
ELEMENTARY TOPOI: SETS, GENERALIZED

CHRISTOPHER HENDERSON

Abstract. An elementary topos is a nice way to generalize the notion of sets
using categorical language. If we restrict our world to categories which satisfy

a few simple requirements we can discuss and prove properties of sets without

ever using the word “set.” This paper will give a short background of category
theory in order to prove some interesting properties about topoi.
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1. Categorical Basics

Definition 1.1. A category, C is made up of:

• Objects: A,B,C, . . .
• Morphisms: f, g, h, . . .

This is a generalization of “functions” between objects. If f is a mor-
phism in a category C then there are objects A,B in C such that f is a
morphism from A to B, as below. We call A = dom(f) (the “domain”) and
B = cod(f) (the “codomain”).

A
f // B
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If we have morphisms f : A → B and g : B → C then there exists an
arrow h : A→ C such that the following diagram commutes:

A
f //

h ��@@@@@@@ B

g

��
C

Here we are only asserting some rule of composition.
We denote h = g ◦f . This rule of composition must satisfy associativity,

so that for f : A→ B, g : B → C, h : C → D, we have that:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

Lastly, for every object A in C, there is a morphism idA : A → A such
that for any other morphisms g : A→ B and h : B → A, we have that:

g = g ◦ idA, h = idA ◦ h

Remark 1.2. We will sometimes, for convenience, write f ◦ g as fg and we will
rarely use parentheses. Also, we may refer to morphisms as “arrows.”

Definition 1.3. The dual of a category C is a category Cop, which has all the
same objects in C, but with all morphisms reversed. Explicitly, for f : A → B,
fop : B → A is a morphism in Cop.

Definition 1.4. Two objects A,B ∈ C are isomorphic if there exist morphisms
f : A→ B, g : B → A such that fg = idB and gf = idA.

Definition 1.5. An arrow m : C → D is monic if for any pair B
f //
g
//C such

that mf = mg, then f = g. An arrow e : A → B is epi if for any parallel arrows
f, g with fe = ge then f = g. We denote a monic by C //

m //D and an epi by

A
e // //B .

A monic is just the generalization of a one-to-one function and an epi is the
generalization of an onto function. It should be noted that it is not in general true
that in categories where objects have underlying sets (like Set, Top, Grp, etc.) a
monic is one-to-one and an epi is surjective.

Example 1.6. Define a category with the two sets {a, b} and {c} as objects and
with morphisms id{a,b}, id{c}, f, g, gf where f : {a, b} → {c} and g : {c} → {a, b}.
Clearly f(a) = c = f(b), but define g(c) = a. Clearly f is not one-to-one, but it is
indeed monic.

Lemma 1.7. If m : A→ B, n : B → C, with nm monic, then m must be monic.

Proof. Suppose there are g, h : D → A such that mg equals mh. Then composotion
on the left gives that nmg equals nmh. Since nm is monic, g equals h. �

Definition 1.8. A terminal object of C, denoted 1, is an object such that for
any object A in C, there is exactly one arrow !A : A→ 1.

Definition 1.9. An initial object of C, denoted 0, is an object which is a terminal
object in Cop.
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Note that our definition of initial object is just a fancy way of describing an
object that has exactly one morphism !A : 0 → A for every object A. In the
category where objects are all sets and morphisms are all functions between sets, a
terminal object is any set with one element and an initial object is the empty set.
In other categories, initial and terminal objects are simply generalizations of this
idea.

Proposition 1.10. In a category C, all terminal objects are isomorphic. Similarly,
all initial objects are isomorphic.

Proof. Let 1,1′ be two terminal objects. Then there are unique arrows f : 1→ 1′,
g : 1′ → 1. Note that fg : 1′ → 1′. But id1′ : 1′ → 1′. Thus by uniqueness
fg = id1′ . Similarly, gf = id1.

The result for initial objects follows from the fact that an initial object is a
terminal object in the dual category. �

Definition 1.11. A diagram A P
π2 //π1oo B is a product of A and B if for any

arrows φ1 : C → A, φ2 : C → B, there is a unique arrow h : C → P making the
following diagram commute:

C
φ1

��~~~~~~~
φ2

��@@@@@@@

h

��
A Pπ1
oo

π2
// B

We usually denote the product P as A×B.

Exercise 1.12. The following hold in any category C with products and terminal
objects:

A×B ∼= B ×A, A× 1 ∼= A

Remark 1.13. We should note that it follows from Exercise 1.12 and duality that
in any category with coproducts (denoted by “+”) and initial objects:

A+B ∼= B +A, A+ 0 ∼= A

Definition 1.14. The pullback of a diagram: A
a //C B

boo is an object P
with morphisms p1 : P → A, p2 : P → B such that bp2 = ap1 and such that for
any other object P ′ with morphisms p′1 : P ′ → A, p′2 : P ′ → B such that bp′2 = ap′1,
then there is a unique arrow h : P ′ → P such that the diagram below commutes:

P ′

p′1

��

p′2

""

h

  
P

p2 //

p1

��

B

b

��
A a

// C

We usually denote the pullback P as A×C B.

In the category Set, described above, the pullback of the diagram above would
be isomorphic to the set {(x, y) : x ∈ A, y ∈ B, a(x) = b(y)}. The pullback is just
a generalization of this notion.
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Definition 1.15. An equalizer of morphisms A
f //
g
//B is a morphism E

e //A

such that fe = ge and such that for any morphism U
u //A with fu = gu, there

is a unique morphism U
γ //E such that the following diagram commutes:

E
e // A

f //
g
// B

U

γ

OO

u

??~~~~~~~

In the category Set, an equalizer is simply the set {a ∈ A : f(a) = g(a)}.

Proposition 1.16. An equalizer is monic.

Proof. Let m : A→ B be the equalizer of arrows x, y : B → C. Suppose there are
arrows f, g : D → A such that mg = mf . Then ymg = ymf = xmf = xmg. Thus
there is a unique arrow u : D → A such that the following commutes:

A
m // B

x //
y
// C

D

u

OO

mf=mg

>>~~~~~~~

But both f and g make that diagram commute. So, by uniqueness, we get that
u = f and u = g. Thus f = g, and so m must be monic. �

The preceding (terminal objects, pullbacks, equalizers, and products) are all
examples of limits. While we will not define what a limit is in this paper, it
suffices to simply think of these four examples. When we discuss a “colimit,” one
may simply consider initial objects, pushouts, coequalizers, and coproducts (which
are respectively terminal objects, pullbacks, equalizers, and products in the dual
category).

The reader should consider a category C to have all finite limits if it has a
terminal object and all pullbacks. It wouldn’t be fruitful to define limits and to
give a proof that having all finite limits is equivalent to having a terminal object
and all pullbacks, so we continue without doing so. The reader unfamiliar with
categorical language can skip the “proof” of the following theorem.

Theorem 1.17. All limits (and colimits) are unique up to isomorphism.

Proof. This is a consequence of Proposition 1.9 and the fact that limits are defined
as terminal objects in the category of cones and colimits are terminal objects in the
category of co-cones. �

Definition 1.18. If C,D are categories then a (covariant) functor F : C → D
satisfies the following:

• If A is an object of C then F (A) is an object in D
• If f : A→ B is a morphism is D then F (f) : F (A)→ F (B) is a morphism
D

• F (idA) = idF (A)

• F (f ◦ g) = F (f) ◦ F (g)
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Definition 1.19. If C,D are categories with functors C
F //
G
//D , then a natural

transformation, α : F → G is a family of morphisms αC : FC → GC for every
C which is an object of C, such that for any f : A→ B in C the following diagram
commutes:

FA
αA //

Ff

��

GA

Gf

��
FB

αB // GB

Natural transformations are in fact morphisms between functors, and they serve
in defining an important type of functor, which we will define now:

Definition 1.20. If C,D are categories then functors C
F //D
G
oo form an adjunc-

tion if for any C ∈ C, D ∈ D, there an isomorphism

φ : HomD(FC,D) ∼= HomC(C,GD)

which is natural in both C and D. Here, HomC(O1, O2) denotes the set of mor-
phisms in category C from O1 to O2.

In this case we say that F is the left adjoint of G, or equivalently that G is the
right adjoint of F .

What we mean by “natural in C” is that given h : C ′ → C, and denoting
composition on the right by h∗, the following diagram commutes:

Hom(FC,D)
φC,D //

(Fh)∗

��

Hom(C,GD)

h∗

��
Hom(FC ′, D)

φC′,D // Hom(C ′, GD)

In other words, given f : FC → D we get that:

φC,D(f)h = φC′,D(f(Fh))

What we mean by “natural in D” is that given a morphism g : D → D′, and
denoting composition on the left by g∗, the following diagram commutes:

Hom(FC,D)

g∗

��

φC,D // Hom(C,GD)

(Gg)∗

��
Hom(FC,D′)

φC,D′ // Hom(C,GD′)

In other words, given f : FC → D we get that:

GgφC,D(f) = φC,D′(gf)

One important property of adjunctions is that functors which are right adjoints
preserve limits and functors which are left adjoints preserve colimits. By this we
mean that a functor F : C → D preserves limits if it takes limits in C to limits in
D. While we state this without proof, one can find proofs of this fact in any book
on Category Theory.
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2. Subobject Classifiers

In our attempts to generalize the notion of a set, we need to generalize two
important concepts: subsets and characteristic functions. A key property of sets is
that a subset S ⊂ A is uniquely determined by a characteristic function φS . Thus,
if we know the characteristic map of S then we can recover S.

Remark 2.1. The reader should consider a category C to have all finite limits if it
has a terminal object and all pullbacks.

Definition 2.2. A subobject of an object A is a monic S // m //A .

Remark 2.3. We consider two subobjects, n,m to be equivalent if there is an iso-
morphism φ such that n = mφ. A subobject is actually an equivalence class of
monics, but, for the purposes of this paper, we ignore this point of rigor. For an
object A, we denote the set of subobjects of A by SubC(A).

One can easily define a functor using hom-sets; namely, Hom(−, B) : Cop → Set
is a functor which takes X ∈ C to Hom(X,B) and which takes f : X → Y to
f∗ : Hom(Y,B) → Hom(X,B), recalling that f∗ is composition of f on the right.
Similarly we can create a functor Sub(−) : Cop → Set, which takes an object A
to the set Sub(A) and which takes a morphism f : B → A to Sub(f) : Sub(A) →
Sub(B), defined by the pullback square below.

P //

Sub(f)(m)

��

X

m

��
B

f
// A

It is a quick exercise to show that this is, in fact, a functor since it preserves
equivalence classes.

Definition 2.4. Two subobjects A,B of S in a C are disjoint subobjects if the
diagram below is a pullback.

0 //

��

A
��

��
B // // S

Definition 2.5. In a category C with finite limits, a subobject classifier is an
object Ω and a monic true : 1 → Ω such that for any subobject, m : S → A there
is a unique arrow φ : A→ Ω making the following square a pullback:

S
! //

��
m

��

1
��
true

��
A

φ
// Ω

As it turns out, not all categories have subobject classifiers, but we will soon
restrict ourselves to only considering those that do.

Example 2.6. In the category Set, the subobject classifier is true : {∗} → {0, 1},
with true(∗) = 1.
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Example 2.7. The slice category C/B of a category C over an object B, has
morphisms with codomain B as objects and commutative triangles as morphisms.
Given a category C with finite limits and a subobject classifier Ω, we can define a
subobject classifier for C/B. Given the product below, we define true : idB → ω1

to be the unique arrow satisfying:

B
idB

{{xxxxxxxxx
φidB

""FFFFFFFFF

true

��
B B × Ω

ω1oo ω2 // Ω

Noting that idB is the terminal object in C/B, it is an easy exercise to show that
true : idB → ω1 is the subobject classifier for C/B.

Proposition 2.8. Any two subobject classifiers 1 // t //Ω , 1 // t
′
//Ω′ are isomor-

phic.

Proof. We then get two commutative squares, which, it is important to note, are
pullbacks, as below, making the outer square a pullback (this is trivial to check):

1
id1 //

��
t

��

1
��
t′

��

id1 // 1
��
t

��
Ω

φ
// Ω′ α

// Ω

But by the definition of a subobject classifier, there is a unique arrow which makes
the diagram a pullback, and since the diagram below is a pullback, then α◦φ = idΩ:

1
id1 //

��
t

��

1
��
t

��
Ω

idΩ // Ω

Similarly, we can show that φ ◦ α = idΩ′ , and thus Ω ∼= Ω′. �

Proposition 2.9. A category C with finite limits and small hom-sets1 has a sub-
object classifier if and only if there is an object Ω and an isomorphism

θX : SubC(X) ∼= HomC(X,Ω)

which is natural in X.

This should not be surprising since it is clearly true in the category Set. Namely,
a subset of a given set X defines a characteristic function X φ //{0, 1} ∼= Ω, just
as a function, φ : X → {0, 1}, defines a subset of X.

3. Exponentials

Observe that given two sets A,B, Hom(B,A) is itself a set. We will denote this
hom-set, veiwed as an object in Set, by the exponential notation AB . But more
carefully, we should note that for any function f : A × B → C we get a function

1We say that a category C has small hom-sets if for all objects A, B ∈ C, Hom(A, B) is a set.
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g : A→ Hom(B,C) given by g(a)(−) = f(a,−). Thus, exponentials satisfy, in the
category Set,

(3.1) Hom(A×B,C) ∼= Hom(A,CB)

So if we work backwards, we can define the general notion of an exponent AB .
If we consider −×B : C → C to be a functor (on a category C with finite products),
then we can define (−)B : C → C to be it’s right adjoint (when such a functor
exists).

Definition 3.2. Given an objects A,B, we define the exponent AB to be the
right adjoint (−)B of −×B applied to the object A.

In fact, the above definition of exponentials works with categories, where we
define CD to be the category of functors from D to C. This allows us to consider
the next example.

Example 3.3. Given functors F,G : Cop → Set the exponential functor is FG(C) =
Hom(Hom(−, C)×G,F ).

Proposition 3.4. In any category with a terminal object, finite products, and
exponentials, the following hold:

(3.5) 1X ∼= 1 X1 ∼= X

(3.6) (A×B)C ∼= AC ×BC AB×C ∼= (AB)C

Proof. We begin with the first of (3.5). Hom(Y × X,1) ∼= Hom(Y,1X). But
Hom(Y × X,1) = {!Y×X}, and so there is exactly one morphism Y → 1X for
each object Y . This means that 1X is a terminal object, and thus isomorphic to 1.

For the second of (3.5), examine: Hom(Y,X) ∼= Hom(Y × 1, X) ∼= Hom(Y,X1).
Where the first isomorphism follows from Y ∼= Y × 1 and the second from the
definition of exponential. This means that X ∼= X1.

For the first of (3.6), examine:

Hom(Y,AC ×BC) ∼= Hom(Y,AC)×Hom(Y,BC)
∼= Hom(Y × C,A)×Hom(Y × C,B)
∼= Hom(Y × C,A×B)
∼= Hom(Y, (A×B)C)

Giving us that (A×B)C ∼= AC ×BC .
For the second of (3.5), examine:

Hom(Y, (AB)C) ∼= Hom(Y × C,AB)
∼= Hom(Y × (C ×B), A)
∼= Hom(Y × (B × C), A)
∼= Hom(Y,A(B×C))

Giving us that (AB)C ∼= A(B×C). �



ELEMENTARY TOPOI: SETS, GENERALIZED 9

4. Elementary Topoi

As it turns out, one can find categories which generalize the notion of a set
simply by requiring a few of the structures already discussed, leading to the next
definition:

Definition 4.1. An elementary topos (plural: topoi) is any category, C, which
has the following properties:

(1) C has all finite limits and colimits
(2) C has exponentials
(3) C has a subobject classifier

Example 4.2. The following categories are topoi:

(1) The category with one object and one (identity) arrow.
(2) Set.
(3) Setn, whose objects are n-tuples of sets and whose morphisms are n-tuples

of functions.
(4) SetC

op

.
(5) The slice category C/B, where C is a topos and B ∈ C. This will be

discussed in more detail later, as it provides a nice “backdoor” to proving
some useful properties.

(6) G-Sets, whose objects are G-sets with G-actions and whose morphisms are
functions between G-sets, which respect the G-action.

There is a second, equivalent, manner in which to define a topos, which we will
state now because it brings to light the concept of the transpose of a morphism.

Definition 4.3. A topos is a category C with:

(1) Pullbacks,
(2) A terminal object denoted 1,
(3) An object Ω and a monic arrow true : 1 → Ω such that for any monic

m : S → B, there is a unique arrow φ : B → Ω making the following
diagram a pullback:

S
! //

m

��

1

true

��
B

φ // Ω

We often write φ as char(S) or char(m).
(4) For an object B, there is an object PB and an arrow εB : B × PB → Ω

such that for every f : B × A → Ω there is a unique arrow g : A → PB
such that the following commutes:

B ×A
f

##HHHHHHHHH

1×g
��

B × PB
εB // Ω

We call g the P-transpose of f , and we call f the P-transpose of g. We
denote this f = ĝ.
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Remark 4.4. Note that by examining the similarities between the definition of the
exponential as a right adjoint and the definition of the “power object” PB of an
object B, we see that we can consider PB to be ΩB .

Lemma 4.5. In a topos, every monic is an equalizer and every arrow which is both
monic and epi is an isomorphism.

Proof. Since we are working in a topos, the most obvious place to look for a pair
of morphisms for which a monic A //

m //B could be the equalizer would be in

the definition of a subobject classifier. Thus we examine A // m //B
char(m)//
trueB

//Ω, where

trueB = true◦!B . It follows from the definition of a subobject classifier and the
definition of a terminal object that trueB ◦m = char(m) ◦m and that m is in fact
the equalizer of these arrows.

A
��

m

��

!A // 1

true

��
B

!B~~~

??~~~

char(m)
// Ω

Now, suppose m is both a monic and an epi. Then there is some pair B f //
g //C

such that m is the equalizer of such a pair. But since m is an epi and fm = gm,
then f = g. Thus since f ◦ idB = g ◦ idB , there is some unique map u : B → A
such that mu = idB . This also gives us that mum = idB ◦m = m = m ◦ idA, and
since m is monic then um = idA. Thus, m is an isomorphism. �

Remark 4.6. Observe that, Lemma 4.5 along with Proposition 1.14 gives that in a
topos an arrow is an equalizer if and only it is monic. In addition, one can quickly
derive that any isomorphism is a monic and an epi as a consequence of the existence
of an inverse. Thus, an arrow is monic and epi if and only if it is an isomorphism.

5. Lattices and Heyting Algebras

Definition 5.1. A lattice is a partially ordered set, when considered as a category,
with x→ y iff x ≤ y, that has all finite limits and colimits.

In the usual definition of a lattice, there are two important operations ∧,∨ :
L× L→ L defined equationally as

x ∧ x = x = x ∨ x 1 ∧ x = x 0 ∨ x = x

x ∧ (y ∨ x) = x = (x ∧ y) ∨ x

We define x ∧ y to be x× y and x ∨ y to be x+ y. It is a quick exercise to show
that the operations defined in this manner satisfy the equations above. For our
purposes, we insist that all lattices be distributive; namely, that all x, y, z in our
lattice must satisfy (x ∧ (y ∨ z)) = (x ∧ y) ∨ (x ∧ z).

Intuitively we can view ∨ as “union” or “or” whereas ∧ can be viewed as “inter-
section” or “and.”

Proposition 5.2. In a lattice, x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
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Proof.

(x ∨ y) ∧ (x ∨ z) = [(x ∨ y) ∧ x] ∨ [(x ∨ y) ∧ z]
= x ∨ [(x ∧ z) ∨ (y ∧ z)]
= [x ∨ (x ∧ z)] ∨ (y ∧ z)
= x ∨ (y ∧ z)

�

Definition 5.3. A Heyting algebra is a lattice which, when viewed as a poset
and thus a category, has exponentials.

Essentially what we have done is taken the notion of a lattice and restricted
those we will consider to those which are also topoi when viewed as categories.
Observe that when we apply our definition of exponential to our conception of a
lattice, denoting yx by (x⇒ y), we get:

z ≤ (x⇒ y) if and only if z ∧ x ≤ y

Proposition 5.4. In a Heyting algebra the following hold:

(x⇒ 1) = 1 (1⇒x) = x ((y ∧ z)⇒ x) = (z ⇒ (y ⇒ x))(5.5)

((x ∨ z) ∧ y) = ((x ∧ y) ∨ (x ∧ z)) (x⇒ (y ∧ z)) = ((x⇒ y) ∧ (x⇒ z))(5.6)

z ≤ (x⇒ y) if and only if x ≤ (z ⇒ y)(5.7)

Proof. (5.5) follows from Proposition 3.3, while (5.6) come from the definiton of
− ∧ y = − × y as the left adjoint of x ⇒ − = (−)x (thus, the former preserving
colimits and the latter preserving limits).

For (5.7): z ≤ (x⇒ y) iff z ∧ x ≤ y iff x ∧ z ≤ y iff x ≤ (z ⇒ y) �

Proposition 5.8. In a Heyting algebra the following hold:

(x⇒ x) = 1(5.9)

x ∧ (x⇒ y) = x ∧ y, y ∧ (x⇒ y) = y(5.10)

x⇒ (y ∧ z) = (x⇒ y) ∧ (x⇒ z)(5.11)

Thus, a Heyting algebra satisfies all those identities we would expect a structure
to which we impart the language of logic to satisfy. In fact, we can even define an
object to be, intuitively, the negation of x as ¬x = (x ⇒ 0). This in fact satisfies
some of the identities we would expect:

x ≤ ¬¬x

x ≤ y implies ¬y ≤ ¬x
¬x = ¬¬¬x

¬¬(x ∧ y) = ¬¬x ∧ ¬¬y
Given the extra condition, x = ¬¬x, a Heyting algebra is, in fact, a Boolean algebra.

As it turns out there are lots of familiar structures which are Heyting algebras.
Some examples are Sub(X) for any object X in a topos (we will prove this later),
SetC

op

, and Boolean Algebras.
We will take this idea further, in Section 8, by examining objects in topoi which

have similar internal structures.
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6. Factorizing Arrows

In Set, given a function f : X → Y , we can easily decompose it as an onto
function e : X → Z and a one-to-one function m : Z → Y as follows: let e(x) =
f(x), Z = f(X), and m(z) = z. In fact, we will see that this decomposition can be
generalized for all topoi.

Definition 6.1. A morphism f : X → Y factors through m : Z → Y if there is
some morphism t : X → Z such that f = mt.

Definition 6.2. A morphism m : X → Y is the image of f : W → Y if f = me
for some morphism e : W → X and if whenever f factors through a monic h, m
factors through h.

Lemma 6.3. In a topos, every arrow f has an image m and factors as f = me,
where e is an epi.

Proof. First we construct the factorization. Given f : A → B, find x, y : B → P
which are the pushout of f with itself. Let m : M → B be the equalizer of this
pair and using the definition of equalizer, we get a unique arrow e : A → M such
that f = me.

Now to show that m is the image of f . Note that by Proposition 1.14, we know
that m is monic. Suppose there is some monic arrow h such that f factors through

h as in: A
f ++

g //N // h //B . Then using Lemma 4.5 we have that there are two
arrows x′, y′ : B → C whose equalizer is h. But then x′h = y′h implies that:

x′f = (x′h)g = (y′h)g = y′f

By the definition of a pushout there is a unique arrow u : P → C such that ux = x′

and uy = y′. But this gives:

x′m = uxm = uym = y′m

Then by definition of h as an equalizer of x′, y′, there is a unique arrow v : M → N
such that hv = m. Thus m factors through h, i.e. if f factors through h then so
does m. This completes the proof that m is the image of f .

Now we must show that e is epi. We apply our factorization above to e to get
that e = m′e′ where A e′ // //M ′ // m′ //M . Since f = mm′e′ and the composition of
two monics is monic, then m must factor through mm′ by some unique arrow u :
M →M ′. Thus m = mm′u, and since m is monic then idM = m′u. Also, m′um′ =
idMm

′ = m′ = m′idM ′ gives that um′ = idM ′ . Thus m′ is an isomorphism. This
means that if s, t : M ′ → C is the pushout of m′, i.e. sm′ = tm′, then:

sm′(m′)−1 = tm′(m′)−1 ⇒ s = t
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Now suppose there are arrows g, h : M → P ′ such that ge = he. By the definition
of a pushout, this gives a unique arrow v : C → P as below:

A

e

##

e

��

e′

  BBBBBBBB

M ′

m′

��

m′ // M

s=t

�� g

��

M

h

,,

s=t // C
v

  
P

Thus, g = vs = h. So e is epi. �

Proposition 6.4. If f = me and f ′ = m′e′ with m,m′ monic, and e, e′ epi, then
any map (r, t) from f to f ′ defines a unique map of m, e to m′, e′ as below:

A

r

��

e // E

u

��

// m // B

t

��
A′

e′ // E′ //
m′ // B′

By quick inspection we see that Proposition 6.4 gives us that for any arrow,
factorization is unique up to isomorphism.

7. Slice Categories as Topoi

We first assert, without proof, the following theorem which will allow us to apply
our earlier machinery to slice categories.

Theorem 7.1. If C is a topos and B is an object in C, then C/B is a topos.

Slice categories are important topoi for two reasons: they provide a nice backdoor
to prove some useful facts about topoi (like Corollaries 7.3, 7.4, 7.5, and 7.7 and
Proposition 7.9) and they provide a nice example of a topoi whose objects don’t
have an underlying set.

Theorem 7.2. For any arrow k : B → A in a topos C we can create a “change-
of-base” functor k∗ : C/A→ C/B which has both a right and a left adjoint.

Remark 7.3. Our functor k∗ is merely taking the pullback f ′ : B ×A X → B of an
arrow f : X → A.

Proof. For the left adjoint Σk, we simply use composition with k. To check that
this is a left adjoint we need to verify Hom(Σkh, g) ∼= Hom(h, k∗g) for h : H → B
and g : G → A. However, it is easy to see that a map γ : H → G is a map from
Σkh = kh to g if and only if it gives a unique map from h to k ∗ g, as is evident by
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considering the following diagrams:

H
γ //

Σkh=kh   @@@@@@@ G

g

��
A

H
γ

##

h

��

  
G′

k∗g

��

// G

g

��
B

k
// A

For a right adjoint we first notice that pullback along two morphisms gives us
the notion of product in slice categories. Thus, if we define the right adjoint k∗ to
be (−)k we complete the proof as:

Hom(k∗g, h) ∼= Hom(k × g, h)
∼= Hom(g, hk)

�

Corollary 7.4. In a topos, the pullback of an epi is epi.

Proof. Take an epi e : X → A and notice that e is epi if and only if the square
below is a pushout:

X
e //

e

��

A

idA

��
A

idA // A

This is also a pushout in the slice category. Now take a morphism k : B → A and
note that k∗e is the pullback of e. But k∗ is a left adjoint (i.e. has a right adjoint),
so it preserves all colimits. Thus, the square below must be a pushout:

B ×A X
k∗e //

k∗e

��

B

idB

��
B

idB // B

In other words, k∗e, the pullback of e, is epi. �

Corollary 7.5. In a topos, any arrow k : A→ 0 is an isomorphism.

Remark 7.6. This should seem pretty natural since, in Set, 0 is the empty set and
the only functions which have the empty set as codomain, have it also as domain.

Proof. We begin by noticing that the unique arrow !0 : 0 → 0 is both initial and
terminal in C/0. Using Lemma 7.2, we know that the pullback of !0 must be both
initial and final in the category C/A. Also, !A : 0 → B is the unique (up to
isomorphism) initial object in C/A.
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This gives that the square below is a pullback and, since id0 is both monic and
epi, then so is g (by Corollary 7.3). Thus, g is an isomorphism by Lemma 4.5.

0

g

��

id0 // 0

id0

��
A

k
// 0

Since kg = id0 then we get that:

k = kg(g−1) = id0(g−1) = g−1

�

Corollary 7.7. Every arrow k : 0→ B is monic.

Proof. Suppose there is g : A→ 0, then A ∼= 0. Thus A is an initial object and so
g is the unique map from A to 0. �

While in Set this seems obvious, it took a considerable amount of machinery
to prove in general. The work, however, was worthwhile as we can now prove the
following:

Theorem 7.8. For any object A in a topos, Sub(A) is a Heyting Algebra.

Proof. Let the reader be aware that we will abuse notation in this proof; when we
write S ∈ Sub(A), we actually refer to S //

s //A .
We first need to show that Sub(A) is in fact a lattice. To do this we will explicitly

constuct some of the important features of a lattice. For an initial object, we apply
Corollary 7.7 to get 0 as a subobject of A. For a terminal object we simply use A.
To define ∧, which we will denote here by ∩, we simply take the pullback below:

B ∩ C
��

��

// // C
��

��
B // // A

B + C

f
FFFF

##FFFF

Coo
��

��
B

OO

// // A

If we factor f : S+T → A as S + T
e //S ∪ T // m //A , we get ∨, which we denote

here by ∪. The reader can quickly check that the properties asked of the maps ∧,∨
in the definition of a lattice hold with our definition of ∪,∩.

Thus, Sub(A) is a lattice as we have already taken care of finite limits since
we have a terminal object, A, and pullbacks S ∩ T . Now we need to show that
it is indeed a Heyting Algebra. In order to do this we need only construct ex-
ponentials. We assert without proof that SubC(A) ∼= SubC/A(1) (however, this
is quite immediate), and thus we shall prove that in any topos Sub(1) has expo-
nentials. Take two subobjects S, T of 1 and we define ST = θ−1(θ(S)θ(T )) where
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θ : Sub(1) ∼= Hom(1,Ω). To check that this is valid:

Hom(U × T, S) ∼= Hom(θ(U)× θ(T ), θ(S))
∼= Hom(θ(U), θ(S)θ(T ))
∼= Hom(θ−1(θ(U)), θ−1(θ(S)θ(T )))

= Hom(U, ST )

Thus SubC/A(1) ∼= SubC(A) has exponentials and is a Heyting algebra. �

One interesting consequence of this is that in any topos Hom(A,Ω) is a Heyting
algebra since it is isomorphic to Sub(A). More specifically, Hom(1,Ω) is a Heyting
algebra. Intuitively, we can think of any morphism 1→ Ω as specifying an element
of Ω and so we get that Ω, in some sense, has the structure of a Heyting algebra.

Proposition 7.9. If S and T are disjoint subobjects of B, then S + T ∼= S ∪ T .

Proof. By definition of the coproduct, we get an arrow f : S + T → B such that
the following commutes:

S + T

f
FFFF

""FFFF

T
i2oo

t

��
S

i1

OO

s
// B

Moreover, by examination, we see that this is also a coproduct in C/B. Note that
the diagrams below are pullbacks (the left by hypothesis, the right because t is
monic):

0

!

��

! // S

s

��

T

idT

��

idT // T

t

��
T

t
// B T

t // B

Then, since T ∼= T + 0, the following diagram on the left (in C/B) becomes the
diagram on the right (in C/T ) because, by Lemma 7.2, we know that pullback along
t preserves coproducts:

S

s
""EEEEEEEEE

i1 //___ S + T

f

��

T

t
||yyyyyyyyy

i2oo_ _ _

B

t∗ +3

0
! //

! ��??????? T

idT

��

T

idT���������

idToo

T

Thus the following is a pullback:

T

idT

��

i2 // S + T

f

��
T

t
// B

This means that the pullback of t along f is i2. Similarly we get that the pullback
of s along f is i1. Now, since pullback along f preserves coproducts, we know that
the following diagram is a coproduct in C/(S + T ):
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T

i2 ""EEEEEEEEE
i2 //___ S + T

idS+T

��

S
i1oo_ _ _

i1||yyyyyyyyy

S + T

This means that the pullback of f along itself is the identity. But this means that f
is monic and thus, S+T is a subobject of B. Thus the image of f is itself, finishing
the proof, as S ∪ T = cod( image of f ) = cod(f) = S + T . �

Since the concept of coproduct is loosely that of disjoint union, the preceding
should be a reassuring result.

Proposition 7.10. In a topos, if f : A → C and g : B → D are epi, then
f × g : A×B → C ×D is epi.

Remark 7.11. f × g is the unique map which satisfies:

A

f

��

A×B
π1oo π2 //

f×g
��

B

g

��
C C ×D

φ2

//
φ1

oo D

Proof. By examination, we see that the following are pullbacks:

A×B
π1 //

f×idB

��

A

f

��
C ×B

φ1

// C

C ×B
π2 //

idC×g
��

A

g

��
C ×D

φ2

// D

Thus, by Lemma 7.2, f × idB and idC × g are epi. Then the composition (idC ×
g) ◦ (f × idB) = f × g is epi. �

8. Lattice Objects and Heyting Algebra Objects

Definition 8.1. A lattice object is an object L in a topos, along with arrows∧
,
∨

: L×L→ L and >,⊥: 1→ L, such that the following two diagrams commute:

L L
∧oo

L× L

π1

OO

π1

��

∆×1
// L× L× L

1×τ // L× L× L

1×∨

OO

∧×1

��
L L× L∨oo

L ∼= L× 1

=

��

1×⊥ //

1
TTTTTTTT

**TTTTTTTTTTT

L× L ∨ // L

=

��
L ∼= L× 1

1×>
// L× L ∧

// L
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where the diagonal arrow ∆ and the twist arrow τ are defined as the unique
arrows satisfying:

L
1

""EEEEEEEEE
1

||yyyyyyyyy
∆

��

L× L
π2

||yyyyyyyyy
π1

""EEEEEEEEE

τ

��
L L× Lπ1
oo

π2
// L L L× Lπ1

oo
π2

// L

Note that the large top diagram is simply generalizing the rule that x = (x∧y)∨
x = x∧(y∨x) in categorical language, and the large bottom diagram is generalizing
the rule that x∨ ⊥= x and x ∧ > = x. We intuitively think of > as representing
true and ⊥ as representing false.

Definition 8.2. A Heyting algebra object is a lattice object H in a topos with
an additional operation ⇒: H ×H → H which satisfies the diagrams given by the
identities in Propostion 5.8.

Example 8.3. In the category Set, given an object (i.e. a set), X, the power set
of X is a Heyting algebra object. The maps ∧,∨ correspond to ∩,∪ respectively.
The maps >,⊥ correspond to ∗ 7→ X and ∗ 7→ {} respectively. ⇒ is given by
Y ⇒ Z = Y ∩ Zc.

Motivated by the observation that x ∧ y = x if and only if x ≤ y we define an
object ≤L as the equalizer:

≤L //
e //L× L

∧ //
π1

//L

From this we can also characterize the rules for reflexivity, antisymmetry and tran-
sitivity in our categorical language.

Characterization 8.4. (Reflexivity) The diagonal factors through ≤L as below:

L
∆ //

""

L× L

≤L
OO

e

OO

Characterization 8.5. (Antisymmetry) Define ≥L as the monic
≤L //

e //L× L // τ //L× L and take the pullback:

≥L ∩ ≤L // //
��

��

≤L
��

��
≥L // // L× L

Then antisymmetry is that the arrow ≥L ∩ ≤L→ L× L factors as:

≥L ∩ ≤l //L //
∆ //L× L
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Characterization 8.6. (Transitivity) [Mac Lane/Moerdijk] Define C to be
pullback:

C
u //_________

v

���
�
�
�
�
�
� ≤L

e

��
L× L

π1

��
≤L

e // L× L
π2 // L

Then transitivity is that the arrow 〈π1ev, π2eu〉 : C → L × L factors through
e :≤L→ L× L.

Characterization 8.7. (Transitivity) [Henderson] Define P to be the pullback:

P
p2 //_____

p1

���
�
� L× ≤L

1×e
��

≤L ×L e×1
// L× L× L

Then transitivity is that the arrow (π1φ1 × φ2)p : P → L × L factors through
e :≤L→ L× L, where we let p = (1× e)p2 = (e× 1)p1, the projections

L (L× L)
π1oo (L× L)× L

φ1oo φ2 //L

.

We include Characterization 8.7 because we feel that it is more intuitive than
Characterization 8.6. We include a proof that the two characterizations are equiv-
alent because, although unimportant mathematically, the author is proud of his
characterization.

Theorem [Henderson] 8.8. Both characterizations (8.6 and 8.7) of transitivity
are the same (i.e. P ∼= C and 〈π1ev, π2eu〉 ∼= (π1φ1 × φ2)p, as defined above).

Proof. Given projections φ1, φ2, π1, π2 we can choose projections α1, α2 as follows.
Let α1 = π1φ1 and let α2 be the unique arrow which makes the diagram below
commute:

L× L× L
π2φ1

zzuuuuuuuuuu
φ2

$$IIIIIIIIII

α2

��
L L× L π2

//
π1

oo L

Now, what we hope is that the 〈ev, π2eu〉 = 〈π1ev, eu〉, and to prove this we examine
the following diagram:

C
π1ev

ttjjjjjjjjjjjjjjjjjjjjj

ev

��������

����������

γ

��
eu

&&MMMMMMMMMMM

π2eu

**TTTTTTTTTTTTTTTTTTTTT

L

=

��

L× L× L
α1oo

=

��

α2
// L× L π2

// L

=

��
L L× Lπ1
oo L× L× L

φ1

oo
φ2

// L
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By inspection, the diagram without the arrow γ commutes. Thus if we let γ =
〈ev, π2eu〉, let us check that the whole diagram commutes, which will give us that
γ is in fact 〈π1ev, eu〉 as well. This amounts only to checking that α2γ = eu. We
know already that π2α2γ = φ2γ = π2eu, so we need only check that π1α2γ = π1eu:

π1α2γ = π2φ1γ by choice of α2

= π2ev

= π1eu by Mac Lane’s construction

Thus observing that

(1× e)〈π1ev, u〉 = 〈π1ev, eu〉 = γ = 〈ev, π2eu〉 = (e× 1)〈v, π2eu〉

the diagram below commutes, giving us a unique arrow l:

C

l

##

〈v,π2eu〉

��

〈π1ev,u〉

''
P

p2 //

p1

��

L× ≤L
1×e
��

≤L ×L e×1
// L× L× L

Now we claim that the arrow l is monic. We will show that 〈π1ev, u〉 is monic,
and thus that l is monic by Lemma 1.7, since p2l = 〈π1ev, u〉. Suppose there are
arrows a, b : A→ C such that 〈π1ev, u〉a = 〈π1ev, u〉b. Let β1, β2 be the projections
for L× ≤L. Then from the following diagram, we get that π1eva = π1evb and
ub = ua:

A

a

��
b

��
C

u

##FFFFFFFFFF
π1ev

{{xxxxxxxxxx
〈π1ev,u〉
��

L L× ≤L
β1

oo
β2

// L

Consider the commutative diagram below that we obtain from the above equations.
Since putting b in place of q makes the diagram commute, if we show that putting
a in place of q makes the diagram commute, the uniqueness of q will then imply
that a = b.

A

q

  

vb

$$

ua

��

C
v //

u

��

≤L
π2e

��
≤L π1e

// L

The diagram, above, will commute with a in place of q if and only if va = vb. So
we continue by examining the product below (left). Since the diagram on the left
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commutes, then the diagram on the right commutes with both eva and evb as the
center downward arrow.

C
π1eu=π2ev

""EEEEEEEEE
π1ev

||yyyyyyyyy
ev

��

A

��

π1eva=π1evb

||yyyyyyyyy
π2eva=π1eua=π1eub=π2evb

""EEEEEEEEE

L L× L π2
//

π1
oo L L L× L π2

//
π1

oo L

Thus, by uniqueness, we get that eva = evb. But since e is an equalizer by
construction, it is monic. This gives that vb = va. As we noted before, this suffices
to show that a = b. Thus 〈π1ev, u〉 is monic, as claimed.

Finally, we will show that l is in fact an isomorphism, completing the proof. We
will do this by showing that C is in fact also a pullback of the same diagram that P
is a pullback of. For this, it only remains to show that if there is an object C ′ and
maps p′1, p

′
2 such that the diagram below commutes, then there is a unique arrow

from C ′ to C which makes the diagram commute. So, suppose there are two maps
a and b which make the following commute:

C ′

p′2

**

p′1

��

b

  AAAAAAA

a
  AAAAAAA

C

〈v,π2ev〉

��444444444444444
〈π1ev,u〉

**UUUUUUUUUUUUUUUUUUUU

l

##
P p1

//

p2

��

L× ≤L
1×e
��

≤L ×L e×1
// L× L× L

Since P is a pullback, there is a unique arrow C ′ → P making the diagram
commute. Thus la = lb. However, we know that l is monic, so this implies that
b = a.

Thus, C is a pullback of the diagram, making l an isomorphism l : C ∼= P .
Now observe that:

(π1φ1 × φ2)pl = (π1φ1 × φ2)(e× 1)〈v, π2eu〉 = (π1φ1 × φ2)〈ev, π2eu〉

Then the diagram below gives us that (π1φ1 × φ2)〈ev, π2eu〉 is in fact equal to
〈π1ev, π2eu〉:

C
π2eu

$$JJJJJJJJJJJ
ev

xxqqqqqqqqqqq

〈ev,π2eu〉
��

L× L
π1

��

L× L× L
φ2

//
φ1

oo

π1φ1×φ2

��

L

idL

��
L L× L π1

//
π1

oo L

Thus we get that l : (π1φ1 × φ2)p ∼= 〈π1ev, π2eu〉, as desired. �
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9. Well-Pointed Topoi

In order to get one step closer to full generalization of sets, we add one last
requirement. Though it is beyond the scope of this paper, it is interesting to note
that a topos with this last requirement allows one to give an alternative foundation
to classical mathematics.

Definition 9.1. A topos C is generated by a collection G of objects of C if for
all f, g : A → B such that f 6= g, there exists a morphism u : G → A such that
fu 6= gu.

Definition 9.2. A topos C is well-pointed if it is generated by 1.

One nice property of a well-pointed topos is that terminal objects have only one
“proper” subobject. This is exactly what we would hope for, since in the category
Set, a terminal object is a one-point set and it’s only proper subset is the empty
set.

Lemma 9.3. The only subobjects of 1 in a well-pointed topos are 1 and 0.

Proof. 0 is a subobject of 1 by Corollary 7.7. Thus, take U //
u //1 and assume

U 6= 0. We can get an arrow s : 1→ U as the map which we get from the definition
of well-pointed applied to char(idU ) 6= char(!), where ! : 0 → U . Then since id1
is the unique arrow from 1 to itself, we get that id1 = ut. This also gives us that
utu = uidU , but since u is monic, this implies that tu = idU . This gives that

u : U ∼= 1

. �

We will now conclude by stating, without proof, some interesting theorems that
provided the motivation for our study of elementary topoi. For the purposes of
this paper, a Boolean topos is one in which for every object E the Heyting algebra
Sub(E) is also a Boolean algebra.

Theorem 9.4. A well-pointed topos is Boolean.

Theorem 9.5. If C is a topos which is generated by subobjects of 1 and which has
the property that for each object E, Sub(E) is a complete Boolean algebra, then C
satisfies the axiom of choice.

Theorem 9.6. There exists a Boolean topos satisfying the axiom of choice in which
the continuum hypothesis fails.

10. Concluding Remarks

In this paper we have presented a lot constructions and results dealing with
topoi, but the reader may be wondering “Where do we go from here/why do we
care about topoi?” Throughout the paper we have repeated the phrase “This is a
generalization of 〈 blank 〉 in the category of Set to all topoi,” and for good reason.
The notion of a topos is a very good generalization of a set, so good in fact that one
can use topos theory to give a proof of the independence of the Axiom of Choice
and the Continuum Hypothesis as we noted at the end of the last section.

We can even go so far as to create a foundation for classical mathematics al-
ternative to the traditional Zermelo-Frænkel set theory axioms by expanding our
notion of a topos to well-pointed topoi. One interesting property about this new
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foundation is that the basic concept is that of a “function,” or a morphism in a
topos, rather than set membership.
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