is a standard Brownian motion.

Now, O is going to be closed from the simple fact that a Brownian motion is
continuous. Then, to show that there are no isolated points, we consider, for each
non-negative q ∈ Q, the first member of the zero set after q: φq = inf{t ≥ q :
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B(t) = 0}. So, φq has a finite stopping time, and since O is closed, the inf is a
minimum. Now, using the strong Markov property, we know that for each q, φq is
not an isolated point from the right.

Thus, we just have to show that the remaining points are not isolated from the
left. Now, we say that for any 0 < t ∈ Z different from φq is not an isolated point
form the left. We can see this if we examine the sequence qn ↑ t with q ∈ Q. Then,
set mn = φqn . Then, qn ≤ mn < t, so mn ↑ t. So, t is not isolated form the left.
And thus, O has no isolated points. !

Another term for a closed set with no isolated sets is a perfect set. Thus, we
only need to show that perfect sets are uncountable, and we will have our result.

Theorem 4.10. Perfect sets are uncountable.

Proof. Take a perfect set, lets call it O since we’ve already proved that to be
a perfect set. Well, it cannot be finite because it consists only of accumulation
points. If O is countable, then we could write it as O = {o1, o2, . . .}.

Then we’ll consider an interval, I1 = (o1 − 1, o1 + 1). This interval is clearly the
neighborhood around o1. Then, since o1 is an accumulation point, I1 has infinitely
many elements of O.

Now, take an element of I1, o2 for example and construct I2 so that I2 ⊂ I1 and
o1 /∈ I2.

Then, since o2 is an accumulation point in O, I2 has infinitely many elements of
O.

Now take o3, and I3 with I3 ⊂ I2 and o1, o2 /∈ I3. Continue with this. Then, we
will have In and on with In+1 ⊂ In, oj /∈ In for all 0 < j < n, xn ∈ In.

Then consider the intersection of the closure of the intervals with O:

A = ∩n
i=1Ii ∩ O

Each set Ii∩O is closed and bounded, and thus compact with In+1∩O ⊂ In∩O, so A
is nonempty. Yet, o1 is not in V since o1 /∈ I2 and the same holds for o2, o3, . . .. So,
O must have some elements not listed in {o1, o2, o3, . . . and thus O is uncountable.

!
So we have seen what Brownian motion is and a few interesting properties con-

cerning Brownian motion. Other aspects concerning the topic, while outside the
scope of this paper, are topics entirely worth pursuing. Brownian motion, and the
probability behind it, have numerous uses across many different fields in mathe-
matics, probability, economics, chemistry, and so forth.
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