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Abstract. This paper seeks to establish the foundation for examining dy-

namical systems. Dynamical systems are, very broadly, systems that can be
modelled by systems of differential equations. In this paper, we will see how to

examine the qualitative structure of a system of differential equations and how

to model it geometrically, and what information can be gained from such an
analysis. We will see what it means for focal points to be stable and unstable,

and how we can apply this to examining population growth and evolution,
bifurcations, and other applications.

1. Introduction

This paper is based on Arrowsmith and Place’s book, Dynamical Systems. I
have included corresponding references for propositions, theorems, and definitions.
The images included in this paper are also from their book.

Definition 1.1. (Arrowsmith and Place 1.1.1) Let X(t, x) be a real-valued
function of the real variables t and x, with domain D ⊆ R2. A function x(t), with
t in some open interval I ⊆ R, which satisfies

(1.2) x′(t) =
dx

dt
= X(t, x(t))

is said to be a solution satisfying x′.

In other words, x(t) is only a solution if (t, x(t)) ⊆ D for each t ∈ I. We take I
to be the largest interval for which x(t) satisfies (1.2).

Proposition 1.3. (AP 1.1.3) If X is continuous in an open domain, D′ ⊆ D,
then given any pair (t0, x(t0)) when x(t) ∈ D′, there exists a solution x(t), t ∈ I, of
x′ = X(t, x) such that t0 ∈ I and x(t0) = x0.
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This proposition gives us the conditions sufficient to show the existence of a
solution. This proposition does not exclude the possibility that x(t0) = x0 for more
than one solution x(t). The following proposition gives a sufficient condition for
each pair in D’ to occur in one and only one solution of (1.3).

Proposition 1.4. (AP 1.1.2) If X and ∂X
∂x are continuous in an open domain

D′ ⊆ D, then given any (t0, x0) ∈ D′ there exists a unique solution x(t) of x′ =
X(t, x) such that x(t0) = x0.

We can represent this solution by the graph of x(t). This graph defines a solution
curve. Proposition 1.3 implies that the solution curves fill the region D of the t, x-
plane. This is true because each point in D must lie on at least one solution curve.
The solution of the differential equaion is thus a family of solution curves. See
below for examples of solution curves

If both X and ∂X
∂x are continuous in D, then Proposition 1.4 implies that there

is a unique solution curve passing through every point of D. The solution curves
give us the qualitative behavior of the differential equation. However, we can also
derive the qualitative behavior from the equation itself.

Example 1.5. Take the differential equation:

x′ = t+
t

x

in the region D of the t, x-plane, where x 6= 0.
(1) The differential equation gives the slope of the solution curve at each point

of the region D. Thus, in particular, the solution curves cross the curve of
t+ t/x = k for any constant with slope k. This curve is called the isocline
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of slope k. The set of isoclines, obtained by taking different real values for
k, is the set of curves defined by the family of equations

x =
t

k − t
.

(2) The sign of x′′ determines where in D the solution curves are concave
and convex. Thus, the region D can be divided into subsets on which the
solution curves are either concave or convex, separated by boundaries where
x′′ = 0.

(3) The isoclines are symmetrically placed relative to t = 0 and so the solution
curves must also be symmetric. The function X(t, x) = t + t/x satisfies
X(−t, x) = −X(t, x).

This allows us to sketch the solution curves for x′ = t+t/x. The function and its
derivative are continuous on D, so there is a unique solution curve passing through
each point of D.

Definition 1.6. A differential equation is said to be autonomous if x′ is deter-
mined by x alone and so X(x, t) = f(x) for some function f .

These solutions have an important property. If ξ(t) is a solution to an au-
tonomous differential equation with domain I and range ξ(I), then for any real
constant C, η(t) = ξ(t + C), is also a solution with the same range, but with
domain {t : t+ C ∈ I}. This follows because

(1.7) η′(t) = ξ′(t+ C) = X(ξ(t+ C)) = X(η(t)).

Furthermore, if there is a unique solution curve passing through each point of
D′ = R× ξ(I) then all solution curves on D′ are translations of x = ξ(t).

For families of solution curves related by translations in t, the qualitative behav-
ior of the family of solutions is determined by that of any individual member. The
qualitative behavior of such a sample curve is determined by X(x).

When X(c) = 0, the solution x(t) = c is represented by the point x = c. These
solutions are called fixed points of the equation. See below for some examples of
fixed points.
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Consider the autonomous system x′ = dx
dt = X(x) where x = (x1, x2) is a vector

in R2. The solution to this is equivalent to the system of two coupled equations

(1.8) x′1 = X1(x1, x2), x′2 = X2(x1, x2).

In order to examine the qualitative behavior, we look at the fixed points of the
solution. These are solutions of the form x(t) = c = (c1, c2), which arise when

(1.9) X1(c1, c2) = 0, X2(c1, c2) = 0.

The corresponding trajectory is the point (c1, c2) in the phase plane.
When calculus fails to give traceable solutions, we can extend the method of

isoclines to the plane. The vector field X : S → R2 now gives x′ at each point of
the plane where X is defined, where S is the domain on which X is defined. For
qualitative purposes, it is usually sufficient to record the direction of X(x).

If a unique solution x(t) of

(1.10) x′ = X(x), x ∈ S, x(t0) = x0

exists for any x0 ∈ S and t0 ∈ R, then each point of S lies on one, and only one,
trajectory.

We can look at the differential equation as the velocity of a point on the phase
line. The phase line shows the direction and velocity of a point on the plane.
Therefore, the differential equation can be thought of defining a flow of phase
points along the phase line while the solution to this equation gives the velocity of
the flow at each value of x ∈ S. The solution, x(t) that satisfies x(t0) = x0 gives
the past and future positions, or evolution, of the phase point which is at x0 when
t = t0. We can formalize this idea by introducing a function φt : S → S referred to
as the evolution operator.

The function φt maps any x0 ∈ S onto the point φt(x0) obtained by evolving
for time t along a solution curve through x0. The point φt(x0) is equal to x(t+ t0)
for any solution x(t) of (1.10). This arises because the solutions of autonomous
equations are related by translations in t. Thus, the solution to (1.10) is

(1.11) x(t) = φt−t0(x0).

The flow φt has simple properties that follow from its definition. Uniqueness
ensures that

(1.12) φs+t(x) = φs(φt(x)) for all s, t ∈ R.
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In particular,

(1.13) φt(φ−t(x)) = φ−t(φt(x)) = φ0(x) = x.

and so

(1.14) φ−1
t = φ−t.

In the plane, the autonomous differential equation ensures that solutions are related
by translations in t. The mapping φt maps x ∈ R2 to the point obtained by evolving
for time t from x according to the differential equation, i.e. φt : R2 → R2. Thus, the
orbit or trajectory passing through x is simply {φt(x) : t ∈ R} oriented by increasing
t.

2. Linear Systems

Definition 2.1. A system x′ = X(x), where x is a vector in Rn, is called a linear
system of dimension n, if X : Rn → Rn is a linear mapping.

If X : Rn → Rn is linear, then it can be written in matrix form as

(2.2) X(x) =

X1(x1, . . . , xn)
...

Xn(x1, . . . , xn)

 =

a11 · · · a1n

...
. . .

...
an1 · · · ann


x1

...
xn

 ,

so that x′ = X(x) becomes

(2.3) x′ = X(x) = Ax,

where A is the coefficient matrix (aij). We can make a change of variables by
expressing each xi as a function of the new variables. In order to make a change of
variables, we must express each xi(i = 1, · · · , n) as

(2.4) xi =
n∑
j=1

mijyj(i = 1, · · · , n) i.e. x = My

where mij is a real constant for all i and j. This is a bijection and so M is a
non-singular matrix, so the columns, mi, of M are linearly independent. In other
words,

(2.5) x =
n∑
i=1

yimi.

In terms of these new variables, (2.3) becomes

(2.6) x′ = My′ = AMy,

and thus

(2.7) y′ = By

for B = M−1AM . We say that matrices A and B related by this sort of equation
are similar.
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Proposition 2.8. (AP 2.2.1) Let A be a real 2 × 2. Then there is a real, non-
singular matrix M such that J = M−1AM is one of the types:[

λ1 0
0 λ2

] [
λ0 0
0 λ0

]
[
λ0 1
0 λ0

] [
α −β
β α

]
The matrix J is said to be the Jordan form of A. The eigenvalues of the

matrices A and J are the values for λ for which

(2.9) pA(λ) = λ2 − tr(A)λ+ det(A) = 0

so the eigenvalues of A are

(2.10) λ1 = 1
2 (tr(A) +

√
∆) λ2 = 1

2 (tr(A)−
√

∆)

where
∆ = (tr(A))2 − 4det(A)

The nature of the eigenvalues determines the type of the Jordan form of A.
The Jordan form can help determine the phase diagrams of the differential equa-

tion. In particular, it gives us information about the nature of the fixed points of
the differential system.

Example 2.11. Suppose the system has real, distinct eigenvalues. Then J has the
form

(2.12)
(
λ1 0
0 λ2

)
.

Then we have the system given by

(2.13) y′1 = λ1y1, y′2 = λ2y2.

If λ1 and λ2 6= 0 have the same sign, the phase diagrams have a single fixed point
at the origin. Thus, the origin of the y1, y2-plane is a fixed point, or node. A
stable node is one in which all the trajectories are oriented towards the origin,
where λ1, λ2 < 0. If the trajectories are oriented away from the node, in which
λ1, λ2 > 0, then the origin is said to be unstable.

The shape of the trajectories is determined by the ratio γ = λ1/λ2. If the
eigenvalues have opposite signs, then we get a saddle point.
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Now suppose the system has equal eigenvalues. If J is diagonal, the system has
solutions given by

y1(t) = C1e
λ0t y2(t) = C2e

λ0t

so J takes on the form

(2.14)
(
λ0 0
0 λ0

)
.

This is a special node, called a star node, in which the non-trivial trajectories
are all radial straight lines.

If J has the form

(2.15)
(
λ0 1
0 λ0

)
and so is not diagnoal, then we have to consider

y′1 = λ0y1 + y2 y′2 = λ0y2

which has solutions

y1(t) = (C1 + tC2)eλ0t y2(t) = C2e
λ0t.

In this system, equal eigenvalues indicate that the origin is an improper node which
is stable if λ0 < 0 and unstable if λ > 0. It resembles the star node in that the
trajectories radiate inward (outward if unstable), but these trajectories are no longer
straight, radial lines.
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Now suppose the eigenvalues are complex, so the Jordan matrix is given by

(2.16)
(
α −β
β α

)
so the system is given by

y′1 = αy1 − βy2 y′2 = βy1 + αy2.

The solution to this system can be found by introducing plane polar coordinates
such that y1 = r cos θ, y2 = r sin θ and we obtain r′ = αr, θ′ = β with solutions

r(t) = r0e
αt θ(t) = βt+ θ0.

If α 6= 0, the orgin is said to be a focus. The phase portrait is often said
to consist of an attracting or repelling spirals, depending on the sign of α. The
parameter β ≥ 0 determines the angular speed of the spiral. If α = 0, then the
orgin is said to be a center and the phase portrait is a continuum of concentric
circles.

3. Non-linear systems in the plane

Definition 3.1. (AP 3.1.1) A neighbourhood, N, of a point x0 ∈ R2 is a subset
of R2 containing a disc {x | |x− x0| < r} for some r > 0.

Definition 3.2. (AP 3.1.2) The part of the phase portrait of a system that occurs
in a neighbourhood N of x0 is called the restriction of the phase portrait to N .

These definitions allow us to examine a phase portrait in terms of both its local
and its global behavior. Consider the restriction of a simple linear system to a
neighbourhood N of the origin. There is a neighbourhood N ′ ⊆ N such that
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the restriction of this phase portrait to N ′ is qualitatively equivalent to the global
phase portrait of the simle linear system itself. In other words, there is a continuous
bijection between N ′ and R2 which maps the phase portrait restricted to N ′ onto
the complete phase portrait.

However, non-linear systems can have more than one fixed point and we can often
obtain the local phase portraits at all of them, but they do not always determine
the global phase portrait. We begin by examining non-linear systems with a fixed
point at the origin.

Definition 3.3. (AP 3.2.1) Suppose the system y′ = Y (y) can be written in the
form:

y′1 = ay1 + by2 + g1(y1, y2)(3.4)

y′2 = cy1 + dy2 + g2(y1, y2),(3.5)

where [gi(y1, y2)/r] → 0 as r = (y2
1 + y2

2)1/2 → 0. Essentially, this is a remainder
term in the system that disappears as the system approaches 0.

The linear system

(3.6) y′1 = ay1 + by2 y′2 = cy1 + dy2

is said to be the linearization (linearized system) of (3.4) and (3.5) at the origin.
The components of this linear vector field are said to form the linear part of Y .

This can be applied to fixed points that are not located at the origin by simply
introducing local coordinates. Suppose (ξ, η) is a fixed point of the non-linear
system x′ = X(x), x = (x1, x2). Then the variables

(3.7) y1 = x1 − ξ y2 = x2 − η
are a set of coordinates for the phase plane. Therefore,

(3.8) y′i = x′i = Xi(y1 + ξ, y2 + η)
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and, through this change of variables, the system has a fixed point of interest at
the origin of its phase plane.

Example 3.9. We will show that the system

x′1 = ex1+x2 − x2 x′2 = −x1 + x1x2

has only one fixed point and we will find the linearization of the system at this
point.

The fixed points of the system must satisfy

ex1+x2 − x2 = 0,
−x1 + x1x2 = 0.

The second equation is only satisfied by x1 = 0 or x2 = 1. However, x1 = 0
does not give a real solution to the first equation, so no fixed point has x1 = 0. If
x2 = 1, then substitution into the first equation gives us ex1+1 = 1 which has one
real solution: x1 = −1. Thus, (-1,1) is the only fixed point of the system.

To find the linearized system at this fixed point, we introduce local coordinates
y1 = x1 + 1 and y2 = x2 − 1. We find

y′1 = ey1+y2 − y2 − 1 y′2 = −y2 + y1y2.

We can write this in the form given by (3.4) and (3.5) by using the power series
expansion of ey1+y2 ,

y′1 = y1 + (y1+y2)
2

2! + (y1+y2)
3

3! + · · ·
y′2 = −y2 + y1y2.

So the linearization is given by

y′1 = y1 y′2 = −y2.

This suggests a systematic way of obtaining linearizations. We can obtain these
linearlizations by using Taylor expansions. If the component functions Xi(x1, x2)
for i = 1, 2 are continuously differentiable in some neighbourhood of the point (ξ, η)
then for each i,

(3.10) Xi(x1, x2) = Xi(ξ, η) + (x1− ξ)
∂Xi

∂x1
(ξ, η) + (x2− η)

∂Xi

∂x2
(ξ, η) +Ri(x1, x2),

where Ri(x1, x2) must satisfy

lim
r→∞

[Ri(x1, x2)/r] = 0

where r =
{

(x1 − ξ)2 + (x2 − η)2
}1/2. If (ξ, η) is a fixed point, then Xi(ξ, η) = 0

and we obtain

(3.11)
y′1 = y1

∂X1
∂x1

(ξ, η) + y2
∂X1
∂x2

(ξ, η) +R1(y1 + ξ, y2 + η),
y′2 = y2

∂X2
∂x1

(ξ, η) + y2
∂X2
∂x2

(ξ, η) +R1(y1 + ξ, y2 + η).

Therefore, the linearization at (ξ, η) is given by

(3.12) a = ∂X1
∂x1

b = ∂X1
∂x2

c = ∂X2
∂x1

d = ∂X2
∂x2

evaluated at (ξ, η). Thus, in matrix form, the linearization is y′ = Ay where

A =

[
∂X1
∂x1

∂X1
∂x2

∂X2
∂x1

∂X2
∂x2

]
.
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3.1. The Linearization Theorem.

Definition 3.13. (AP 3.3.1) A fixed point at the origin of a non-linear system
on a plane is said to be simple if its linearized system has a single solution, x = 0,
to Ax = 0.

Theorem 3.14. (AP 3.3.1) Let the non-linear system

y′ = Y (y)

have a simple fixed point at y = 0. Then, in a neighbourhood of the origin the phase
portraits of the system and its linearization are qualitatively equivalent provided the
linearized system is not a center.

Thus, provided the eigenvalues of the linearized system have a non-zero real part,
the phase portraits of the non-linear system and its linearization are qualitatively
equivalent in the neighbourhood of the fixed point. Such fixed points are said to
be hyperbolic.

A fixed point on a non-linear system is said to be non-simple if the correspond-
ing linearized system is non-simple. These linear systems contain a straight line, or
possible a whole plane, of fixed points. Therefore, the local phase portrait is now
determined by non-linear terms, so there are now infinitely many different types of
local phase portraits.

3.2. Stability.

Definition 3.15. (AP 3.5.1) A fixed point x0 of the system x′ = X(x) is said to
be stable if, for every neighbourhood N of x0, there is a smaller neighbourhood
N ′ ⊆ X of x0 such that every trajectory that passes through N ′ remains in N as t
increases.

Definition 3.16. (AP 3.5.2) A fixed point x0 of the system x′ = X(x) is said to
be asympotically stable if it is stable and there is a neighbourhood N of x0 such
that every trajectory passing through N approaches x0 as t approaches infinity.

Definition 3.17. (AP 3.5.3) A fixed point x0 of the system x′ = X(x) is said to
be neutrally stable if it is stable but not asymptotically stable.

Definition 3.18. (AP 3.5.4) A fixed point which is not stable is said to be
unstable.

This means that there is a neighbourhood N of the fixed point such that for
every neighbourhood N ′ ⊆ N there is at least one trajectory which passes through
N ′ and does not remain in N . For example, consider a saddle point.
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In order to determine the stability type of any given fixed point, we can find
a Liapunov function for the system. In order to develop this idea, we need the
following definitions.

Definition 3.19. (AP 3.5.5) A real-valued function V : N ⊆ R2 → R, where
N is a neighbourhood of 0 ∈ R2 is said to be positive (respectively, negative)
definite in N if V (x) > 0 (respectively, V (x) < 0) for x ∈ N \ {0} and V (0) = 0.

Definition 3.20. (AP 3.5.6) A real-valued function V : N ⊆ R2 → R, where
N is a neighbourhood of 0 ∈ R2 is said to be positive (respectively, negative)
semi-definite in N if V (x) ≤ 0 (respectively, V (x) ≥ 0) for x ∈ N \ {0} and
V (0) = 0.

Definition 3.21. (AP 3.5.7) The derivative of V : N ⊆ R2 → R along a param-
eterized curve given by x(t) = (x1(t), x2(t)) is defined by

d

dt
V (x(t)) =

∂V (x(t))
x1

x′1(t) +
∂V (x(t))

x2
x′2(t).

With these definitions, we can now formulate a theorem that will allow us to
determine the type of stability of a fixed point.

Theorem 3.22. (AP 3.5.1) Suppose the system x′ = X(x), x ∈ S ⊆ R2 has a
fixed point at the origin. If there exists a real-valued function V in a neighbourhood
N of the origin such that

(1) the partial derivatives ∂V (x(t))
∂x1

and ∂V (x(t))
∂x2

exist and are continuous,
(2) V is positive definite, and
(3) V ′ is negative semi-definite along solution curves,

then the origin is a stable fixed point of the system. If (3) is replaced by the stronger
condition (4) V ′ is negative definite, then the origin is an asymptotically stable fixed
point.

Proof. Properties 1 and 2 imply that the level curves of V form a continuum of
closed curves around the origin. Thus, there is a positive k such that N1 = {x |
V (x) < k} is a neighbourhood of the origin contained in N . If x0 ∈ N1 \ {0},
then V (φt(x0)) ≤ 0 for all t ≥ 0 by (3) and V (φt(x0)) is a non-increasing function
of t. Therefore, V (φt(x0)) < k for all t ≥ 0, and so φt(x0) ∈ N1 for all t ≥ 0.
Consequently, by Definition 3.15, the fixed point is stable.

If (3) is replaced by condition (4) then we obtain the asymptotic stability by
the following argument. The function V (φt(x0)) is strictly decreasing in t and
V (φt2(x0)) − V (φt1(x0)) < k for all t2 > t1 ≥ 0. The mean value theorem gives
the existence of a sequence {τi}∞i=1 such that V (φτi(x0)) → 0 as τi → ∞. This,
in turn, implies that φt(x0) → 0 as τi → ∞ because V ′ is negative definite. Now,
V (φt(x0)) < V (φti(x0)) for all t > τi because V (φt(x0)) is decreasing. However,
V is positive definite and therefore {φt(x0) | t > τi} lies inside the level curve of V
containing φτi(x0). This is true for every τi. This argument is valid for all x0 in
N1 and therefore x = 0 is an asymptotically stable fixed point. �
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4. Applications

4.1. A Model of Animal Conflict. Suppose we wish to model the conflicts that
occur within a species when, for example, there is competition for mates, territory,
etc. Conflict occurs when two individual confront one another and we will suppose
that there are three possible actions:

(1) Display
(2) Escalation of a fight
(3) Running Away

The population to be modelled is taken to consist of individuals who respond
to confrontation in one of a finite number of ways. Suppose that each individual
adopts one of the stratagies given in the following table. An individual playing

Index i Strategy Initial Tactic Tactic if opponent escalates
1 Hawk (H) Escalate Escalate
2 Dove (D) Display Run Away
3 Bully (B) Escalate Run Away

Table 1. Three different animal strategies.

strategy i against an opponent playing j receives a ‘payoff’ aij . This payoff is taken
to be related to the individual’s capability to reproduce. Assuming that only pure
strategies are played and that individuals breed true, the model is able determine
the evolution of the three sections of the populations.

Let xi be the proportion of the population playing strategy i. It follows that
x1 + x2 + x3 = 1 and xi ≥ 0. The payoff to an individual playing i against the rest
of the population is ∑

j

aijxj = (Ax)i

where A is the payoff matrix. The average payoff to an individual is∑
i

xi(Ax)i = xTAx.

The advantage of playing i is therefore

(Ax)i − xTAx.

The growth rate of the section of the population playing strategy i can be assumed
to be proportional to this advantage. By choosing a suitable unit of time then,

(4.1) x′i = xi((Ax)i − xTAx).

We can obtain a payoff matrix by assigning scores at each confrontation. The
actual values chosen are not important—it is their signs and magnitudes that are
important.

Example 4.2. We will show that the dynamical equations (4.1), with a payoff
matrix A such that

A =

 0 4 3
2 0 −3
2 4 0


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has a fixed point at Q = (x1, x2, x3) = (3/5, 0, 2/5). We will use the function

V (x) = x
3/5
1 x

2/5
3

to show that this fixed point is asymptotically stable on

∆ = {(x1, x2, x3) | x1 + x2 + x3 = 1;x1, x2, x3 > 0} .

Proof. To check that x = ( 3
5 , 0,

2
5 ) is a fixed point, we note that xTAx = 6

5 . For
i = 1, 3, (Ax)i = 6

5 and hence x′1 = x′3 = 0. When i = 2, x′2 = 0 since x2 = 0. We
show that the point ( 3

5 , 0,
2
5 ) is asymptotically stable by using an argument of the

Liapunov type. The level surfaces V (x1, x2, x3) cut the x2 = 0 plane in hyperbolae
and are invariant under translation parallel to the x2-axis. On ∆, the derivative of
V along the trajectories is:

V ′ = V (x)( 3x′
1

5x1
+ 2x′

3
5x3

)
= V (x)

[
( 3
5 , 0,

2
5 )Ax− xTAx

]
= V (x)

[
(1− x1 − x3)( 11

5 − x1 − x3) + 5(x1 − 3
5 )2
]
.

Hence, V ′(x) is positive for x ∈ ∆ and V increases along the trajectories as t
increases. �

4.2. Bifurcations. The dynamical equations of a model frequently involve time-
independent quantities in addition to the dynamical variables. There are circum-
stances in which it is advantageous to think of a parameter as a continuous variable
that is independent of time. The result is then a family of differential equations
indexed by the parameter.

An analysis of a family of differential equations involves recognizing the topolog-
ically distinct types of phase portraits exhibited by its members. The parameter
values at which changes of type take place are called bifurcation points of the
family. The characteristic feature of a bifurcation point is that every neighbour-
hood of it in parameter space contains points giving rise to topologically distinct
phase portraits.

In order to find the bifurcation points, we consider their nature. The phase
portrait at a bifurcation point must be such that an arbitrarily small change in
the parameters can result in qualitatively distinct behavior; in other words, it must
be structurally unstable. It follows that any structurally unstable feature of a
phase portrait can be a bifurcation point. The two main types of bifurcations are
saddle-node bifurcations and Hopf bifurcations. The one we shall examine more
in-depth is the saddle-node bifurcation.

4.2.1. Saddle-node bifurcation. Consider the one-parameter family of planar sys-
tems given by

(4.3) x′1 = x1, x
′
2 = µ− x2

2

where µ is real. Setting µ = 0 gives a fixed point at (x1, x2) = (0, 0). For µ < 0
there is no fixed point; at µ = 0, a non-hyperbolic fixed point appears at the origin
and; as µ increases above 0, this separates into two fixed points: a saddle and a
node.

In a saddle-node bifurcation, either a single fixed point appears and separates
into two fixed points which move apart, or two fixed points move together, coalesce
into one, and disappear. Technically, the distinguishing feature is the nature of
the non-hyperbolic fixed point that occurs at the bifurcation point. The linearized
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system at this fixed point must have one zero and one non-zero eigenvalue. Thus,
det(A) = 0 and tr(A) 6= 0.

However, the saddle-node bifurcation is characterized by the appearance of qua-
dratic terms in the expression for x′2 in (4.3). It is unlikely that the dynamical
equations of a model will fail to contain the necessary quadratic terms. We say
that the occurrence of a saddle-node bifurcation is a generic property of families of
differential equations exhibiting the symptoms as described above.

Example 4.4. Consider the dynamical equations of the form

a′ = a
[
(K − a) + p

1+p

]
p′ = −p2 + ap

1+p

where K is a positive parameter. The fixed points other than (0, 0) of (4.5) lie at
the intersection of the curves

p =
a−K

K + 1− a
p = 2a− 1

on which, respectively, a′ and p′ are zero. Substitution gives

2a2 − 2(K + 1)a+ 1 = 0

with solutions
a =

1
2

[
(K + 1)±

√
(K + 1)2 − 2

]
.

These solutions are complex for K < K∗ =
√

2− 1, so we see that there are no
non-trivial fixed points when K < K∗, one when K = K∗, and two when K > K∗.
From the solution for a, we see that the single non-trivial solution is a = a∗ = 1√

2
.

This gives us p = p∗ =
√

2− 1. The linearization of the system at this fixed point
has a coefficient matrix A given by[

K∗ − 2a+ p(1 + p)−1 a(1 + p)−2

p(1 + p)−1 − 1
2 + a(1 + p)−2

]
=

1
2
√

2

[
−2 1

2K∗ −K∗
]
.

This gives det(A) = 0 and tr(A) 6= 0. Thus, this system will undergo a saddle-
node bifurcation at (a, p) = (a∗, p∗).
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