
RAMSEY THEORY: VAN DER WAERDEN’S THEOREM AND THE
HALES-JEWETT THEOREM

MICHELLE LEE

ABSTRACT. We look at the proofs of two fundamental theorems in Ramsey theory,
Van der Waerden’s Theorem and the Hales-Jewett Theorem. In addition, we study
bounds on Van der Waerden numbers.
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1. INTRODUCTION

Ramsey theory is named after Frank Plumpton Ramsey, an English mathemati-
cian, philosopher, and economist, who worked at Cambridge and died in 1930. He
intended for his original paper proving the infinite version of Ramsey’s Theorem,
published posthumously in 1930, to have applications to mathematical logic.

After Ramsey, many famous mathematicians worked on what we now call
Ramsey theory, including Erdos. Results in Ramsey theory are tied together by
what Landman and Robertson describe as, “The study of the preservation of prop-
erties under set partition,” [2, p. 1]. Another way to visualize partitioning a set
into k classes is to think of coloring all the elements of the set with k colors.

The result that is now known as Van der Waerden’s Theorem was published
in 1927 by B. L. Van der Waerden, and is a fundamental theorem in the Ramsey
theory. This theorem was actually conjectured by I. Schur a few years earlier.

The Hales-Jewett Theorem is, in some sense, a more general and powerful the-
orem than Van der Waerden’s Theorem. While Van der Waerden deals with color-
ings of finite sequences, the Hales-Jewett Theorem looks at colorings of arbitrarily
large finite dimensional cubes. The Hales-Jewett Theorem is an important part of
Ramsey theory, and many results are based on it.

In fact, Van der Waerden’s Theorem can be proved as a corollary of the Hales-
Jewett Theorem.
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2. VAN DER WAERDEN’S THEOREM

Definition 2.1. Let [1, n] be the set {1, 2, 3, . . . , n}.

Definition 2.2. A Van der Waerden number is the least positive integer w = w(k; r)
such that for all n ≥ w, every r-coloring of [1, n] contains a monochromatic arith-
metic progression of length k.

Theorem 2.3 (Van der Waerden’s Theorem). For every r, k ≥ 2, w(k; r) exists.

Proof. This proof appears in Landman and Robertson [2] in Section 2.6. The overall
structure of the proof is an inductive proof hinging on the concept of a refined
triple, which introduces more structure via monochromatic equivalence classes of
arithmetic progressions. It proceeds by induction on k and r. !

In addition, Van der Waerden’s theorem follows as a corollary of the Hales-
Jewett Theorem, which we defer to the last section.

Corollary 2.4. Any r-coloring of the positive integers must contain arbitrarily long
monochromatic arithmetic progressions.

Proof. For any integer k, there is a monochromatic arithmetic progression of length
k in the subset [1, w(k; r)] of the positive integers. !

Actually, Van der Waerden’s Theorem was originally stated in 1927 in the fol-
lowing way: if the positive integers are partitioned into two classes, then at least
one of them must contain arbitrarily long arithmetic progressions. That is, a 2-
coloring of the positive integers will yield arbitrarily long monochromatic arith-
metic progressions in color 1 or color 2.

3. BOUNDS ON VAN DER WAERDEN NUMBERS

Although we know that Van der Waerden numbers exist, their values are only
known for the first few small cases. For larger numbers, there are some bounds
which are not very good.

Proposition 3.1. For sufficiently large k, there is a lower bound on Van der Waerden
numbers given by w(k; r) > rk/2.

This is a generalization of exercise 2.8 of [2], and we prove it by probabilistic
methods. First, we randomly color the integers in [1, n] using r colors. Let A
denote an arbitrary arithmetic progression of length k within [1, n]. The probability
that A is color 1 is (1/r)k and the probability that A is color 2 is the same, etc. Since
there are r colors, the probability that A is monochromatic is r

rk = r1−k.
Now we can bound the probability of getting a monochromatic arithmetic pro-

gression within [1, n]. First we count the number of k-term arithmetic progressions
in [1, n].

Lemma 3.2. There are n2+O(n)
2(k−1) k-term arithmetic progressions in [1, n].

Proof. Take any arithmetic progression with initial term a0 and common difference
d. If a0 = 1, then the common difference can take values d = 1, 2, . . . , "n−1

k−1 #. If
a0 = 2, then we can have d = 1, 2, . . . , "n−2

k−1 # and so on. The largest starting point
our sequence can take on is a0 = n − k + 1, which corresponds to a common
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difference of 1. Therefore, the total number of arithmetic progressions is "n−1
k−1 # +

"n−2
k−2 #+ · · · + "n−(n−k+1)

k−1 #.
To estimate this sum, we take the related sum S(n) = n−1

k−1 + n−2
k−2 + · · · +

n−(n−k+1)
k−1 . Note that the error for each term is at most 1, so the total error is

bounded by n− k + 1 and can be absorbed into the O(n) term in our final answer.
If we go ahead and calculate S(n) we get

S(n) =
n(n− k + 1)−

∑n−k+1
i=1 i

k − 1

=
n(n− k + 1)− (n−k+1)(n−k+2)

2

k − 1

=
(n− k + 1)(n− n−k+2

2 )
k − 1

=
1

k − 1
(n− (k − 1))

(
n

2
+

k − 2
2

)

=
1

k − 1
· n2 + O(n)

2

=
n2 + O(n)
2(k − 1)

.

!

Now we can calculate the probability that a k-term monochromatic arithmetic
progression exists. Each of our n2+O(n)

2(k−1) k-term arithmetic progressions has a r1−k

chance of being monochromatic. So the probability that we have a monochromatic
k-term arithmetic progression in a coloring is at most

(3.3)

n2+O(n)
2(k−1)∑

i=1

r1−k =
n2 + O(n)
2(k − 1)

· r1−k =
n2 + O(n)

2 · rk−1(k − 1)
.

Using the definition of a Van der Waerden number, we can argue that if n2+O(n)
2·rk−1(k−1) <

1, then w(k; r) > n. That is, if a r-coloring of [1, ..., n] does not guarantee us a
monochromatic k-term arithmetic progression, then the Van der Waerden number
must be greater than n.

Now we can see that this will lead us towards a lower bound. In particular, try
n = rk/2. We claim that for this value of n with k sufficiently large, n2+O(n)

2rk−1(k−1) < 1.
Plugging in, we get

(3.4)
r(k/2)·2 + O(rk/2)

2rk−1(k − 1)
=

r

2(k − 1)
+

O(rk/2)
2rk−1(k − 1)

.

Taking the limit as k goes to infinity yields 0, since the limit of the each term in-
dividually is 0. So for large enough values of k, we have a lower bound rk/2 <
w(k; r).
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4. A VISUAL PROOF OF THE HALES-JEWETT THEOREM

Definition 4.1. Define Ct
n, the n-cube over t elements, by

Ct
n = {(x1, x2, . . . , xn) | xi ∈ [0, t− 1]}.

Definition 4.2. A line in Ct
n is a set of n points such that each coordinate is fixed

or increases from 0 to t− 1.

Example 4.3. When t is small, we omit parentheses and commas when writing co-
ordinates of points. For example, if t = 5 and n = 3, {1402, 1412, 1422, 1432, 1442}
is a line.

Definition 4.4. We define a collection of n+1 equivalence classes on Cn
t+1 = [0, t]n

as follows: The i-th equivalence class has all the points (x1, x2, . . . , xn) such that t
appears only in the i rightmost coordinates.

Example 4.5. So for C2
5 = [0, 4]2, our zeroth equivalence class is C2

4 , our first
equivalence class is {(0, 4), (1, 4), (2, 4), (3, 4)} and our second equivalence class
is {(4, 4)}.

Theorem 4.6 (Hales-Jewett Theorem). For any r, t, there exists an integer HJ(r, t)
such that for all N ≥ HJ(r, t), an r-coloring of CN

t contains a monochromatic line.

Proof. This proof appears in [1]. It is a two-part inductive proof that uses the idea
of layering, which we now define.

Definition 4.7. The cube Cn
t+1 is layered if each of its n + 1 equivalence classes are

monochromatic.

Definition 4.8. A k-dimensional subspace of Cn
t+1 is a k-dimensional cube. While

the subspace is not actually equal to Ck
t+1, because points in it have n coordinates,

the points in the subspace can be identified with points in Ck
t+1

Definition 4.9. A k-dimensional subspace is layered if the coloration is layered
when the subspace is identified with Ck

t+1.

Example 4.10. A line in Ck
t+1 is layered if the first t points of the line are monochro-

matic. The last point may be any color.

So the proof proceeds by induction in two parts using two statements:
• HJ(t): For this value of t, any value of r will produce a number HJ(r, t)

such that for any N ≥ HJ(r, t), an r-coloring of CN
t yields a monochro-

matic line.
• LHJ(t): For all r, k we have a number CHJ(r, t, k) such that for all M ≥

CHJ(r, t, k) an r-coloring of CM
t+1 has a layered k-dimensional subspace.

We use the base case t = 1. We have that HJ(r, 1) exists for any r because CN
1 is

a point for any N and a line in this N -dimensional cube is a point. So we would,
without much effort, have a monochromatic line.

Lemma 4.11 will show that HJ(t) implies LHJ(t) and Lemma 4.12 will show
that LHJ(t) implies HJ(t + 1). !

Lemma 4.11. HJ(t) ⇒ LHJ(t)
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Proof. We use k = 1 as our base case. A 1-dimensional subspace is a line. We
already know that HJ(r, t) exists by the statement HJ(t) so take M > HJ(r, t). If
we take an r-coloring of CM

t+1, we will have a monochromatic line in CM
t and thus

a layered line in CM
t+1.

Now, we induct on k to prove LHJ(t). To go from k to k + 1, we assume that
LHJ(r, t, k) exists and show that LHJ(r, t, k + 1) exists. Let LHJ(r, t, k) = m and
LHJ(r(t+1)m

, t, 1) = m′ and we claim that LHJ(r, t, k +1) ≤ m+m′. We know that
LHJ(r(t+1)m

, t, 1) = HJ(r(t+1)m

, t) exists by assumption.
Let χ be an r-coloring on Cm+m′

t+1 .
Define a coloring χ∗ on Cm′

t+1 whose values are r-colorings of Cm
t+1, and is based

on the coloring χ by
χ∗(x) = χ((x, ·)).

Since χ∗ is an r(t+1)m

-coloring on Cm′

t+1, where m′ = HJ(r(t+1)m

, t) we are guar-
anteed a layered line x0, x1, x2, . . . , xt ∈ Cm′

t+1. Note that the first t points are mono-
chomatic.

We can now r-color Cm
t+1 by χ∗∗ based on how the points relate to points in our

layered line by
χ∗∗(y) = χ((xi, y)) for any i ∈ [0, t− 1],

since x0, x1, . . . , xt being layered under χ∗ implies χ((x0, y)) = χ((x1, y)) = · · · =
χ((xt−1, y)). The coloring χ∗∗ has only r colors because coloring the point y under
χ∗∗ is equivalent to coloring the point (x0, y) under χ and χ is an r-coloring. By
our definition of m as LHJ(r, t, k) we have a k-dimensional layered subspace S ⊂
Cm

t+1 under χ∗∗. Since S is layered, we have monochromatic equivalence classes
S0, S1, . . . , Sk.

Now we will extend this layered k-dimensional subspace of Cm
t+1 under χ∗∗

to a (k + 1)-dimensional subspace by sticking on a last point. We define Tj by
concatenating the xi from our layered line with elements in each equivalence class
of S,

Tj = {(xi, s)|0 ≤ i ≤ t− 1, s ∈ Sj}.
Finally, notice that if we take two elements (xi, s) and (xi′ , s′) of the same equiv-

alence class Tj then s and s′ have the same color under χ∗∗ so the points will be
the same color under χ

χ((xi, s)) = χ∗∗(s) = χ∗∗(s′) = χ((xi, s
′)).

Thus we have a k + 1-dimensional layered subspace with equivalence classes
T0, T1 . . . , Tk and then take Tk+1 to be the point beginning with xt and ending
in a string with all t’s. !

Lemma 4.12. LHJ(t) ⇒ HJ(t + 1)

Proof. We will prove this for a given r. Since we know that LHJ(t) holds, take
M > CHJ(r, t, r) such that an r-coloring of CM

t+1 yields a layered r-dimensional
subspace.

Now, we need to show that an r-dimensional space, that is, Cr
t+1 with at most r

colors contains a monochromatic line.
The case of a 2 coloring of C2

4 can be easily illustrated by drawing the three
equivalence classes and noticing that two equivalence classes of the same color
will create a line of five elements.
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In general, we can choose the bottom left-most element of each of the r + 1
equivalence classes to identify the class. Under an r-coloring, we must have two
equivalence classes with the same color. More specifically, we chose our r + 1
representative points as such

xi = (xi1, . . . , xik), and xij =
{

t if j ≤ i,
0 if j > i.

So, in our example, x0 = (0, 0), x1 = (4, 0) and x2 = (4, 4).
Then let xu and xv be the same color where u < v. We define a line y0, . . . , yt

that will be monochromatic, by

ys = (ys1, ys2, . . . , ysk) and ysi =






t if i ≤ u,
s if u < i ≤ v,
0 if u < i.

In our example, in the case where the first and second equivalence classes are
monochromatic, we get the monochromatic line (4, 0), (4, 1), (4, 2), (4, 3), (4, 4). !

The diagram below illustrates the three equivalence classes of C2
4 , the zeroth

equivalence class is magenta, the first equivalence class is blue, and the second
equivalence class is orange.

5. PROVING THE VAN DER WAERDEN THEOREM FROM THE HALES-JEWETT
THEOREM

This proof appears on page 38 of Graham, Rothschild, and Spencer [1]. The
trick to proving Van der Waerden’s Theorem as a corollary of the Hales-Jewett
Theorem is to be able to translate between a coloring of [0, 1, 2, . . . , tN − 1] and an
n-dimensional cube with t elements.

We claim that w(t; r) ≤ tN − 1, where N is the number that is large enough so
that an r-coloring of an N -dimensional cube on t elements must have a monochro-
matic line. We know that such an N must exist because of the Hales-Jewett Theo-
rem.

Take any a ∈ [0, 1, 2, . . . , tN − 1] and write it as in base-t as (a0, a1, . . . , aN−1),
where a = a0 + a1t + · · · + aN−1tN−1.

We have just associated [0, tN − 1] with an N -dimensional cube of t elements,
so Hales-Jewett gives us a monochromatic line of length t.

Now, based on the definition of a monochromatic line, each coordinate is ei-
ther constant throughout or increasing by one each time, so the points on the
monochromatic line translate directly back into a t-term arithmetic progression
with difference of the sum of certain powers of t.
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