
EQUITABLE PARTITIONS AND ORBIT PARTITIONS

SATORU KUDOSE

Abstract. We consider two kinds of partition of a graph, namely orbit par-

titions and equitable partitions. Although an orbit partition is always an eq-

uitable partition, the converse is not true in general. We look at some classes
of graphs for which the converse is true.
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1. Some Graph Theoretic Terms

In this section, we collect some graph theoretic terms and fix notations. Let
X = (V,E) be an undirected graph with a vertex set V = V (X) and an edge set
E = E(X) ⊆

(
V
2

)
, where

(
V
2

)
is the set of subsets of V of size 2. An edge from

a vertex to itself is called a loop. We say that X is simple if it has no loops or
multiple edges. We say that u and v are adjacent and write u ∼ v if there is an
edge {u, v} ∈ E. If u ∼ v, we refer to v as a neighbor of u and vice versa. The
number of neighbors of a vertex v is called the valency or the degree of v and is
denoted by d(v). If every vertex of X has the same valency k, X is said to be
k-regular.

One important property of a graph is its connectivity, which is related to walks,
paths and cycles. For two vertices u, v ∈ V , a uv-walk is a sequence of vertices and
edges ue1x1e2x2 · · ·xn−1env where xi ∈ V and ei ∈ E is an edge from the preceding
vertex to the next in the sequence. The vertices xi’s are called internal vertices.
For a uv-walk, the internal vertices need not be distinct. When internal vertices
are distinct, we refer to a uv-walk as a uv-path. The distance between u and v is
the number of edges in the shortest uv-path. If there are k internally disjoint paths
between any pair of vertices u, v ∈ V , we say that X is k-connected. A path from
u to u is called a cycle, and the shortest cycle of a graph is called its girth.

In an oriented graph X, one instead has an edge set E ⊆ V × V consisting of
ordered pairs (u, v). If e = (u, v) is a directed edge, then we say that u is a tail of
e and v is a head of e.
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A graph Y with V (Y ) ⊆ V (X) and E(Y ) ⊆ E(X) is called a subgraph of X.
Given a set S ⊆ V (X), the subgraph induced by S is the subgraph of X with vertex
set S and those edges of X whose endpoints lie in S.

An automorphism of a graph X is a bijection ϕ : V −→ V with the property
that u ∼ v if and only if ϕ(u) ∼ ϕ(v). A graph is called vertex-transitive if for any
u, v ∈ V , there is an automorphism which maps u to v. Note that a vertex-transitive
graph is necessarily regular, but a regular graph is not necessarily vertex-transitive.

The adjacency matrix A of X is a |V | × |V | matrix whose rows and columns are
indexed by V such that Auv = 1 if vertex u is adjacent to v and Auv = 0 otherwise.
We refer to the characteristic polynomial of A as the characteristic polynomial of
X, and similarly for eigenvalues and eigenvectors of A. The set of eigenvalues of X
is also called the spectrum of X.

2. Orbit Partitions and Equitable Partitions

In general, a graph can be very complicated. To analyze its structure, it is
often helpful to partition the graph into more manageable pieces. While there are
many different ways to partition a graph, we will focus on two particular partitions,
namely orbit partitions and equitable partitions.

Throughout this paper, by a partition of a graph X, we always mean the partition
of its vertex set. If π partitions the vertex set of X into C1, . . . , Cn, then we refer
to Ci as a cell of π.

Definition 2.1. Let X be a graph. If H ≤ Aut(X) is a group of automorphisms
of X, we say that u and v are similar under H if there is an automorphism in H
which maps u to v. The equivalence classes defined by this similarity are called the
orbits of the graph by H. The partition of X consisting of the set of orbits by H
is called an orbit partition of X.

Hence, an orbit partition of a graph is a partition in which cells are orbits.
Roughly speaking, the orbit partition groups together those vertices that look the
same. Since automorphisms preserve valency, all vertices in a cell have the same
valency. Also, if a graph G has an orbit partition with only one cell, then G is
vertex-transitive.

We now define and develop the basic properties of equitable partition.

Definition 2.2. A partition π of V with cells C1, . . . , Cr is equitable if the number
of neighbors in Cj of a vertex v ∈ Ci depends only on the choice of Ci and Cj . In
this case, the number of neighbors in Cj of any vertex in Ci is denoted bij .

Some examples of equitable partitions are shown in Fig. 1. In the figure, the
partition is indicated by the vertex coloring. Notice that the partitions in Fig. 1
are also orbit partitions.

2.1. Combinatorial Results. Since each vertex in Ci has precisely bii neighbors
in Ci, the subgraph induced by Ci is regular. However, slightly more is true.

Proposition 2.3. Let π be an equitable partition with cells C1, . . . , Cr. Then every
vertex in Ci has the same valency.

Proof. Suppose v, w ∈ Ci. Then, since the partition is equitable, the number of
neighbors in Cj of any vertex in Ci is bij . Hence, we have d(v) =

∑r
j=1 bij =

d(w). ¤
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Figure 1. Two equitable partitions.

Figure 2. Equitable, but not orbit partitions.

So like an orbit partition, an equitable partition groups together vertices of the
same valency.

Proposition 2.4. An orbit partition is an equitable partition.

Proof. Let O1, . . . , Or be an orbit partition of X. Suppose u, v ∈ Oi. Then there
is an automorphism ϕ ∈ Aut(X) such that ϕ(u) = v. Since ϕ maps Oj to Oj and
preserves valency, u and v must have same number of neighbors in Cj . ¤

The graphs in Fig. 2 show that the converse is false in general. The first graph
in Fig. 2 is called McKay’s graph and is probably the most popular graph of this
type in the literature. Note that the black cell is not an orbit: no automorphism
takes an outer black vertex to an inner black vertex, since automorphisms must
preserve cycles.

The second graph is 3-regular, so the trivial partition is an equitable partition.
However, since it is not vertex-transitive, the trivial partition is not an orbit. The
non-vertex-transitive, regular graphs provide a class of examples of graphs with an
equitable partition that is not an orbit partition.

The third graph is a generalization of McKay’s graph. The reader can check
that the partition is equitable, but nor orbit.

We now look at some consequences of having a special kind of equitable partition.
A family of k internally disjoint paths from x to distinct vertices in P ⊆ V is called
a k-fan from x to P .

Proposition 2.5. Let X be a connected graph. If X has an equitable partition π
consisting of cells {u} and P = V \{u}, then X is a regular graph P with a |P |-fan
from u to P .
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If in addition, π is the only nondiscrete equitable partition of X and Aut(X) is
nontrivial, then P is vertex-transitive.

Proof. Since the partition is equitable, P is regular. Since X is connected, u is not
an isolated point. Since X is simple and the partition is equitable, each v ∈ V \{u}
has exactly one edge to u. Hence, we have a |P |-fan from u to P .

To show the second assertion, suppose that π is the only nondiscrete equitable
partition. Then since Aut(X) is nontrivial, the orbits under Aut(X) form a nondis-
crete equitable partition, which must be π by assumption. Hence, P is an orbit
and, in particular, vertex-transitive. ¤

Proposition 2.6. Let X be connected and suppose u 6= v. Let π1 be the partition
with cells {u}, V \{u} and π2 be the partition with cells {v}, V \{v}. If π1 and π2

are both equitable partitions of X, then X is complete.

Proof. Since X is connected, u is adjacent to some vertex in V \{u}. Since X is
simple and π1 is equitable, there is an edge from each w ∈ V \{u} to u. Thus the
valency of u is |X| − 1. Similarly, there is an edge from each z ∈ V \{v} to v. So
the valency of v is also |X| − 1. Moreover, since u ∈ V \{v} and π2 is equitable,
each vertex in V \{v} also has degree |X| − 1. Hence, X is complete. ¤

Since complete graphs have the above partition, this proposition characterizes
complete graphs.

2.2. Algebraic Results. We next look at some algebraic properties of equitable
partitions. Every result here comes from Godsil’s text [3].

To use linear algebra, we will encode the information about a partition in a
matrix.

Definition 2.7. Given a partition π with cells C1, . . . , Cn, the characteristic matrix
P is a |V | × n matrix with pij = 1 if a vertex i belongs to the cell Ci and pij = 0
otherwise.

The jth column of P is called the characteristic vector for Cj . It has nonzero
entry at the ith position whenever the ith vertex belongs to Cj . Note that P tP is a
diagonal matrix with jth diagonal entry equal to the number of vertices in the cell
Cj . Since the diagonal entries are nonzero, P tP is invertible.

As in the case for groups, we can extract some information about a graph by
studying its quotient.

Definition 2.8. Given an equitable partition π, the directed graph with vertices
C1, . . . , Cr with bij arcs from Ci to Cj is called the quotient of X over π and is
denoted X/π.

The adjacency matrices for X and its quotient X/π relate to each other in the
following way.

Proposition 2.9. Let π be an equitable partition and let P be the corresponding
characteristic matrix. Then A(X)P = PA(X/π). Hence, we have A(X/π) =
(P tP )−1P tA(X)P .

Proof. Suppose without loss of generality that u ∈ Ci and consider (A(X)P )uj .
Note that a summand in (A(X)P )uj =

∑
k=1 A(X)ukPkj is 1 if the vertex u is
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adjacent to a vertex in the cell Cj and is 0 otherwise. So (A(X)P )uj counts the
number of neighbors of the vertex u in Cj , and this number is bij .

Likewise, since u belongs to exactly one of the cells, namely Ci, the only nonzero
entry in the row u of P is at the ith column. Thus, we have (PA(X/π))uj = bij , so
A(X)P = PA(X/π).

By the previous part, we have P tA(X)P = P tPA(X/π). Since P tP is invertible
by the remark above, we have A(X/π) = (P tP )−1P tA(X)P . ¤

From the above proposition, we see that the equitable partition can be charac-
terized by the following property of its characteristic matrix P .

Corollary 2.10. A partition π is equitable if and only if the column space of the
characteristic matrix P is invariant under A(X).

Proof. Note that the column space of P is invariant under A(X) if and only if there
is some B such that A(X)P = PB. ¤

Here we see that the spectrum of the quotient X/π partially determines the
spectrum of X.

Theorem 2.11. Let π be an equitable partition and let P be the corresponding char-
acteristic matrix. The characteristic polynomial of X/π divides the characteristic
polynomial of X.

In particular, θ is an eigenvalue of X/π with multiplicity n, then θ is also an
eigenvalue of X with multiplicity ≥ n. Moreover, the following also holds.

Proposition 2.12. Let π be an equitable partition and let P be the corresponding
characteristic matrix. If v is an eigenvector with eigenvalue θ for X/π, then Pv is
an eigenvector with eigenvalue θ for X.

Proof. We have θPv = Pθv = PA(X/π)v = A(X)Pv. Since P tP is invertible and
v 6= 0, Pv 6= 0. So Pv is an eigenvector of X with eigenvalue θ. ¤

For orbit partitions, we have a partial converse for the Theorem 2.11.

Theorem 2.13. Let X be a vertex-transitive graph. Let π be an orbit partition
of some nontrivial subgroup of Aut(G). If π has a singleton cell {u}, then every
eigenvalue of X is an eigenvalue of X/π.

Hence, if a vertex-transitive graph has a non-identity automorphism with a fixed
point, then we can completely determine the spectrum for X from its quotient X/π.

In the next two sections, we investigate the following problem.

Problem 2.14. Characterize those graphs with the property that every equitable
partition is an orbit partition.

3. Sufficient Conditions

One known sufficient condition for every equitable partition to be an orbit par-
tition is compactness. The definition of a compact graph is rather involved. We
first define some terms.

A square matrix S = (sij) is doubly-stochastic if each entry is nonnegative and
S1 = 1 = St1 where 1 is the vector whose entries are 1. Note that the set of doubly
stochastic matrices forms a convex set in R

n2
. If V is a closed, convex set, a point

p ∈ V is called an extreme point of V if p 6= x+y
2 for any x, y ∈ V .
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Definition 3.1. Let A be the adjacency matrix of a graph X. Define S(A) to be
the set of all doubly stochastic matrices that commute with A. If every extreme
point of S(A) is a permutation matrix, then the graph X is called compact.

Note that S(A) is a convex set and contains all of the permutation matrices that
commute with A, i.e., all automorphisms of X. Hence, if X is compact, then the
automorphisms of X are precisely the extreme points of S(A).

One of the motivations for looking at compact graphs is that the characteriza-
tion of automorphisms as the extreme points of a convex set allows us to find the
automorphisms in polynomial time. However, we are interested in compact graphs
because all of their equitable partitions are orbit partitions.

First, recall the following results from linear algebra.

Theorem 3.2 (König, Birkhoff). The permutation matrices are the extreme points
of the set of doubly stochastic matrices.

Theorem 3.3 (Carathéodory). Let K be a nonempty, closed, bounded, convex set
in a vector space X with dim X = n. Then every point of K can be represented as
a convex combination of at most n + 1 extreme points of K.

Hence, any doubly stochastic matrix can be written as a convex combination of
permutation matrices. We will also need a following technical lemma.

Lemma 3.4. The partition π is equitable if and only if Q = P (P tP )−1P t ∈ S(A),
where P is the characteristic matrix of π.

Proposition 3.5. If X is compact, then every equitable partition is an orbit par-
tition.

Proof. Suppose X is compact. Then, by Lemma 3.4, Q = P (P tP )−1P ∈ S(A). So
by compactness, we have Q =

∑
akRk, where ak ≥ 0 with

∑
ak = 1 and Rk are

the permutation matrices that define automorphisms of X.
Now, consider the entries of Q = P (P tP )−1P t. Since P tP is a diagonal matrix

whose jth diagonal entry is equal to the number of vertices in the cell Cj , the
diagonal entries of P tP , and therefore of (P tP )−1 are in particular positive.

Hence, the ij-entry of Q = P (P tP )−1P t is nonzero if and only if vertex i and
j are in the same cell. To see this, note that the ij-entry of PP t is 1 if and only
if vertex i and j are in the same cell and is zero otherwise. By the above remark,
inserting the factor (P tP )−1 does not change which entries of PP t are nonzero.

But since Q =
∑

akRk, the ij-entry of Q is nonzero if and only if there is a
permutation matrix in S(A) whose ij-entry is nonzero, i.e., if and only if there is
an automorphism of A taking vertex i to vertex j. Hence, vertex i and vertex j
are in the same cell if and only if there is an automorphism of A taking vertex i to
vertex j. Thus, every cell of π is an orbit. ¤

It is not clear from the above definition what kinds of graphs are compact.
In fact, finding an alternative characterization of compact graphs is still an open
problem. Here, we content ourselves by giving some examples.

Proposition 3.6. The complement of a compact graph is compact.

Proof. Let X be a graph with adjacency matrix A. Then the complement X has
the adjacency matrix J − I −A where J is the square matrix with all entries equal
to 1. Since any doubly stochastic matrix that commutes with A commutes with
J − I −A, we have S(A) = S(J − I −A). So X is compact. ¤
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Figure 3. The Petersen Graph.

We next show that complete graphs are compact.

Proposition 3.7. The complete graphs on n vertices are compact.

Proof. Note that if J is the square matrix with all entries equal to 1 and S is a
stochastic matrix, then JS = J = SJ . Since the complete graph has adjacency
matrix J − I and every doubly stochastic matrix commutes with J − I, we see that
S(J − I) is precisely the set of all doubly stochastic matrices. Hence, by Theorem
3.2, the complete graph is compact. ¤

We note that Tinhofer showed in [7] that trees and cycles are also compact.
The proofs are considerably harder than the proofs for complete graphs and for
complements of compact graphs. Currently, no other graph theoretic property is
known to imply compactness. However, if we require a graph to be regular, we
obtain the following.

Proposition 3.8. A compact, connected, regular graph is vertex-transitive.

To prove the proposition, we need the following lemma by Hoffman. The proof
can be found on p. 15 of [1].

Lemma 3.9 (Hoffman). Let X be a graph on n vertices with adjacency matrix A.
Then, the matrix 1

nJ , where J is the all 1 matrix, is in S(A) if and only if X is
connected and regular.

Proof of Proposition 3.8. Let X be compact, connected and regular. Then J ∈
S(A). Since X is compact, we have J =

∑
akPk where ak ≥ 0 with

∑
ak = 1 and

Pk is a permutation matrix that commutes with A by Theorem 3.3. Now, since
the ij-entry of J is 1, there must be at least one matrix in the sum with nonzero
ij-entry. Hence, there must be at least one permutation matrix that commutes
with A whose ij-entry is 1, i.e., there is an automorphism taking vertex i to j.
Hence, X is vertex-transitive. ¤

Note that the converse is false. Yet again, the Petersen graph is a counterexam-
ple. Here is an alternate proof of the previous proposition.

Proposition 3.10. If X is regular and every equitable partition is an orbit parti-
tion, then X is vertex-transitive. In particular, a compact, conncted, regular graph
is vertex-transitive.

Proof. If X is regular and every equitable partition is an orbit partition, then the
trivial partition is an orbit partition. Hence, X is vertex-transitive. A compact
graph satisfies the hypotheses by Proposition 3.5. ¤
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It turns out that Proposition 3.8 can be strengthened. A compact, connected,
regular graph is in fact generously vertex-transitive, i.e., for every pair of vertices
v, w, there is an automorphism ϕ such that ϕ(v) = w and ϕ(w) = v. The proof
of this fact is rather lengthy, but can be found in either [4] or [5]. However, the
following weaker result is easy to prove.

Proposition 3.11. Let X be a compact, regular graph. If v ∼ w, then there is an
automorphism ϕ such that ϕ(v) = w.

Proof. Suppose X is compact and k-regular. Then 1
kA is doubly stochastic and

commutes with A, so 1
kA ∈ S(A). Then by compactness, we have 1

kA =
∑

aiPi.
So whenever the ij-entry of A is nonzero, there must be a permutation matrix that
commutes with A whose ij-entry is nonzero. Hence, we have an automorphism
taking vertex i to j. ¤

We note that Wang and Li give some characterizations of 3-regular, compact
graphs in [8]. In the same paper, Wang showed that if G is compact and regular,
then G− v is also compact for any v. Here, G− v is the graph with vertex v and
all the edges incident to v removed.

Though much weaker, the following is a sort of reverse of Wang’s result.

Proposition 3.12. Suppose P is l-regular and compact, and let X be a graph
consisting of P together with a k-fan from u to P . If k, k + 1 6= l, then every
equitable partition of X is an orbit partition.

Proof. Suppose π is an equitable partition of X with cells C1, . . . , Cn. By Propo-
sition 2.3, we must have C1 = {u}, say. Since u must be a fixed point of every
automorphism of X, the cells C2, . . . , Cn forms an equitable partition of P . Since
P is compact, C2, . . . , Cn are orbits by Proposition 3.5. Hence, C1, . . . , Cn forms
an orbit partition of X. ¤

It is not known whether the graph described is actually compact.
We end with the following quesiton: what can we say about a graph in which

every equitable partition is an orbit partition? No published results are known.
This condition is fairly weak. It is satisfied by any graph whose only equitable
partition is the discrete partition. It is satisfied by any compact graphs, including
trees and cycles, and the complement of any compact graph.
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