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Abstract. The Prime Number Theorem is an intriguing result describing,

for large enough x, the close approximation of the number of primes less than

or equal to x with x
logx

. I wish to prove this result, and by doing so de-

scribe a variety of other interesting relationships in close accordance with the
Prime Number Theorem. This process will illustrate the nature of an impor-

tant function, ϕ(x) which also has a close connection with the Riemann Zeta

Function.

Contents

1. A Few Preliminary Definitions

Definition 1.1. We define ϕ(x) =
∑
p≤x

log p where p is a prime number.

Definition 1.2. Given two functions f and g of common variable, x, where g is
positive, and both f and g are defined for all sufficiently large x, we denote

f = O(g)

to mean that there exists some constant C > 0 such that for all x sufficiently large,
|f(x)| ≤ Cg(x)

i.e. f = O(x) means that |f(x)| ≤ Cx for some C > 0 and large enough
x

2. The Main Lemma

This section is devoted to an important Theorem, which describes, in general,
the association between a bounded, piecewise continuous function and its Laplace
Transform which will have great importance in some later results needed to prove
the Prime Number Theorem.

Theorem 2.1. Let f be a bounded, piecewise continuous function defined on R≥0.
Now define

g(z) =
∫ ∞

0

f(t)e−zt for <(z) > 0

Suppose g extends to an analytic function on <(z) ≥ 0, then∫ ∞
0

f(t)dt exists and equals g(0)
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Proof. We begin by defining an entire function, gT where

gT (z) =
∫ T

0

f(t)e−ztdt

for T > 0
We then have to show that lim

T→∞
gT (0) = g(0).

To do this, we define a path, C, around 0 which is composed of, for δ > 0, the
union of C+ and C− where
C+ is the semicircle |z| = R for <(z) ≥ 0 and
C− is the line <(z) = −δ and the portion of the circle |z| = R for −δ ≤ <(z) < 0

Now, due to the assumption we made that g extends to an analytic function on
<(z) ≥ 0, we can choose δ to be arbitrarily small so that g will be analytic on the
region bounded by C. We now recall the Cauchy Integral Formula,

f(z) =
1

2πi

∫
CR

f(ζ)
ζ − z

dζ

where CR is the circle of radius R, and z ∈ CR
Thus, because 0 ∈ C we see that

g(0)− gT (0) =
1

2πi

∫
C

g(z)− gT (z)
z

dz =
1

2πi

∫
C

(g(z)− gT (z)) eTz
(

1 +
z2

R2

)
dz

z

which is seen because 0 is a simple pole for
1

2πi

∫
C

g(z)− gT (z)
z

dz, and the term

eTz
(

1 +
z2

R2

)
evaluated at 0 is just 1. We now split the proof up into 3 claims,

which intend to show that |g(0)− gT (0)| → 0 as T →∞.

Claim 1: ∣∣∣∣ 1
2πi

∫
C+

(g(z)− gT (z)) eTz
(

1 +
z2

R2

)
dz

z

∣∣∣∣ ≤ 2B
R

where B is a bound for f .

Proof. First, for |z| = R we see that∣∣∣∣eTz (1 +
z2

R2

)
1
z

∣∣∣∣ = e<(z)T

∣∣∣∣R2 + z2

R2

∣∣∣∣ ∣∣∣∣1z
∣∣∣∣ = e<(z)T

∣∣∣∣Rz +
z

R

∣∣∣∣ 1
R

= e<(z)T 2|<(z)|
R2

Second, for <(z) > 0 we get

|g(z)− gT (z)| =
∣∣∣∣∫ ∞
T

f(t)e−ztdt
∣∣∣∣ ≤ B ∫ ∞

T

|e−zt|dt ≤ e−<(z)T B

<(z)

Taking the product of these two results gives us∣∣∣∣ 1
2πi

∫
C+

(g(z)− gT (z)) eTz
(

1 +
z2

R2

)
dz

z

∣∣∣∣ ≤ e−<(z)T e<(z)T B

<(z)
2|<(z)|
R2

=
2B
R2

Multiplying this by R, the radius of C+, gives us
2B
R

, which is our bound for the

integral over C+. �
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Now that we have this result, we need to look at the expression under the integral
sign for gT and g separately.

Claim 2: ∣∣∣∣ 1
2πi

∫
C−

gT (z)eTz
(

1 +
z2

R2

)
dz

z

∣∣∣∣ ≤ 2B
R

Proof. Notice that we have

|gT (z)| =

∣∣∣∣∣
∫ T

0

f(t)e−ztdt

∣∣∣∣∣ ≤ B
∫ T

0

e−<(z)T dt ≤ Be−<(z)T

−<(z)

And just as in the first claim, we have that, for |z| = R on C−∣∣∣∣eTz (1 +
z2

R2

)
1
z

∣∣∣∣ = −e<(z)T 2|<(z)|
R2

Thus, multiplying these two results together yields us,

−e<(z)T e−<(z)T 2|<(z)|
R2

B

−<(z)
=

2B
R2

And again, multiplying this value by, R, the radius of the semicirlce, gives us
2B
R

as a bound for the expression under the integral sign for gT (z) �

So now we need to look at the expression under the integral for g(z)
Claim 3: ∫

C−
g(z)eTz

(
1 +

z2

R2

)
dz

z
→ 0 as T →∞.

Proof. We see that for any z in the region bounded by C−,

eTz → 0

as T →∞. This result follows from the region being a compact subset of C. Thus,

because g(z)
(

1 +
z2

R2

)
1
z

does not depend on T , and is a bounded expression for

all z in the region bounded by C−, we see that for all <(z) ≥ −δ and |z| ≤ R that

g(z)eTz
(

1 +
z2

R2

)
1
z
→ 0 as T →∞

Hence it follows that∫
C−

g(z)eTz
(

1 +
z2

R2

)
dz

z
→ 0 as T →∞.

�

Knowing this, we see that for any ε > 0, choose R large enough so that
2B
R

<
ε

3
and T large enough so that∣∣∣∣∫

C−
g(z)eTz

(
1 +

z2

R2

)
dz

z

∣∣∣∣ < ε

3

Then we see that |g(0)− gT (0)| < ε, and thus the limit;

lim
T→∞

gT (0) =
∫ ∞

0

f(t)dt

exists. �
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3. The Behavior of ϕ(x)

The purpose of this section is to describe some of the unique properties of ϕ(x),
leading to the result that ϕ(x)→ x as x→∞, which is essential to prove the Prime
Number Theorem.

Theorem 3.1. ϕ(x) = O(x)

Proof. We need to show that there exists a constant C > 0 such that for x large
enough, ϕ(x) =

∑
p≤x

log p ≤ Cx

To do this, let n ∈ N and let p be prime, then we see that

22n = (1+1)2n =
2n∑
k=0

(2n)!
k!(2n− k)!

≥ (2n)!
n!(2n− n)!

≥
∏

n<p≤2n

p = e

(∏
n<p≤2n

log p
)

= eϕ(2n)−ϕ(n)

Taking the natural log of the left and right ends of the above relation, we find
that

2n log 2 ≥ ϕ(2n)− ϕ(n)

Thus we see that for any constant C > log 2,

ϕ(x)− ϕ(
x

2
) ≤ Cx

ϕ(
x

2
)− ϕ(

x

22
) ≤ C(

x

2
)

...

ϕ(
x

2m
)− ϕ(

x

2m+1
) ≤ C(

x

2m
)

Summing these up as m goes to ∞, we get

ϕ(x) ≤ Cx(1 +
1
2

+
1
22

+ . . .) = 2Cx

which proves the theorem for C
′
> 2C > log 2 �

Proposition 3.2. ∑
p

log p
ps

= s

∫ ∞
1

∑
p≤x log p
xs+1

dx

for all <(s) > 1

Proof. First, we look at the integral between any two consecutive primes, p1, p2

where
∑
p≤x

log p is constant:

s

∫ p2

p1

∑
p≤x log p
xs+1

dx =

∑
p≤p1

log p

 s

∫ p2

p1

1
xs+1

dx =

∑
p≤p1

log p

 s

(
x−s

−s

)p2
p1

=

∑
p≤p1

log p

( 1
ps1
− 1
ps2

)
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And then, using the summation by parts formula:
n∑
k=0

akbk = anBn −
n−1∑
k=0

Bk(ak+1 − ak)

where Bn =
n∑
k=0

bk we see that by letting Bn =
∑
p≤pn

log p and an =
(

1
psn

)
we get

s

∫ p2

p1

∑
p≤x log p
xs+1

dx+ s

∫ p3

p2

∑
p≤x log p
xs+1

dx+ . . .+ s

∫ pn

pn−1

∑
p≤x log p
xs+1

dx

=

∑
p≤p1

log p

( 1
ps1
− 1
ps2

)
+ . . .+

 ∑
p≤pn−1

log p

( 1
psn−1

− 1
psn

)

=
n−1∑
i=1

∑
p≤pi

log p

( 1
psi
− 1
psi+1

) = −
n−1∑
i=1

∑
p≤pi

log p

( 1
psi+1

− 1
psi

)
=

n∑
i=1

log pi
psi
−

∑
p≤pn

log p

 1
psn

And using the fact that
∑
p≤x

log p = ϕ(x) = O(x) we see that

∑
p≤pn

log p

 1
psn
→ 0

as n→∞.

Thus, taking n to ∞ gives us s
∫ ∞

1

∑
p≤x log p
xs+1

dx =
∞∑
i=1

log pi
psi

=
∑
p

log p
ps

�

Lemma 3.3. ∫ ∞
1

ϕ(x)− x
x2

dx

converges

Proof. We shall make the substitution x = et, dx = etdt, so∫ ∞
1

ϕ(x)− x
x2

dx =
∫ ∞

0

ϕ(et)− et

e2t
etdt =

∫ ∞
0

ϕ(et)− et

et
dt =

∫ ∞
0

f(t)dt

where we define f(t) =
ϕ(et)− et

et
. We have seen that ϕ(x) = O(x)

And by Theorem 2.1, since ϕ(x) is piecewise continuous and bounded by O(x),∫ ∞
0

f(t)dt = g(0)

where g(z) =
∫ ∞

0

f(t)e−ztdt. So since
∫ ∞

1

ϕ(x)− x
x2

dt =
∫ ∞

0

f(t)dt, it is enough

to show that
∫ ∞

0

f(t)dt converges, and by Theorem 2.1 we can just show that the

Laplace transform of f is analytic for <(z) ≥ 0

Claim: g(z) =
1

z + 1

∑
p

log p
pz+1

− 1
z

where p is prime.
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If this is true, then it follows that g(z) is meromorphic, hence analytic, for
<(z) > 0

We already have the equality
∑
p

log p
ps

= s

∫ ∞
1

∑
p≤x log p
xs+1

dx = s

∫ ∞
1

ϕ(x)
xs+1

dx,

So it follows that,

g(z) =
∫ ∞

0

f(t)e−ztdt =
∫ ∞

0

ϕ(et)− et

et
e−ztdt =

∫ ∞
0

ϕ(et)− et

e2t
ete−ztdt

=
∫ ∞

0

ϕ(et)− et

e2tezt
etdt =

∫ ∞
0

ϕ(et)− et

et(z+2)
etdt =

∫ ∞
1

ϕ(x)− x
xz+2

dx

=
∫ ∞

1

ϕ(x)
xz+2

dx−
∫ ∞

1

x

xz+2
dx =

∫ ∞
1

ϕ(x)
xz+2

dx−
∫ ∞

1

1
xz+1

dx =
∫ ∞

1

ϕ(x)
xz+2

dx+
1
z

(
1
∞
− 1

1z
)

=
∫ ∞

1

ϕ(x)
xz+2

dx− 1
z

=
1

z + 1

∑
p

log p
pz+1

− 1
z

Thus, g is analytic for <(z) ≥ 0, and since g is the Laplace transform of f , it
follows that ∫ ∞

0

f(t)dt =
∫ ∞

1

ϕ(x)− x
x2

dx

converges. �

Theorem 3.4. lim
n→∞

ϕ(x) = x

Proof.
Claim 1: {x | ϕ(x) ≥ λx} is bounded for λ > 1

So let M1 be an upper bound. i.e. for all x > M1, ϕ(x) < λx
Suppose not, then there exists some λ > 1 such that for all x > M1,

ϕ(x)
x
≥ λ

ϕ(x) =
∑
p≤x

log p is increasing, so we have for x > M1,

∫ λx

x

ϕ(t)− t
t2

dt ≥
∫ λx

x

λx− t
t2

dt =
∫ λ

1

λ− t
t2

dt > 0

The third integral does not depend on x, and we know for a convergent integral,
given ε > 0, there exists N > 0 such that∫ ∞

N

f(t)dt < ε

so if we let 0 < ε <

∫ λ

1

λ− t
t2

dt, we see that for all x∫ λx

x

ϕ(t)− t
t2

dt ≥
∫ λ

1

λ− t
t2

dt > ε > 0

So it is clear that ∫ λx

x

ϕ(t)− t
t2

dt
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does not converge, which we have seen from Lemma 3.3 is false. Hence there is a
contradiction, and {x | ϕ(x) ≥ λx} is bounded for λ > 1

Claim 2: {x | ϕ(x) ≤ λx} is bounded for 0 < λ < 1
Let M2 be an upper bound. i.e. for all x > M2, ϕ(x) > λx
Suppose not, the there exists 0 < λ < 1 such that for all x > M2,

ϕ(x)
x
≤ λ

and, ∫ x

λx

ϕ(t)− t
t2

dt ≤
∫ x

λx

λx− t
t2

dt =
∫ 1

λ

λ− t
t2

dt < 0

So as in the previous claim, ∫ x

λx

ϕ(x)− t
t2

dt

does not converge, and hence, {x | ϕ(x) ≤ λx} is bounded for 0 < λ < 1
Thus, for λ = 1 and for x large enough, we have ϕ(x) = x �

4. The Prime Number Theorem

Theorem 4.1. If π(x) = the number of prime numbers ≤ an integer x, then

lim
x→∞

π(x)
x

log x

= 1

Proof. Let ϕ(x) be defined as earlier. ϕ(x) =
∑
p≤x

log p where p is prime.

and since
∑
p≤x

log p ≤
∑
p≤x

log x because p ≤ x, we see that
∑
p≤x

log x = π(x) log(x).

so,
ϕ(x)

log(x)
≤ π(x)

Now given ε > 0,

ϕ(x) ≥
∑

x1−ε≤p≤x

log p ≥
∑

x1−ε≤p≤x

log x1−ε =
∑

x1−ε≤p≤x

(1− ε) log x

= (1− ε) log x[π(x) +O(x1−ε)]

Thus we have

(1− ε)[π(x) +O(x1−ε)] ≤ ϕ(x)
log x

≤ π(x)

And knowing that ϕ(x)→ x as x→∞ We see that as x→∞, π(x)→ x

log x
�
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