
THE FUNDAMENTAL GROUP
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Abstract. The focus of this exposition is the fundamental group of a topolog-

ical space. The paper begins by defining paths and homotopy, and proceeds to

construct the fundamental group. Later, attention turns to the consequences
of the construction, in particular to the fundamental group of S1 and Van

Kampen’s Theorem.
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1. Preliminaries: Concatenation and Homotopy of Paths

Definition 1.1. Let X be a topological space and I be the unit interval [0, 1]. A
path f in X is a continuous map f : I → X. f(0) and f(1) are the endpoints of f .
When we write f(t) with t in I, we call t the parameter of f .

Remark 1.2. Paths are our building blocks, and we want to build a group out of
them. So, naturally, we would like to talk about actions and operations on paths
that will aid in constructing the elements and operation of the group. This section
introduces two such actions on paths. The first one is concatenation, defined below:

Definition 1.3. Let P (X) be the set of all paths in the space X and take f ,
g ∈ P (X) such that f(1) = g(0). Then we define:

(f • g)(t) =

{
f(2t) 0 ≤ t ≤ 1

2

g(2t− 1) 1
2 < t ≤ 1

Remark 1.4. The above defines the concatenation map • : P (X)×P (X)→ P (X),
which will underly the group operation constructed later.

Remark 1.5. The second useful action to consider is a “smooth deformation”, or
homotopy, of one path into another path. To begin to understand this, consider
the following. Take our space X as the empty space in front of you, and imagine
a shoelace sitting in X. Secure a vice grip to each end of the lace to keep the
ends from moving. A homotopy of the shoelace is an act of physically moving the
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remaining unsecured of the lace over some time frame (allowing the shoelace to pass
through itself if necessary). This concept is made rigorous in the definition below.
Think of f and g as generalizations of two (possibly different) spatial positions of
the same shoelace.

Definition 1.6. Let f, g : I → X be paths. Then, f is homotopic to g if:
(1) f(0) = g(0), f(1) = g(1).
(2) There exists a family of paths ht : I → X, t ∈ I, such that:

(a) h0 = f
(b) h1 = g
(c) ht(0) = f(0) and ht(1) = f(1) for all t in I.
(d) The associated map h(t, s) = ht(s) is continuous.

In this case, the collection ht is called a homotopy of paths, or homotopy for short,
and we write f ' g.

Remark 1.7. As you can see, a homotopy can be thought of as a family of paths
ht : I → X, or a single map h : I × I → X. Both notions are equivalent and useful.

Example 1.8. Let X = Rn and take paths f, g : I → Rn with f(0) = g(0),
f(1) = g(1). Then we can consider the linear homotopy h(t, s) = t·g(s)+(1−t)·f(s).
Note that h satisfies Definition 1.6.

Remark 1.9. Given f ∈ P (X), it is natural to think about the set of all paths
homotopic to f . In fact, this is a useful concept, as the following two propositions
show:

Proposition 1.10. The homotopy relation ' in Definition 1.6 is an equivalence
relation.

Proof. We take paths f, g and r ∈ P (X) to show that' satisfies the three properties
of an equivalence relation:

(1) Reflexivity: f ' f by the identity homotopy h(t, s) = f(s) for all t ∈ I.
(2) Symmetry: If f ' g, then we have continuous h(t, s) satisfying h(0, s) =

f(s), h(1, s) = g(s), h(t, 0) = f(0), h(t, 1) = f(1). Define h̄(t, s) = h(1 −
t, s). Then h̄ is continuous because it is the composition of continuous
maps. Also, h̄(0, s) = h(1, s) = g(s), h̄(1, s) = h(0, s) = f(s), h̄(t, 0) =
f(0) = g(0), h̄(t, 1) = f(1) = g(1). Hence, we have a homotopy g ' f .

(3) Transitivity: Suppose f ' g and g ' r. Then, we have homotopies h1 from
f to g and h2 from g to r satisfying Definition 1.6 for their respective paths.
Define:

H(t, s) =

{
h1(2t, s) 0 ≤ t ≤ 1

2

h2(2t− 1, s) 1
2 ≤ t ≤ 1

We want H to be a homotopy from f to r. H inherits the essential
properties listed in Definition 1.6, including continuity, from h1 and h2.
Hence, H is a homotopy from f to r, and f ' r.

�

Definition 1.11. For f ∈ P (X), the homotopy class [f ] of f is the equivalence
class of f under the equivalence relation '.
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Remark 1.12. By the symmetry of ', we can now say “f and g are homotopic”
instead of the one-sided statement, “f is homotopic to g”.

Definition 1.13. Let A ⊂ X. A deformation retraction is a homotopy ft : X → X,
t ∈ I, such that:
(1) f0 = idX , the identity map on X.
(2) f1(X) = A
(3) ft|A = idX for all t ∈ I

2. Loops and the Fundamental Group

Definition 2.1. For a path f : I → X, f is a loop if f(0) = f(1). We denote by
π1(X,x0) the set of all homotopy classes [f ] of loops f with basepoint x0 = f(0).

Now, we are ready to construct the fundamental group.

Theorem 2.2. π1(X,x0) is a group under the operation [f ] · [g] ≡ [f • g] for loops
f, g ∈ π1(X,x0).

Proof. We must check that π1(X,x0) obeys the group axioms:
(1) The operation · on [f ] and [g] is a well-defined internal law of composition:

[f • g] ∈ π1(X,x0).
(2) [f ] · ([g] · [r]) = ([f ] · [g]) · [r]: This amounts to taking representatives f ,

g, and r from [f ], [g], and [r] and showing that the loops f • (g • r) and
(f • g) • r are homotopic. Let’s write out their equations:

f • (g • r)(s) =


f(2s) 0 ≤ s ≤ 1

2

g(4s− 2) 1
2 ≤ s ≤

3
4

r(4s− 3) 3
4 ≤ s ≤ 1

(f • g) • r(s) =


f(4s) 0 ≤ s ≤ 1

4

g(4s− 2) 1
4 ≤ s ≤

1
2

r(2s− 1) 1
2 ≤ s ≤ 1

Our homotopy from f • (g • r) to (f • g) • r, then, is the following:

h(t, s) =


f((2s)t+ (4s)(1− t)) 0 ≤ s ≤ ( t2 + 1−t

4 )
g(4s− 2) ( t2 + 1−t

4 ) ≤ s ≤ ( 3t
4 + 1−t

2 )
r((4s− 3)t+ (2s− 1)(1− t)) ( 3t

4 + (1−t)
2 ) ≤ s ≤ 1

Since h satisfies Definition 1.6, we indeed have associativity.
(3) There exists id ∈ π1(X,x0) such that [f ] · id = id · [f ] = [f ]: Let idx0(s) =

f(1) = x0 for all s ∈ I. Then, [idx0 ] ∈ π1(X,x0). [f ] · [idx0 ] = [f • idx0 ].
Now, f • idx0 ' f via the homotopy,

h(t, s) =

{
f((2− t)s) 0 ≤ t ≤ (1+t)

2

idx0(s) 1+t
2 ≤ t ≤ 1

Showing that idx0 • f ' f is similar. Hence, [idx0 ] = id is the identity
in π1(X,x0).
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(4) For all [f ] ∈ π1(X,x0) there exists [f ]−1 such that [f ] · [f ]−1 = [f ]−1 · [f ] =
id: Take a representative of [f ] and call it f . Let f−1(s) = f(1 − s) for
all s ∈ I. We need to show that f • f−1 ' idx0 for some constant loop
idx0 ∈ id. For this, we take x0 = f(0) and use the homotopy:

h(t, s) =


f(s) 0 ≤ s ≤ 1−t

2

f( 1−t
2 ) 1−t

2 ≤ s ≤
1+t
2

f−1(s) 1+t
2 ≤ s ≤ 1

This shows that f • f−1 ' idx0 , which means f · f−1 ' idx0 . Showing
f−1 · f ' idx0 is similar. Hence, we can take [f−1] as our [f ]−1.

�

Remark 2.3. We would like to talk about π1(X) independently of a choice of base-
point x0. We can do this because of the following:

Proposition 2.4. Let f ∈ π1(X,x1). Let h ∈ P (X), h(0) = x0, h(1) = x1. Then,
the map βh : π1(X,x1)→ π1(X,x0), βh([f ]) = [h • f • h−1] is an isomorphism.

Proof. We must check the following:

(1) βh is well-defined: f is a loop with basepoint x1. So by the definition of
h, h • f • h−1 is well-defined and a loop with basepoint x0. Hence, βh is
well-defined.

(2) βh is a homomorphism: Let g ∈ π1(X,x1). Then, βh([f ]·[g]) = βh([f •g]) =
[h • f • g • h−1] = [h • f • h−1 • h • g • h−1] = [h • f • h−1] · [•h • g • h−1] =
βh([f ]) · βh([g]).

(3) βh is bijective: This amounts to producing an inverse of βh. Our choice is
βh−1 because βhβh−1([f ]) = βh([h−1 • f • h]) = [h • h−1 • f • h • h−1] = [f ].
Showing that βh−1βh([f ]) = [f ] is similar.

�

Definition 2.5. If π1(X) = 0, we say that the fundamental group of X is trivial.
If in addition X is path-connected, then we say that X is simply-connected.

Proposition 2.6. If the spaces X and Y are path-connected, then π1(X × Y ) is
isomorphic to π1(X)× π1(Y ).

Proof. Define f : I → X × Y . f is continuous iff the associated coordinate maps
g : Z → X and h : Z → Y defined by f(s) = ((g(s), h(s)) are continuous. Also,
the basepoint of f is (x0, y0) iff g and h have basepoints of x0 and y0, respectively.
Hence, f is a loop iff g and h are loops. In fact, for every loop f in X × Y we
get a unique pair of loops g in X and h ∈ Y , and vice versa. Similarly, there
exists one and only one homotopy ft of loops in X × Y for every pair of loop
homotopies gt in X and ht in Y , and vice versa. Thus, we have a bijection between
π1(X×Y, (x0, y0) and π1(X,x0)×π1(Y, y0). Next, note that the map [f ] 7→ ([g], [h])
is a homomorphism. Hence, this map is an isomorphism. �

Proposition 2.7. If X is path-connected, then π1(X) is abelian iff all basepoint-
change homomorphisms βh depend only on the endpoints of the path h.
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Proof. First, assume π1(X) is abelian. Consider a loop γ with basepoint x0. Sup-
pose we have two distinct paths f , g : I → X such that f(0) = g(0) = x0 and
f(1) = g(1) = a ∈ X\{x0}. Then, βf [γ] = [f−1 · γ · f ] and βg[γ] = [g−1 · γ · g].
Hence,

[f ] · βf [γ] · [f−1] = [f ] · [f−1 · γ · f ] · [f−1] = [f · f−1 · γ · f · f−1] = [γ]

[g] · βg[γ] · [g−1] = [g] · [g−1 · γ · g] · [g−1] = [g · g−1 · γ · g · g−1] = [γ]

Thus,

[f ] · βf [γ] · [f−1] = [g] · βg[γ] · [g−1]

βf [γ] = [f−1 · g] · βg[γ] · [g−1 · f ]

But f−1 · g and g−1 · f are loops because f and g share the same starting and
ending points. Hence, by the hypothesis,

βf [γ] = [f−1 · g] · βg[γ] · [g−1 · f ] = βg[γ] · [f−1 · g] · [g−1 · f ] = βg[γ]

This proves that for any two basepoint-change homomorphisms βf and βg, we
have βf = βg if the corresponding paths fand g share endpoints. Hence, if π1(X)
is abelian, βh depends only on the endpoints of h.

Next, assume each basepoint-change homomorphism βh depends only on the
endpoints of the corresponding path h. Take two arbitrary nonconstant loops,
fand g, which share the same basepoint x0. Decompose f into f1 : [0, 1/2] → X,
f2 : [1/2, 1] such that f1 • f2 = f . Decompose g into analogous paths g1 and g2.
By the assumption that βf1 [g] = βf2 [g], we have:

[f−1
1 · g · f1] = [f2 · g · f−1

2 ]

Multiplying by [f1] on the left and by [f2] on the right:

[f1] · [f−1
1 · g · f1] · [f2] = [f1] · [f2 · g · f−1

2 ] · [f2]

which simplifies down to:

[g · f1 · f2] = [f1 · f2 · g]

and hence:

[g] · [f ] = [f ] · [g]

Thus, π1(X) is abelian.

�

Remark 2.8. We would like to describe π1(S1), where S1 is the unit circle in R2.
This will help us describe more complicated fundamental groups. To describe
π1(S1), we will navigate back and forth between three sets: I, R, and S1. Specif-
ically, will consider loops from I to S1, and factor them through R to count the
number of times they wind around S1. This results in the following commutative
diagram for a loop f :
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R
p

��
I

f̃
??~~~~~~~~

f
// S1

Here, p(s) = (cos(2πs), sin(2πs)). The map f̃ is called a lift of f . We will state
without proof:

Theorem 2.9. Let X be a path-connected space. For each F : X × I → S1 and lift
f̃ : X ×{0} → R of F |X ×{0}, there is a unique lift F̃ : X × I → R of F such that
F̃ |X × {0} = f̃ .

Corollary 2.10. Given a path f : I → S1 with f(0) = x0 ∈ S1 and a chosen point
x̃0 ∈ p−1(x0), there exists a unique lift f̃ : I → R of f with f̃(0) = x̃0.

Proof. Take X to be a point x in the statement of Theorem 2.9. Then the theorem
reads: For each f : {x}× I → S1 and lift f̃ : {x}× {0} → R of f({x}× {0}), there
is a unique lift f̃ : {x}× I → R of f such that f̃({x}× {0}) = f̃ . But we can ignore
{x} here, and the claim immediately follows. �

Corollary 2.11. For each homotopy ft : I → S1 with all ft(0) = x0, and each
x̃0 ∈ p−1(x0), there exists a unique “lifted homotopy” f̃t : I → R of paths with each
f̃(0) = x̃0.

Proof. Look at f as a map from I × I → S1. Apply Corollary 2.10 to get a unique
lift f̃ : I×{0} → R. Then, letting X = I in the statement of Theorem 2.9, we have
a unique lift f̃ : I × I → R. f̃(0, ·) and f̃(1, ·) are paths lifting the constant path
at x0, so the uniqueness part of Corollary 2.10 requires that f̃(0, ·) and f̃(1, ·) are
constant. Hence, f̃ is a homotopy lifting f . �

Theorem 2.12. π1(S1) is isomorphic to Z.

We would like to identify every integer n with exactly one homotopy class [f ] in
π1(S1). This n represents the “number of times” [f ] winds counterclockwise around
S1 (a negative n represents |n| clockwise turns). This notion is made rigorous in
the following proof:

Proof. We define a map Φ : Z→ π1(S1), Φ(n) = [ωn]. Here,

ωn(s) = (cos(2πns), sin(2πns))

= p ◦ ω̃n(s)

where

ω̃n(s) = n · s
Observe that ω̃n is a lift of ωn.

This is perhaps the most concrete definition of Φ, but it will be useful to gener-
alize: Φ(n) = [p ◦ f̃ ] for any path f̃ : I → R from 0 to n. This is because f̃ ' ω̃n by
the homotopy (1− t)f̃ + tω̃n, which makes pf̃ ' ωn and so φ(n) = [ωn] = [p ◦ f̃ ].

Now, must show that Φ is an isomorphism by verifying the following properties:
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(1) Φ(m + n) = Φ(m) · Φ(n) for m, n ∈ Z (i.e., Φ is a homomorphism): Let
Tm : R → R be defined by Tm(s) = m + s. Note that ω̃m • (Tm ◦ ω̃n :
I → R is a path from 0 to m+ n, so [p(ω̃m • (Tm ◦ ω̃n)] = Φ(n+m). But
p(ω̃m • (Tm ◦ ω̃n) = ωm •ωn, so [p◦ (ω̃m • (Tm ◦ ω̃n)] = [ωm] · [ωn] = Φm ·Φn.
Hence, we have Φ(m+ n) = Φ(m) · Φ(n).

(2) For all loops f in S1 there exists n ∈ Z such that Φ(n) = [f ] (Φ is surjective):
Take a loop f ∈ π1(S1) with basepoint (1, 0). By Corollary 2.10, f has a
lift f̃ with f̃(0) = 0. Also, f̃(1) = n for some n ∈ Z because p ◦ f̃(1) =
f(1) = (1, 0) and p−1(1, 0) = Z ⊂ R (otherwise, f wouldn’t be a loop).
Hence, by the second definition of Φ, we have Φ(n) = [f ].

(3) Φ(m) = Φ(n) implies that m = n (Φ is injective): Suppose Φ(m) = Φ(n).
By the original definition of Φ, we have ωm ' ωn. Next, take a homotopy
f : I × X → S1 such that f(0, x) = ωm(x) and f(1, x) = ωn(x). By
Corollary 2.11, f induces a homotopy f̃ : I × X → R such that f̃(t, 0) =
0 for all t ∈ I. f̃(0, ·) and f̃(1, ·) are unique by Corollary 2.10, and so
f̃(0, x) = ω̃m and f̃(1, x) = ω̃n. Since f̃ is a homotopy, f̃(0, 0) = f̃(1, 0).
But f̃(0, 0) = m and f̃(1, 0) = n, so m = n.

�

Proposition 2.13. π1(Sn) = 0 if n 6= 1.

Proof. If n = 0 then S0 = {−1, 1}, which makes π1(Sn) = 0. So consider just
n > 1. First note that Sn\{x} is homotopy equivalent to Rn for any point x ∈ Sn.
(Just imagine pulling S2\{x} away from where x used to be, flattening the result
onto the plane, and stretching it out infinitely far to cover the plane.) Since Rn
is simply-connected, this implies that Sn\{x} is simply-connected. So if we show
that any loop f in Sn is homotopic to some loop g in Sn\{x}, then f will be null-
homotopic since g is in a simply-connected space.

To show f ' g for some g, consider some point x of Sn that is not the basepoint
of f . Take an open ball B with x in B. Then, f−1(B) is open in [0, 1] since f is
continuous. This implies f−1(B) = ∪j∈J(aj , bj) for some index set J . Since f is
continuous and {x} is compact in B, f−1(x) is compact in f−1(B). Hence, there
is a finite subcover {(ai, bi) | i = 1, . . . ,m} ⊂ {(aj , bj) | j ∈ J} of f−1(x).

Note that we could have picked our (aj , bj) such that each f(aj , bj) is path-
connected in B and f(aj), f(bj) on the boundary of B̄. So assume this is true for
each (ai, bi). Define fi : [ai, bi]→ B̄ to be the path segment of f corresponding to
[ai, bi]. Also define a path segment gi from [ai, bi] to the boundary of B̄, and note
that fi ' gi and gi does not intercept x (x ∈ B̄◦). Form the path g by replacing
all the fi with gi in f, and note that f ' g and g does not cross x. �

Proposition 2.14 (Fundamental Theorem of Algebra). Every nonconstant poly-
nomial has at least one complex root.

Proof. It suffices to prove the contrapositive: namely, that if a polynomial has no
complex root, then it must be constant. Let p(z) = a0 + a1z+ · · ·+ an−1z

n−1 + zn

be our nonconstant polynomial. Since p has no complex root, we can define for
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s ∈ [0, 1]:

fr(s) =
p(re2πis)/p(r)
|p(re2πis)/p(r)|

r ≥ 0

For each real r ≥ 0, fr is a loop with basepoint fr(1) = 1 so that the collection
of all fr is a homotopy of loops in S1. And since f0 is the constant loop, we have
reached the first important checkpoint of this proof: that [fr] = 0 for all r.

Fix r > max{|a0| + · · · + |an−1|, 1}. Then, for a complex number z with norm
|z| = r,

|zn| = rn

= r · |zn−1|
> (|a0|+ · · ·+ |an−1|) · |zn−1|
> |a0|+ |a1| · |z|+ · · ·+ |an−1| · |zn−1| (because |z| = r > 1)

≥ |a0 + a1z + · · ·+ an−1z
n−1|

So |zn| > |p(z)|, which means that the polynomial pt(z) = zn + t(a0 + a1z + · · ·+
an−1z

n−1) has no roots z satisfying |z| = r when 0 ≤ t ≤ 1. Now, we can define:

gt(s) =
pt(re2πis)/p(r)
|pt(re2πis)/p(r)|

, 0 ≤ t ≤ 1

which is a homotopy from ωn = e2πins to fr. Hence, we have second checkpoint of
the proof: [fr] = [ωn].

Combining the first and second checkpoints, we have [ωn] = [fr] = 0. But since
[ωn] ∈ π1(S1) ' Z, we have that [ωn] = 0 iff n = 0. Hence, n = 0 and our original
polynomial p is constant.

�

3. Free Groups and Van Kampen’s Theorem

Definition 3.1. Let S be a nonempty set. A word of S is a formal string formed
by formally concatenating a countable number of elements of S. The empty word
e is also considered a word, and we write we = ew = w for all words w of S.

Example 3.2. Let S = {s1, s2, s3}. Then some examples of words of S are s1,
s3s2, and s1s2s3.

Definition 3.3. Let G1, G2 be groups. Then their free product G1∗G2 is the set of
all words formed by formally concatenating a finite number of elements of G1∪G2,
and then performing the usual group operations of G1 and G2 to adjacent pairs
of elements belonging to the same group. The free product forms a group under
concatenation with the empty word as the identity element.

Definition 3.4. A presentation of a groupG is an isomorphismG ∼= 〈S〉/〈f1, . . . , fm〉
of G with the free group generated by S modulo the normal subgroup 〈f1, . . . , fm〉
generated by a finite collection of words f1, . . . , fm formed from S. Note that
concatenation in the free group 〈S〉 descends to the group operation on G in the
quotient. We think of the presentation as giving a way to multiply elements of G
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freely, subject to the relations f1 = · · · = fm = 0. We write PG = 〈s1, . . . , sn |
f1, . . . , fm〉.

Definition 3.5. For elements a and b of a free group F , we say that the word
[a, b] = aba−1b−1 is the commutator of a and b. The commutator subgroup [F, F ] of
F is the subgroup of F generated by all the commutators of F . The abelianization
FAb of F is the abelian group F/[F, F ].

Remark 3.6. Commutators are a measure of the “abelian-ness” of a group: [a, b] is
the identity for all a, b iff the group is abelian. Hence, FAb is abelian.

Remark 3.7. Now that we know π1(Sn), we can describe the fundamental groups
of spaces that look like multiple Sn’s “glued together”. Van Kampen’s Theorem,
stated below but not proven (See [1] for the proof), is useful for this purpose.

Theorem 3.8 (Van Kampen).

(1) Suppose X = ∪αAα and that for all α:
(a) Aα is open.
(b) Aα is path-connected
(c) basepoint x0 is in Aα

Then, the homomorphism Φ : ∗απ1(Aα)→ π1(X) is surjective.

(2) Now suppose we also have that each three-way intersection Aα ∩ Aβ ∩ Aγ
is path-connected. Also, define the following homomorphisms:

jα : π1(Aα)→ π1(X) induced by the inclusion map, Aα ↪→ X

iαβ : π1(Aα ∩Aβ)→ π1(Aα) induced by the inclusion map, Aα ∩Aβ ↪→ Aα

Then the kernel of Φ is the normal subgroup N generated by all elements
in ∗απ1(Aα) of the form, iαβ(ω)iβα(ω)−1, where ω ∈ Aα∩Aβ. In this case,
Φ induces the isomorphism π1(X) ∼= ∗απ1(Aα)/N .

Remark 3.9. Part (1) simply says that given a decomposition of X into the ap-
propriate Aα, we can decompose any loop in X into the free product of loops in
Aα. Part (2) says that if we have a nicely-behaved space X, all loops of the form
iαβ(ω)iβα(ω)−1 are null-homotopic. Hence, we should quotient out these loops from
∗απ1(Aα) to obtain a group isomorphic to π1(X).

Example 3.10 (Wedge Sums). Let Xα be a collection of spaces with basepoints xα.
Define ∨α = qαXα/ ∼, where the equivalence relation∼ regards any two basepoints
equivalent and all other points pairwise distinct. Think of ∨ as the thing that “glues
all the Xα together” at the basepoints such that the two spaces don’t touch any-
where else, similar to the construction of a cell-complex. If each of xα is the result
of a deformation retract of open neighborhoods Uα ⊂ Xα, then Xα is the result of
some deformation retract of a corresponding open neighborhood Aα = Xα∨β 6=αUβ .
If we intersect two or more distinct Aα, we always get ∨αUα. Hence, we can apply
Van Kampen’s Theorem to deduce that Φ : ∗απ1(Xα) → π1(∨αXα) is an isomor-
phism.

One immediate application of this fact is that π1(∨αS1) is isomorphic to the free
product, ∗αZ. For example π1(S1 ∨ S1) = Z ∗ Z.
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Example 3.11 (Hawaiian Earring Group). With the help of Van Kampen, we can
begin to describe loops in the following space X ⊂ R2. Let Cn be the circle in R2

with radius 1
n and apply the axiom of choice to pick a point cn from each Cn. Then,

let X = q∞n=1Cn/ ∼, where ∼ identifies cn ∼ cm for all n,m ∈ N. Note that X
is a wedge sum of countably many circles, and hence π1(X), dubbed the Hawaiian
Earring Group should be countable. However, there is a contradiction:

Consider the family of retractions rn : X → Cn, where rn|Cn is the identity and
rn|Ci = [cn] for all i 6= n. By Van Kampen’s Theorem, each rn induces a surjection
ρn : π1(X) → π1(Cn), which is the same as ρn : π1(X) → Z up to isomorphism.
In these maps, we define ρn([cn]) = 0. Now, take the product of all the ρn’s to
make the homomorphism ρ : π1(X) → q∞Z. ρ is surjective: for every sequence
{an} of integers, there exists a loop f : I → X that winds an times around Cn on
[1− 1

n , 1−
1

n+1 ]. This implies that since q∞Z is uncountable, π1(X) is uncountable.

Proposition 3.12. Define the following:
(1) X, a path-connected space.
(2) φα : S1 → X, a collection of paths from some xα back to xα, each of which

attaches a 2-cell e2α to X.
(3) γα, a collection of paths from some basepoint x0 ∈ X to xα
(4) Y , the space formed by attaching the the e2α to X with the φα.
(5) N , the normal subgroup of π1(X,x0) generated by the loops of the form,

γαφαγ
−1
α .

Then, the inclusion map i : X ↪→ Y induces a surjection i∗ : π1(X,x0) →
π1(Y, x0) with kernel N. Hence, π1(Y ) is isomorphic to π1(X)/N .

Example 3.13 (Mg Surfaces). We can use a corollary Van Kampen’s Theorem to
describe the fundamental group of Mg, a surface of genus g. The corollary is the
following: Let’s start with the surface M1, the torus. Recall that the torus can be
constructed by attaching the sides labeled “a” together and the sides labeled “b”
together in the following diagram. Note that attachment identifies all vertices to x
so that a and b are loops.

In this way, we can view M1 as a cell-complex and apply the above proposition:
think of a and b as 1-cells attached at the vertices of the rectangle, and call the
resulting space X. Then,“fill it in” by attaching a 2-cell by identifying the boundary
of the boundary of its closure with the rectangle’s boundary. Call the result Y. By
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the above proposition, π1(Y ) is isomorphic to π1(X)/N .

To see what this means, let a and b be paths in the directions given in the di-
agram above. Since π1(X) = 〈a, b〉 and N is the subgroup generated by [a, b], we
have π1(Y ) = 〈a, b | [a, b]〉 = (Z ∗ Z)Ab = Z2.

Now, one can informally think of M1 as a balloon with a single “donut hole” in
the center. Similarly, Mg is a balloon with g “donut holes”. We say that Mg is the
2-dimensional surface with genus g. With arguments similar to the above, we can
show that π1(Mg) is isomorphic to 〈a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg]〉. Hence,
the abelianization π1(Mg)Ab is the direct sum of 2g copies of Z. It follows that for
g 6= h, π1(Mg)Ab is not isomorphic to π1(Mh)Ab, so Mg and Mh are not homotopy
equivalent.
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