
POINCARÉ DUALITY
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Abstract. In this paper, we define the notion of orientation on manifolds

using homology and prove the Poincaré Duality theorem that links homology

and cohomology. We will give a couple examples of application at the end of the
paper. The reader is expected to be familiar with Homology and Cohomology.
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1. Orientation for Manifolds

In this paper, unless otherwise stated, all homology will have Z coefficients. We
begin by defining the notion of orientation on manifolds using homology. To do
that, we start with a proposition.

Proposition 1.1. Let M be an n-dimensional manifold. Then for all x ∈ M , we
have

Hk(M,M\{x}) =
{

Z, if k = n
0, if k 6= n.

Proof. Let U be an open neighborhood of x. Then we have:

Hk(M,M\{x}) ∼= Hk(U,U\{x})
∼= Hk(Rn,Rn\{x})
∼= H̃k−1(Rn\{x})
∼= H̃k−1(Sn−1)

∼=
{

Z, if k = n
0, if k 6= n.

The first equality follows from excision, and the third equality from long exact
sequence. �

For the rest of the paper, M will always denote a n-dimensional manifold.

Definition 1.2. The choice of one of the generators for Hn(M,M\{x}) ∼= Z is
called a local orientation of M at x.
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Now we prove some results to define global orientation. Let x ∈ A ⊆ M , where
A is any subset of M , and pAx : (M,M\A)→ (M,M\{x}) be the inclusion of pairs.

Lemma 1.3. Suppose U is an open neighborhood of x.

(1) Then there exists an open neighborhood W of x such that x ∈W ⊆ U , and
(pWy )∗ : H∗(M,M\W )→ H∗(M,M\{y}) is an isomorphism for all y ∈W .

(2) Let α ∈ Hn(M,M\U). Let W be the neighborhood found in part (1). If
β ∈ Hn(M,M\W ) satisfies (pWy0 )∗(β) = (pUy0)∗(α) for some y0 ∈ W , then
(pWz )∗(β) = (pUz )∗(α) for all z ∈W .

Proof. Within U , find smaller neighborhoods W and V of x such that x ∈W ⊆ V
with V \W ∼= Sn−1. Then for all y ∈ W , we obtain the following commutative
diagram:

H∗(M,M\U)
p∗

vvmmmmmmmmmmmm
(pUy )∗

((QQQQQQQQQQQQQ

H∗(M,M\W )

∼=
��

(pWy )∗ // H∗(M,M\{y})

∼=
��

H∗(V, V \W )
∼= // H∗(V, V \{y})

The two vertical isomorphisms are due to excision, and the horizontal isomorphism
is from homotopy equivalence. The first claim follows from the diagram. Now, if
we have (pWy0 )∗(β) = (pUy0)∗(α) for some y0, then we have p∗(α) = β. Since the
diagram holds for every y, the second claim follows. �

Theorem 1.4. Let K ⊆M be compact, and x ∈ K. Then

(1) Hq(M,M\K) = 0 if q > n.
(2) If α ∈ Hn(M,M\K) satisfies (pKx )∗(α) = 0, then α = 0.

Proof. We prove the theorem in various cases, building from simplest to the most
general.

Case 1 M = Rn, and K is compact and convex. Then we have Rn\K ' Rn\{x},
so our claim is immediate.

Case 2 M = Rn, and K = K1 ∪ K2, where the theorem holds for K1, K2 and
K1 ∩ K2. Note that we have (M\K1) ∩ (MK

¯ 2) = M\K and (M\K1) ∪
(MK

¯ 2) = M\(K1 ∩K2), and so we apply Mayer Vietoris to get:

0→ Hn(M,M\K)→ Hn(M,M\K1)⊕Hn(M,M\K2)→ Hn(M,M\(K1∩K2))→ · · ·

where we get the first 0 from the fact that Hn+1(M,M\(K1 ∩ K2)) = 0.
The first part of the claim then follows. For the second part, let x ∈ K1

and consider the following diagram:

Hn(M,M\K)
(pK1 )∗ //

(pKx )∗ ((QQQQQQQQQQQQQ
Hn(M,M\K1)

(p
K1
x )∗vvlllllllllllll

Hn(M,M\{x})
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Since the diagram commutes, (pKx )∗((pK1)(α)) = (pK1
x )∗(α) = 0. So, by

our hypothesis on K1, we get (pK1)∗(α) = 0. A similar argument gives
(pK2)∗(α) = 0. Then by exactness, we get α = 0.

Case 3 M = Rn, and K = K1 ∪ · · · ∪Kq, with each Ki convex and compact. This
case follows from induction on the previous two cases.

Case 4 M = Rn, and K is just compact. By exactness, we get Hk(Rn,Rn\K) ∼=
Hk−1(Rn\K). Now, let y ∈ Hk−1(Rn\K), and Ly be a compact set with i :
Ly ↪→ Rn\K and y = i∗(y′) for some y′ ∈ Hk−1(Ly) [2, pg.156]. Then given
a subset A such that Ly ⊆ A ⊆ Rn\K, we have the following commutative
diagram:

Hk−1(Ly)

wwooooooooooo
i∗

''OOOOOOOOOOO

Hk−1(Rn\A)
(i′)∗ // Hk−1(Rn\K)

Let ay be the image of y in Hk−1(Rn\A). Then we have y = (i′)∗(ay).
For convenience of notation, let y and ay be the respective images in
Hk(Rn,Rn\K) and Hk(Rn,Rn\A). Now, cover K using balls whose clo-
sures are disjoint from Ly, and choose a finite subcover. Let Ay be the
union of the closures of the finite subcover. Then by the previous case, the
theorem holds for Ay. If k > n, then we get ay = 0, and hence y = 0.
So the first part holds. For the second claim, suppose (pKx )(y) = 0 for any
x ∈ K. It suffices to prove that (pAyx )(ay) = 0 for any x ∈ Ay, since we
can apply the theorem to Ay to get that ay = 0 which will give us y = 0.
By definition, we have Ay = B1 ∪ · · · ∪Bm where each Bi is a closed n-ball
such that Bi ∩K 6= ∅. Then suppose x ∈ Bi ⊆ Ay and z ∈ Bi ∩K. We
have the following commutative diagram:

Hn(Rn,Rn\Ay)

(p
Ay
x )∗

||yyyyyyyyyyyyyyyyyyyyy
(p
Ay
Bi

)∗

��

(i′)∗ // Hn(Rn,Rn\K)

(pKz )∗

��

Hn(Rn,Rn\Bi)

(p
Bi
x )∗uulllllllllllll

(p
Bi
z )∗

))RRRRRRRRRRRRR

Hn(Rn,Rn\{x}) Hn(Rn,Rn\{z})

By hypothesis we have (pKz )∗(z) = 0, so we get (pAyBi )∗((pBiz )∗(ay)) = 0,
which implies (pAyBi )∗(ay) = 0. Hence (pAyx )∗(ay) = (pAyx )∗((p

Ay
Bi

)∗(ay)) = 0.
Thus our claim holds.

Case 5 K ⊆ U ⊆M , where U is an open coordinate neighborhood. This follows im-
mediately from the previous case, since by excision we haveHk(M,M\K) ∼=
Hk(U,U\K).

Case 6 Finally the general case. Let K = K1∪ · · · ∪Km with each Ki contained in
an open coordinate neighborhood, as in the previous case. Then the claim
follows by induction and cases 2 and 5. Thus our claim holds.

�
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Theorem 1.5. For each x ∈M , let gx be a generator of Hn(M,M\{x}). Suppose
that the generators are compatible, that is, for all x ∈ M , there is an open neigh-
borhood Ux and αUx ∈ Hn(M,M\Ux) such that (pUxy )∗(αUx) = αy for all y ∈ Ux.
Then for any compact B ⊆M , there exists a unique αB ∈ Hn(M,M\B) such that
(pBb )∗(αB) = αb for all b ∈ B.

Proof. We use induction to prove existence. First suppose B ⊆ Ux for some x.
We can then set αB = p∗(αUx), where p∗ : Hn(M,M\Ux) → Hn(M,M\B). Now
suppose B = B1 ∩ B2, with αB1 and αB2 known. Then we get a Mayer Vietoris
sequence

· · · → Hn+1(M,M\(B1 ∩B2))→ Hn(M,M\B)→
Hn(M,M\B1)⊕Hn(M,M\B2)→ Hn(M,M\(B1 ∩B2))→ · · ·

with the maps (pB1)∗ ⊕ (pB2)∗ : Hn(M,M\B)→ Hn(M,M\B1)⊕Hn(M,M\B2)
and p′∗ − p′′∗ : Hn(M,M\B1) ⊕Hn(M,M\B2) → Hn(M,M\(B1 ∩ B2)). Now, for
any x ∈ (B1 ∩B2), we have

(pB1∩B2
x )∗(p′∗ − p′′∗)(αB1 , αB2) = (pB1

x )∗(αB1)− (pB2
x )∗(αB2) = 0.

So, by the previous theorem we have (p′∗ − p′′∗)(αB1 , αB2) = 0. So, from the ex-
act sequence, there exists αB ∈ Hn(M,M\B) such that (pB1)∗(αB) = αB1 and
(pB2)∗(αB) = αB2 . Then αB is our desired element. Our claim for existence now
follows by induction, by letting B = B1 ∪ · · · ∪Bk, where the closure of each of Bi
is contained in some Ux. Uniqueness follows from the previous theorem. �

Definition 1.6. Let M be compact. Then M is orientable if there exists an element
µ ∈ Hn(M) such that (jMx )∗(µ) is the local orientation for M at x for each x ∈M .
We say that µ is the (global) orientation for M .

Another equivalent definition can be stated as follows.

Definition 1.7. Suppose M a n-dimensional manifold. Then an orientation of
M is a set of elements {µK ∈ Hn(M,M\K) | K compact subset of M} such that
(jKx )∗(µK) is a local orientation for M at x for all x ∈ K, and if x ∈ K1 ∩K2, then
(pK1
x )∗(µK1) = (pK2

x )∗(µK2).

So the previous theorem states that ifM has a compatible set of local orientations
at each point, then it is orientable, which is pretty natural.

Now, Poincaé Duality is a theorem that applies to orientable manifolds. But
not every manifold is orientable with Z coefficients. However, every manifold is
orientable with Z/2Z coefficients.

Example 1.8. Consider RP 2, which is a 2-dimensional manifold. Then we have:

Hk(RP 2; Z) =


Z, if k = 0

Z/2Z, if k = 1
0 if k = 2
.

Since H2(RP 2) = 0, RP 2 is not orientable with Z coefficients. However, since
Hk(RP 2; Z/2Z) = Z/2Z for k = 0, 1, 2, RP 2 is orientable with Z/2Z coefficients,
as discussed before.
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Also, any manifold M has an orientable 2-sheeted cover. Let M̃ = {µx | x ∈M},
where µx is a local orientation of M at x. We topologize this set to make the map
M̃ → M , defined by µx → x, into a covering map. Let B ⊆ Rn ⊆ M be a ball
of finite radius and let µB ∈ Hn(M,M\B) be a generator. Let U(µB) be the set
of all µx ∈ M̃ such that x ∈ B and µx = (pBx )∗(µB). It is an exercise to check
that U(µB) is a basis for a topology on M̃ , and that with this topology, the 2-to-1
projection M̃ →M is a covering map.

Now that we’re through with orientation, we move on to proving the theorem.

2. Poincaré Duality

Let M be a oriented manifold with {µK} its orientation. If M is compact, let
µK = µ.

We begin this section by stating Poincaré Duality.

Theorem 2.1. Suppose M is a compact orientable manifold. Let D : Hi(M) →
Hn−i(M) be defined by D(α) = µ _ α for each i. Then D is an isomorphism for
all i.

In order to understand the map D, we first define cap product.

Definition 2.2. Let X be a space, and R a coefficient ring. Then we define a
Z-bilinear map _: Ck(X)× Cl(X) for l ≤ k by

σ _ ϕ = ϕ(σ|[v0, · · · , vl])σ|[vl, · · · , vk],

where σ : ∆k → X and ϕ ∈ Cl(X). This map is defined to be cap product.

We leave it as an exercise to check that cap product in the cochain groups induce
a cap product map in homology and cohomology. One needs to check that we get

∂(σ _ ϕ) = (−1)l(∂σ _ ϕ− σ _ δϕ).

Definition 2.3. With the above calculations, we get an induced cap product map

_: Hk(X)×H l(X)→ Hk−l(X).

We similarly get relative forms,

_: Hk(X,A)×H l(X)→ Hk−l(X,A)

and
_: Hk(X,A)×H l(X,A)→ Hk−l(X).

Now that we understand the maps, we prove a number of lemmas that we need
to prove the theorem. First we begin with defining directed limit groups.

Definition 2.4. (1) We say that a set J is a directed set if for any a, b ∈ J
there exists c ∈ J with a ≤ c and b ≤ c.

(2) A directed system of groups is a collection of abelian groups {Gs | s ∈ J},
with J a directed set, where for each pair s ≤ t, there exists a homomor-
phism fst : Gs → Gt such that fss is the identity for all s ∈ J , and if
s ≤ t ≤ u, then ftu ◦ fst = fsu.

Definition 2.5. Let {Gs | s ∈ J} be a directed system of groups. Then the direct
limit group lim−→Gs is the quotient

⊕
sGs/〈a−fst(a) | a ∈ Gs〉, where we are viewing

Gs as a subgroup of
⊕

sGs.
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Let {Gs | s ∈ J} be a directed system of groups, and define an equivalence
relation∼ on the set

∐
s∈J

Gs by letting a ∼ b if there exists t such that fst(a) = ftu(b)

where a ∈ Gs and b ∈ Gu. Now, if [a] and [b] are two equivalence classes, then
they have representatives a′ and b′ in Gt, respectively. We define an abelian group
structure on the equivalence classes by defining [a] + [b] = [a′ + b′]. Now, define
a map that sends [a] to the coset of a in lim−→Gs. It is an exercise to check that
the construction here is well-defined and that the defined map is an isomorphism.
Thus we have two equivalent definitions of a directed limit.

Lemma 2.6. Suppose X =
⋃
α∈I Xα, where {Xα | α ∈ I} is a directed set of

subspaces, and every compact subset K ⊆ X is contained in some Xα. Then the
natural map h : lim−→Hi(Xα;G)→ Hi(X;G) is an isomorphism for all i and G.

Now we define cohomology with compact supports, which will be what we use to
prove Poincaré Duality. First note that given a space X, the set of compact subsets
of X form a directed set under inclusion.

Definition 2.7. Let X be a space, and K ⊆ X be a compact subset. Then for
a fixed i and abelian group G and for each K, we get a group Hi(X,X\K;G)
and for each inclusion K ⊆ L, we associate a natural homomorphism hiKL :
Hi(X,X\K;G) → Hi(X,X\L;G). Then we define the cohomology group with
compact support of X as Hi

c(X;G) = lim−→KH
i(X,X\K : G) where the limit is

taken over compact subsets K ⊆ X.

There is an alternate definition for cohomology with compact support that builds
from Cic(X;G) which is a subset of Ci(X;G) that consists of cochains that is zero
on all chains in X\K. The two definitions are equivalent, and we’ll be using the
given definition to prove Poincaré Duality. Now we prove a handy lemma. We start
with an exercise and a lemma that we will need later.

Lemma 2.8 (Five Lemma). Consider the following diagram of abelian groups:

A
i //

α

��

B
j //

β

��

C
k //

γ

��

D
l //

δ

��

E

ε

��
A′

i′ // B′
j′ // C ′

k′ // D′
l′ // E′

If the two rows are exact and α, β, δ, ε are isomorphisms, then γ is also an isomor-
phism.

Proof. One needs to prove:

(1) γ is surjective if β and δ are surjective and ε injective.
(2) γ is injective if β and δ are injective and α surjective.

The proof is straightforward diagram chasing, and is left to the reader to finish. �

Exercise 2.9. Suppose {Cα, fαβ} is a directed system of chain complexes, with
fαβ : Cα → Cβ chain maps. Then Hn(lim−→Cα) = lim−→Hn(Cα). In particular, a direct
limit of exact sequences is exact.
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Lemma 2.10. Suppse M is a union of two open sets U an V . Then the following
diagram commutes.

// Hk
c (U ∩ V ) //

DU∩V

��

Hk
c (U)⊕Hk

c (Y )

DU⊕−DV
��

// Hk
c (M)

DM

��

// Hk+1
c (U ∩ V )

DU∩V

��

//

// Hn−k(U ∩ V ) // Hn−k(U)⊕Hn−k(V ) // Hn−k(M) // Hn−k−1(U ∩ V ) //

Proof. Let K ⊆ U and L ⊆ V be compact sets. Then consider the following
diagram:

// Hk(M, M\(K ∩ L)) //

∼=
��

Hk(M, M\K)⊕Hk(M, M\L)

∼=
��

// Hk(M, M\(K ∪ L))

µK∪L_

��

//

Hk(U ∩ V, (U ∩ V )\(K ∩ L))

µK∩L_

��

Hk(U, U\K)⊕Hk(V, V \L)

µK_⊕−µL_

��
// Hn−k(U ∩ V ) // Hn−k(U)⊕Hn−k(V ) // Hn−k(M) //

The upper and lower rows are obtained by Mayer-Vietoris. The isomorphisms
come from excision. We want to show that this diagram commutes. First consider
the following square:

Hk(U,U\(K ∩ L))
(pKK∩L)∗ //

(pUU∩L)∗∼=
��

Hk(U,U\K)

=

��
Hk(U ∩ V, (U ∩ V )\(K ∩ L)) //

µK∩L_

��

Hk(U,U\K)

µK_

��
Hn−k(U ∩ V )

(pUU∩L)∗ // Hn−k(U)

Let σ ∈ Hk(U ∩ V, (U ∩ V )\(K ∩ L)), and let f̃ ∈ Hk(U,U\(K ∩ L)) such that
(pUU∩L)∗(f̃) = f . Let µUK∩L be the restriction of µK to K ∩ L, that is,

µUK∩L = (pKK∩L)∗(µK).

Then by the compatibility of orientations, we have (pUU∩V )∗(µU∩LK∩L) = (µUK∩L). So
we have:

(pUU∩V )∗(µK∩L _ f) = (pUU∩V )∗(µK∩L _ (pUU∩L)∗(f̃))

= (pUU∩V )∗(µU∩LK∩L) _ f̃

= (µUK∩L) _ f̃

= (pKK∩L)∗(µK) _ f̃

= µK _ (pKK∩L)∗(f̃)

To get the third and last equality, we are using the fact that if ϕ : (X,A)→ (Y,B)
is a map of pairs, g ∈ Cl(Y,B) and x ∈ Ck+l(X,A), then

(ϕ)∗(x _ (ϕ∗)(g)) = (ϕ∗)(x) _ g
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in Ck(Y ). So, the lower square commutes. The same proof works for the case where
we interchage (U,U\K) with (V, V \L), and so we get the commutativity of the first
square in our original diagram. The commutativity of the next square is proved
with the same argument. Now we prove the commutativity of the last square:

Hk(M,M\(K ∪ L)) δ //

µK∪L_

��

Hk+1(M,M\(K ∩ L))

∼=
��

Hk+1(U ∩ V, (U ∩ V )\(K ∩ L))

µK∩L_

��
Hn−k(M) ∂ // Hn−k−1(U ∩ V )

Since this will be long, it will be its own lemma.

Lemma 2.11. Suppose Y ⊆ X, with Y = Y1∪Y2, X = X1∪X2, with each Xi and
Yi open in X, and further suppose that X1 ∪ Y1 = X2 ∪ Y2 = X. Let A = X1 ∩X2,
B = Y1 ∩ Y2, and [v] ∈ Hn(X,B). Then the following diagram commutes for all
k ≤ n:

Hk−1(X,B)

[v]_

��

∆∗ // Hk(X,Y )

∼=
��

Hk(A,A ∩ Y )

[v′]_

��
Hn−k+1(X)

∆∗ // Hn−k(A)

where ∆∗ and ∆∗ are homomorphisms obtained from Mayer Vietoris in homology
and cohomology, and [v′] is defined by:

Hn(X,B) // Hn(X,Y ) Hn(A,A ∩ Y )
∼=oo

That is, [v′] is the element in Hn(A,A ∩ Y ) that is the isomorphic copy of an
element in Hn(X,Y ) that is the image of [v].

Proof. By the definition of ∆∗ and ∆∗, we get the following diagram, which we
want to show commutes:

Hk−1(X,B)

[v]_

��

//

∆∗

++
Hk−1(Y2, B) Hk−1(Y, Y1)

∼=oo δ∗ // Hk(X,Y )

��
Hk(A,A ∩ Y )

[v′]_

��
Hn−k+1(X)

∆∗

44Hn−k+1(X,X2)oo Hn−k+1(X1, A)
∼=oo ∂∗ // Hn−k(A)
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The isomorphisms come from excision. Note that the set A = {X1∩Y2, X2∩Y1, A}
cover X. So, CA∗ (X,B) → S∗(X,B) induces an isomorphism in homology. Thus
there exists a representative ũ of [v] in CAn (X,B), where its preimage u in SAn (X)
can be written as u = u1 + u2 + u′, with u1 ∈ Cn(X1 ∩ Y2), u2 ∈ Cn(X2 ∩ Y1),
and u′ ∈ Sn(A) where ∂u ∈ Cn−1(B). Since u1 and u2 are in Cn(Y ), their images
in Cn(X,Y ) vanish, meaning that the image of [v] under Hn(X,B) → Hn(X,Y )
is represented by u′ mod Cn(Y ). Hence [v′] = [u′] mod Cn(Y ). Thus the image of
[f ] ∈ Hk−1(X,B) through the left/bottom of the square is

∆∗(u _ f) = ∆∗(u1 _ f) + ∆∗(u2 _ f) + ∆∗(u′ _ f).

Now, since we have u2 ∈ Cn(X2 ∪ Y1) ⊆ Cn(X2) and u′ ∈ Cn(A) ⊆ Cn(X2), this
implies that (u2 _ f) ∈ Cn−k+1(X2) and (u′ _ f) ∈ Cn−k+1(X2). Hence (u2 _ f)
and (u′ _ f) both vanish under Cn−k+1(X)→ Cn−k+1(X,X2), which is part of ∂.
Thus ∂(u _ f) = ∂(u1 _ f). Furthermore, since (u1 _ f) ∈ C∗(X1), its image
under the excision isomorphism is its reduction mod C∗(A). Hence we can just use
(u1 _ f) as the pre-image of the reduction to compute the homomorphism ∂. Thus
we get

∆∗(u1 _ f) = ∂(u1 _ f) = (−1)k(∂u1 _ f − u1 _ δf) = (−1)k+1(∂u1 _ f),

where the last equality follows since f is a cocycle. So, the image of [f ] in the
left/bottom is (−1)k+1(∂u1 _ f).

Now we compute the image the other way. The image of [f ] underHk−1(X,B)→
Hk−1(Y2, B) is represented by the restriction of f to Ck−1(Y2). The image under the
excision isomorphism is represented by a cocylce f ′ ∈ Ck−1(Y, Y1) whose restriction
to Y2 is homologous to f |Ck−1(Y2) in Ck−1(Y2, B). Thus there exists g ∈ Ck−2(Y2, B)
such that f ′|Ck−1(Y2) = f |Ck−1(Y2) + δg. We eliminate the g with the following
process:
g ∈ Ck−2(Y2, B) is defined on Ck−2(Y ). Extend it to g′ ∈ Ck−2(Y ), by defining

it to be zero on all generators of Ck−2(Y ) that are outside of Ck−2(Y2). Let

f ′′ = f ′ − δg′ ∈ Ck−1(Y ).

Then f ′′ is still a cocycle, [f ′′] = [f ′], and f ′′|Ck−1(Y2) = f |Ck−1(Y2). Extend f ′′ again
to an element f̃ ∈ Ck−1(X), by setting it to be zero on generators outside Ck−1(Y ).
Thus f̃ is a preimage of f ′′ under the surjection Ck−1(X,Y1) → Ck−1(Y, Y2), and
so we can use f̃ to compute δ∗[f ′′] = [δf̃ ]. Hence we get ∆∗[f ] = [δf̃ ], and so the
right/top image of [f ] is

[v′] _ [δf̃ ] = [u′ _ δf̃ ].

Now, since u′ ∈ C∗(A), u′ _ f̃ ∈ C∗(A), so we get [∂(u′ _ f̃)] = 0. But we have
∂(u′ _ f̃) = (−1)k(∂u′ _ f̃ − u′ _ δf̃), and hence [u′ _ δf̃ ] = (−1)k[∂u′ _ f̃ ].

Finally, we have to show that [∂u′ _ f̃ ] = −[∂u1 _ f ]. From previous construc-
tion, we have

∂u′ _ f̃ = ∂u _ f̃ − ∂u1 _ f̃ − ∂u2 _ f̃,

with ∂u ∈ Cn−1(Y1), ∂u2 ∈ Cn(X2 ∩ Y1) ⊆ Cn(Y1), which implies that ∂u2 ∈
Cn−1(Y2). Similarly, we have ∂u1 ∈ Cn−1(Y2). But we have f̃ |C∗(Y ) = f ′′|C∗(Y )

and f̃ |C∗(Y2) = f ′′|C∗(Y2) = fC∗(Y2), which implies that ∂u _ f̃ = ∂u _ f ′′,
∂u2 _ f̃ = ∂u2 _ f ′′, and ∂u1 _ f̃ = ∂u1 _ f ′′. Now, since f ′′|Y1 = 0, the two
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terms in the above equation are 0, and so we get

[∂u′ _ f̃ ] = −[∂u1 _ f ].

Thus our claim holds. �

Now, back to the original proof. To prove the commutativity of the last square,
use the lemma with X = M , X1 = U , X2 = V , Y = M\(K ∩ L), Y = M\K,
and [v] = µK∪L. Thus the last square commutes. Now, consider passing to the
limit over compact sets K ⊆ U and L ⊆ V . Then any compact subset of U ∩ V is
contained in K ∩L for some K ⊆ U and L ⊆ V and similarly for U ∪V , and hence
when we pass through the limit, we get:

// Hk
c (U ∩ V ) //

DU∩V

��

Hk
c (U)⊕Hk

c (Y )

DU⊕−DV
��

// Hk
c (M)

DM

��

// Hk+1
c (U ∩ V )

DU∩V

��

//

// Hn−k(U ∩ V ) // Hn−k(U)⊕Hn−k(V ) // Hn−k(M) // Hn−k−1(U ∩ V ) //

which is the desired diagram. The exactness of the first row follows from exercise
2.8, since a direct limit of an exact sequence is exact. �

Finally, on to the proof of the theorem. For convenience we’ll state it again here.

Theorem 2.12. Suppose M is an orientable manifold. Let D : Hi(M)→ Hn−i(M)
be defined by D(α) = µ _ α for each i. Then D is an isomorphism for all i.

Proof. We prove in the same manner as Theorem 1.4, building from simple to more
general cases.
Case 1 M = Rn. We will prove the theorem for M = int (∆n), and the desired

result follows by homotopy equivalence. The map DM can be identified
with the map D′M : Hk(∆n, ∂∆n)→ Hn−k(∆n) defined by

D′M (α) = [∆n] _ α,

where [∆n] is defined by the identity map of ∆n. Note that the only non-
trivial case is when k = n since in all other cases both the homology and co-
homology groups are 0. In the case k = n, the generator of Hn(∆n, ∂∆n) ∼=
Hom (Hn(∆n, ∂∆n),Z) is represented by a cocycle ϕ that is 1 on ∆n, and
hence we get:

[∆n] _ ϕ = ϕ([∆n]|[v0, · · · , vn])[∆n]|[vn] = [∆n]|[vn],

where [∆n]|[vn] is the last vertex of ∆n, which is a generator of H0(∆n).
So, since D′M takes a generator to a generator, D′M is an isomorphism, and
so our claim holds.

Case 2 M = U ∩ V , U and V open subsets of M , with the theorem known for
U , V , and U ∩ V . This follows immediately from lemma 2.9 and the five
lemma.

Case 3 M =
⋃
α Uα, where {Uα} is a nested family of open sets, with the theo-

rem known for each Uα. By excision, Hk
c (Uα) is the limit of the groups

Hk(M,M\K), for K compact subsets of Uα. Thus we get natural maps
Hk
c (Uα) → Hk

c (Uα+1), since the latter is a limit over a larger collection of
K’s. Then since the compact sets ofM and Ui’s coincide, we haveHk

c (M) ∼=
lim−→H

k
c (Uα). Also, by exercise 2.6, we have Hn−k(M) ∼= lim−→Hn−k(Uα). So,
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the map DM is a limit of the isomorphisms DUα , and hence is an isomor-
phism.

Case 4 M is an open subset of Rn. If V is a convex open subset of M , then since
V is homeomorphic to Rn, the theorem holds for V by Case 1. If V,W
are convex open subsets of Rn, then so is V ∩W , and so by Case 2 the
theorem holds for V ∪ W . So, if V = V1 ∪ · · ·Vm, with each Vi convex
open, then the theorem holds by induction. Now, write M =

⋃
i = 1∞Vi

by letting {Vi} be the set of balls contained in M with rational radius,
centered around points with rational coordinates. Then {Vi} is countable.
Let Wj =

⋃j
i=1 Vi. Then the theorem holds for Wj fr all j by the above.

Since {Wj} are nested, and M =
⋃∞
j=1Wj , the theorem holds for M by

Case 3.
Case 5 General case. Let U be the collection of open sets U ⊆ M such that the

theorem holds. Then this set is partially ordered by inclusion, and by Case
3 the union of every totally ordered subcollection is again in U . By Zorn’s
Lemma, there exists a maximal set N for which the theorem holds. Suppose
for contradiction that N 6= M . Then let x ∈ M\N and V a neighborhood
of x that is homeomorphic to Rn. Then by Case 4, the theorem holds for
V and U ∩ V , and so by Case 2 the theorem holds for U ∪ V , which is a
contradiction. Hence N = M , and the theorem holds in general.

�

Now, a couple corollaries to see an application of Poincaré Duality.

Corollary 2.13. A closed manifold of odd dimension has Euler characteristic 0.

Proof. First suppose that M is an orientable closed n-manifold. Then by Poincaré
Duality, we have Hi(M) ∼= Hn−i(M), and so we get rank Hi(M) = rank Hn−i(M).
Moreover, by the Universal Coefficient Theorem, we get rank Hn−i(M) = rank
Hn−i(M). So this implies that we get rank Hi(M) = rank Hn−i(M). So, χ(M) =∑n
i=0(−1)i rank Hi(M) = 0, since the sum cancels in pairs. So our claim holds if

M is orientable. Now suppose M is non-orientable. Then let M̃ be an orientable 2
sheeted cover of M . Then by the same argument, χ(M̃) = 0, and so χ(M) = 0

2 = 0.
Thus our claim holds. �

Corollary 2.14. RP 2 is not a boundary of any 3 dimensional compact manifold.

Proof. Suppose for contradiction that RP 2 is a boundary of M , a three dimensional
manifold. Now let M1, M2 be two copies of M and glue them together along their
boundaries. Then we get

χ(M) = χ(M1 ∪RP 2 M2)

= χ(M1) + χ(M2)− χ(RP 2)

= 2χ(M)− χ(RP 2)

= 2χ(M)− 1

But this implies that χ(M) = 1
2 , which is a contradiction. Note that this proof

works if we substitute any compact even dimensional manifold with an odd Euler
characteristic for RP 2. �
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