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MAXWELL LEVINE

Abstract. This paper will provide some simple explanation about matrix
Lie groups. I intend for the reader to have a background in calculus, point-set
topology, group theory, and linear algebra, particularly the Spectral Theorem.
I focus on SO(3), the group of rotations in three-dimensional space.
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1. Matrix Groups over R, C, and H

We focus on the matrix groups over the rings R, C, and H, which are all Lie
groups. For the most part, we will not discuss abstract Lie groups. However, it is a
fact that every compact Lie group is isomorphic to a matrix group (a statement of
the theorem can be found in [3]). Hence, the use of matrix groups simply provides
a more direct approach to the material.

Definition 1.1. For a ring R, the set Mn(R) denotes all n-by-n matrices over R.

Mn(R) forms a ring under matrix addition and multiplication, but it has zero
divisors (i.e.,

(
1 0
0 0

)(
0 0
0 1

)
=

(
0 0
0 0

)
). Furthermore, its additive group is uninteresting

because it is simply the additive group of Rn2
. Therefore, we focus our interest on

the multiplicative group of Mn(R).

Definition 1.2. For a ring R, the set GLn(R) denotes the multiplicative group of
Mn(R), namely the group of invertible matrices over R, and is called the general
linear group. If R is commutative, then the determinant function is well-defined. In
this case, the set of matrices of determinant 1 is denoted SLn(R) and is called the
special linear group. For this paper, we will focus on the case in which R = R,C,H.

We know that GLn(R) is a group by virtue of the multiplicative property
of determinants: If A,B ∈ GLn(R) and so detA and detB are nonzero, then
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det(AB) = det(A) det(B) 6= 0, so AB ∈ GLn(R). Similarly, we know that
det(A−1) = 1/det(A) 6= 0, so GLn(R) is closed under inverses. Analogous ar-
guments can be made to show that SLn(R) is a subgroup of GLn(R).

The general linear group of n-by-n matrices is important first of all because it
has the group structure that Mn(R) lacks but also because it is all-encompassing
in the sense that it contains many important groups.

Definition 1.3. For n×n matrices A, O(n,R) = {A : ATA = I} (where AT is the
transpose of A) is the orthogonal group, and the subgroup SO(n,R) of O(n,R) of
matrices of positive determinant is called the special orthogonal group.

Note that it is equivalent to define the orthogonal group as the subgroup of
GLn(R) such that AT = A−1. O(n,R) is a group because A,B ∈ O(n,R) im-
plies that (AB)(AB)T = A(BBT )AT = AAT = I and A−1(A−1)T = ATA = I.
SO(n,R) is a group because A,B ∈ SO(n,R) implies that det(AB) = detA ·
detB = 1 · 1 = 1.

Note that every matrix n × n can be interpreted as a linear transformation of
n-dimensional space. The following proposition elaborates on this notion.

Proposition 1.4. Let A ∈ GLn(R) and let 〈x, y〉 = x1y1 + . . . + xnyn be the
Euclidean inner product. The following are equivalent:

(1) AAT = I (that is, A ∈ O(n,R)).
(2) For entries aij , aji, aijaji = δij.
(3) The columns of A are an orthonormal basis, and so are the rows of A.
(4) A sends orthonormal bases to orthonormal bases.
(5) A preserves the Euclidean norms of vectors under multiplication.

The proof is, step by step, more or less immediate. Since the orthogonal group
preserves the lengths of all vectors, we can thing of it is representing rotations and
reflections in Rn. In this case, the sign of the determinant of a matrix indicates
whether it is orientation-preserving. Elements of the special orthogonal group all
have positive determinant, which indicates that these transformations are rotations.

Definition 1.5. If A = (aij) ∈ GLn(C), then A = (aij) is the matrix of the
complex conjugates of the entries of A. We define A∗ = AT = (aji) to be the
conjugate transpose of A. The set U(n) = {A : A∗A = I} is called the unitary
group and the subgroup of U(n) of matrices of determinant 1 is the special unitary
group.

One of the interesting aspects of the general linear group is that GLn(C) is a
subgroup of GL2n(R). This can be understood on a conceptual level because an
element in GLn(C) is a transformation from Cn to itself. Since C is a vector space
over R with the basis {1, i}, we can identify Cn with R2n using an injection that
sends each entry a + bi of A ∈ GLn(C) to a 2-by-2 section

(
a −b
b a

)
of a 2n-by-2n

matrix over R. The result is that we reinterpret A as a transformation from R2n

to itself. This discussion can be summed up as the following:

Proposition 1.6. GLn(C) is isomorphic to a subgroup of GL2n(R).

Since we can think of these matrix groups as subgroups of GLn(R), we can
conceive of intersections of certain matrix groups, even if they are over different
fields. For example, the intersection of O(2n,R) and GLn(C) is U(n). Suppose A
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is an element of this intersection. Since GLn(C) consists of all C-linear invertible
matrices, we consider A as an element of GL2n(R). Since A ∈ O(2n,R), we know
that ATA = I. Given the isomorphism ϕ, we can think of the matrix

(
a −b
b a

)T =(
a b
−b a

)
as the conjugate of the element a+ bi ∈ C. It follows that AT corresponds

to A∗, so that A ∈ U(n).

Definition 1.7. In order to define operations such that R4 is a ring, we write it
over the basis {1, i, j, k} and use the relations

i2 = j2 = k2 = −1
ij = k ji = −k
jk = i kj = −i
ki = j ik = −j

Under these operations, R4 is a non-commutative division ring which we call the
Hamiltonian numbers. This ring contains R in its center and is denoted H.

Despite the lack of commutativity, the Hamiltonians are similar to the complex
numbers in that they have a conjugation operation q → q which sends a+bi+cj+dk
to a−bi−cj−dk, and a norm |q| =

√
qq =

√
a2 + b2 + c2 + d2, which can be checked.

Furthermore, just as multiplication by a complex number is an isometry of C,
multiplication by an element of H is an isometry is well, meaning that it preserves
distances. This is because for u, v ∈ H, |uv| = |u||v|, so |u(v − w)| = |u||v − w|.

Furthermore, we can define an operation on the matrices in GLn(H) that sends
A = (qij) to A∗ = AT = (qji), which is an analog of the conjugate transpose
operation. (The question of which is being used should be clear from context).

Definition 1.8. The ∗ operation defined is the Hamiltonian conjugate transpose.
The group of matrices Sp(n) = {A ∈ GLn(H) : AA∗ = I} is the symplectic group.

In fact, there exists an injection of H into GL4(R) given by the action of each of
a+ bi+ cj + dk on the basis elements of H which takes the form

(1.9) a+ bi+ cj + dk 7→


a b c d
−b a −d c
−c d a −b
−d −c b a


Thus, we find that GLn(H) ≤ GL4n(R).
The property that makes H important in the context of this paper is that the

Hamiltonian numbers represent rotations in three-dimensional space. Of particular
interest are the Hamiltonians of norm 1, which is denoted S3. S3 is a group under
multiplication, and it is isomorphic to SU(2). Furthermore, S1 acts on the space
iR + jR + kR of imaginary Hamiltonians, which we denote R3, by rotation.

Proposition 1.10. The conjugation operation t 7→ qtq−1 for fixed q ∈ S3 is a
rotation of iR + jR + kR, the three-dimensional hyperplane in H. In particular, if
we write q = cos θ + u sin θ, then conjugation rotates iR + jR + kR by the angle 2θ
around the axis through u.
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Proof. First of all, note that the multiplication of elements in R3 is uv = −u · v +
u × v, where · and × are the respective dot and cross products in our standard
conception of R3. So if u ∈ iR + jR + kR, then u2 = −1.

Since R commutes with all elements of H, t ∈ R means that qtq−1 = t for q 6= 0,
so this operation maps R to itself. Furthermore, it is a ring homomorphism and it
has the inverse t 7→ q−1tq, so it is a bijection. Now suppose that q(bi+cj+dk)q−1 =
a + b′i + c′j + d′k. But then q−1(a + b′i + c′j + d′k)q = a + q−1(b′i + c′j + d′k)q,
which contradicts the fact that the conjugation operation has an inverse. Hence,
facts together imply that conjugation by elements of the unit hypersphere maps
iR + jR + kR to itself.

Now, we can write q = cos θ + u sin θ for θ ∈ R since u2 = −1 (think in terms of
the fact that | cos θ+u sin θ| = cos2 θ+sin2 θ = 1). One can check that conjugation
fixes u, and therefore real multiples of u is well. Thus, since conjugation is an
isometry that preserves a line, this function is a rotation of iR + jR + kR.

Now choose a vector v such that |v| = 1 and v is orthogonal to u and use
w = v × u. The set {u, v, w} is thus an orthonormal basis for R3. The angle of the
rotation can then be found by the action of conjugation on this basis, from which
we get the following matrix:

(
quq−1 qvq−1 qwq−1

)
=

1 0 0
0 cos 2θ sin 2θ
0 − sin 2θ cos 2θ


This matrix is a rotation of the plane spanned by v and w by the angle 2θ.

�

One more important consideration with regard to the action of H is that every
three-dimensional rotation corresponds to two Hamiltonian numbers. Consider the
fact that a three-dimensional rotation can be described in terms of finding a vector
v in the three-dimensional sphere S2 and an angle θ for the rotation (v, θ). Then
this rotation is the same as that for (−v,−θ). With this consideration, keep in
mind the following proposition, a proof of which can be found in [2].

Proposition 1.11. The map that sends the conjugation action by an element q ∈
S3 to a rotation in R3 is surjective, with the kernel {1,−1}.

2. Topology and Matrix Groups

Now we can introduce topological concepts. We frame them in terms of the
general linear group, since we have shown that all of the matrix groups that strike
our interest are subgroups of the general linear group. I am assuming familiarity
with point-set topology.

Definition 2.1. Suppose A ∈ GLn(R). Let |A| =
√∑

a2
ij . This is the Euclidean

norm on n space, and we can define a Euclidean metric with d(A,B) = |A − B|.
The set of balls B(x, ε) in this metric form a basis for the standard topology on
Rn2

.

This notion allows us to speak of open and closed subsets of GLn(R).

Example 2.2. The determinant function det : GLn(R) → R× is continuous be-
cause it is a polynomial function. The set R \ {0} is an open set, and therefore so
is its preimage, GLn(R).
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Since there exist matrices with negative determinants, and since R× = (−∞, 0)∪
(0,∞) is disconnected, is follows that GLnR is disconnected as well. In particular,
this implies that O(n,R) is disconnected. However, {A ∈ Mn(R) : detA > 1} is
connected because R+ is connected, and so is its coset of matrices with negative
determinants.

Definition 2.3. A group G is a topological group if both G×G→ G is continuous
and g 7→ g−1 is continuous as well.

It follows from the definition that x 7→ g−1x is continuous as well, so the map
x 7→ gx is a homeomorphism. It maps open sets to open sets and the preimages of
open sets are open.

Proposition 2.4. GLn(R) ands its subgroups are topological groups.

Proof. Fix A ∈ GLn(R) and define f : B 7→ AB. Then the entries in AB are
polynomials in the entries of A and B. If the entries in B are variables, then each
entry of AB changes continuously. Thus, we find that f is a continuous function.
Furthermore, the map A 7→ A−1 is continuous for the same reason. �

Note that right multiplication in GLn(R) is continuous as well. Therefore, if H
is a closed subgroup of a matrix group G, then the cosets gH and the conjugates
gHg−1 are closed in G. We will use these facts to prove more topological properties
of matrix groups later on.

Example 2.5. O(n,R) is closed in Mn(R). Consider its compliment {A : AAT 6=
I}. As in the above proposition, f : X 7→ XXT is continuous because the entries
are polynomials in the entries of X. Therefore, O(n) is closed because it is the
preimage of the point I under the continuous function f .

Furthermore, since SLn(R) is closed (since it is the preimage of {1} under det)
it follows that SO(n,R) = O(n,R) ∩ SLn(R) is closed. This means that the coset
{A ∈ O(n,R) : detA = −1} is closed as well by the fact thatGLn(R) is a topological
groups.

Although we may have been emphasizing the properties of matrix groups as sets
of linear functions, we can think of matrix groups as spatial objects as well. Mn(R)
is an n2-dimensional vector space (and Mn(C) a 2n2-dimensional vector space and
so on), so we can conceive of elements of Mn(R) as being points in n2-dimensional
Euclidean space.

Definition 2.6. A path through Mn(R) is a function γ : R →Mn(R) which sends
a variable t to a matrix A(t) = (aij(t)).

Proposition 2.7. In GLn(R), connectedness is equivalent to path-connectedness.

Proof. Topologically, path-connectedness always implies connectedness. To prove
the converse, we must prove that GLn(R) is locally path-connected.

Given A ∈ GLn(R), we know by definition that detA 6= 0, so detA ∈ R×, which
is open. Let U be an open neighborhood of detA. Then the preimage of U is an
open neighborhood of A. Without loss of generality, we can assume that U is an
open ball centered at A. Thus, given B ∈ U , we can find a path ϕ : [0, 1] → U from
A to B defined by t 7→ A+ t(B −A).

Local path-connectedness and connectedness together imply path-connectedness
because of the following: Let U be a connected set of matrices, let A ∈ U , and let
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X,Y ⊂ U be defined respectively as the matrices which can be connected by a path
to A and those which cannot. Clearly, X ∪ Y = U and X ∩ Y = ∅.

Then we can apply basic point-set topology: Using the concatenation of paths
and local connectedness, we can prove that X and Y are both open because all
of their points are interior points. But since U is connected, it must follows that
X = U , since X 6= ∅.

�

The topological properties we have discussed here are not mere curiosities. They
are vital to our discussion of GLn(R), as we will see in the forthcoming sections.

3. The Exponential Function

The exponential function for matrices, an analog of the exponential function for
real numbers, is the one of the most important tools for the discussion of matrix
Lie groups. It takes the following form:

(3.1) eA = I +A+
A2

2!
+
A3

3!
+ . . . =

∞∑
k=0

Ak

k!

Note that in some contexts we will denote the exponential function of A as
exp(A). Remember that the groups we discuss are subgroups of the general linear
group, so it suffices to prove the convergence of expA for A ∈ GLn(R). Now
let us define the norm ‖A‖ = n · |A| where |A| = max |aij | over GLn(C) so that

|aij | = |cij + idij | =
√
c2ij + d2

ij . Considered in this way,. the norm ‖·‖ over GLnR
is just the restriction of the norm over GLn(C), so it suffices to prove that exp
converges over GLn(C). Note that this norm defines the same standard topology
as the Euclidean norm.

Proposition 3.2. The following are properties of ‖·‖:
(1) ‖A+B‖ ≤ ‖A‖+ ‖B‖
(2) ‖λA‖ = |λ|‖A‖
(3) ‖AB‖ ≤ ‖A‖‖B‖
(4) exp converges under this norm.

Proof. (1) and (2) are fairly simple to prove. We get (3) from

|(AB)ij | ≤
∑
i,j

|aik||bjk| ≤
n‖A‖‖B‖

n2
=
‖A‖‖B‖

n

Then we see that the series converges entrywise, because the ‖Ak

k! ‖ ≤
|aij |kk

k! and

applying the ratio test shows us that ‖Ak

k! ‖/‖
Ak−1

(k−1)!‖ ≤
|aij |kk

k → 0.
�

Now we can detail some of the important properties of the exponential function.

Proposition 3.3. The exponential function for matrices has the following proper-
ties for n× n matrices A and B:

(1) e0 = I
(2) If A and B commute, then eA+B = eAeB

(3) e maps Mn(R) onto nonsingular matrices.
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(4) If B is invertible, then eBAB−1
= BeAB−1.

(5) det eA = eTr(A)

Proof. The first two points follow from calculations on the infinite series.
To find (3), note that A and −A commute, so det eA det e−A = det eAe−A =

det eA−A = det e0 = det I = 1. Thus, we must have detA 6= 0.
(4) follows from the fact that

(BAB−1)n = BA(B−1B)AB−1 . . . = BAnB−1

To find the last fact, we apply the Jordan Theorem for linear operators and the
multiplicative property of the determinant function. Since A is conjugate to an
upper-triangular matrix, we can write BAB−1 = C, where C is upper-triangular.
Now, if C = (aii) is a diagonal matrix, then Ck = (ak

ii), so eD = (eaii). It follows
that

eTr(A) =ea11+...+ann = ea11 . . . eann = det eD = det(eBAB−1
) =

=det(BeAB−1) = det(BB1) det(eA) = det eA

Note that this works over Mn(R) as well as Mn(C), because even if the diagonal
conjugate is in Mn(C), the calculation returns to Mn(R).

�

The exponential function has a local inverse around the identity matrix in the
form of the logarithmic function. Again, we define it in terms of a well-known
series:

(3.4) logA = (A− I)− 1
2
(A− I)2 +

1
3
(A− I)3 − . . . =

∞∑
k=1

(−1)k+1 1
k

(A− I)k

The logarithm converges because if ‖A‖ < ε, then ‖Ak

k ‖ ≤
nk−1εk

k , so the ratio
test shows us that ‖Ak

k! ‖/‖
Ak−1

(k−1)!‖ = k
k+1ε → ε. Thus, the series converges as long

as ‖A− I‖ < 1.

Proposition 3.5. The matrix logarithm is analogous to the logarithm for real num-
bers. That is, if logA and logB are defined, and if A and B commute, then we get
the following:

(1) log(eA) = A
(2) log(AB) = log(A) + log(B)

Proof. We find one (1) by computing the series for log eA and collecting the terms
for (A− I)k and finding that the coefficients sum to zero. Using the fact that e and
log are inverses (meaning that the exponential is injective near 0), we find that

elog AB = AB = elog Aelog B = elog A+log B

�
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4. Tangent Spaces

The importance of the exponential function is that it maps the tangent space
of a matrix group to the group itself. The tangent spaces are essentially the same
concept as tangent lines in calculus and tangent planes in geometry. Consider the
one-dimensional example of the circle group S1 ⊂ C. It is well-known that, using
the Euler identity, we map the line iθ onto = {eiθ : 0 ≤ θ < 2π} = S1. We can
imagine that the line iθ is a tangent space to the identity (actually, the line 1 + iθ,
but we have the same geometry) on S1. Essentially, the exponential function wraps
the tangent space around the group.

This example does not reveal much about the relation between matrix groups
and their tangent spaces because it is one-dimensional and commutative. In this
section, we will discuss how this concept is generalized to multiple dimensions and
yields more complicated results. Since tangents in C are paths, we must define
paths in Mn(R). First, let us prove an important fact about paths.

Definition 4.1. A path is smooth if each aij(t) is differentiable. In this case, we
have A′(t) = (a′ij(t)), so that each entry is differentiated.

Example 4.2. Consider the path A(t) =
(

cos t − sin t
sin t cos t

)
This is a path through four-

dimensional space, but also through SO(2). It is smooth and it has the derivative
A′(t) =

(− sin t − cos t
cos t − sin t

)
.

If we have two paths A(t) and B(t), we can define a new path A(t)B(t), which is
the product of the matrices. In this case, the standard differentiation rules apply.
In particular d

dtA(t)B(t) = A′(t)B(t) +A(t)B′(t).

Definition 4.3. Consider a path A(t) through a matrix group G such that A(0) =
I. A tangent vector at the identity is a matrix A′(0). Furthermore, the set of
tangent vectors at the identity is denoted T (G).

Many texts denote the tangent space at the identity as T (G)1 or something
similar. One can consider the possibility of tangent spaces at other points defined
analogously, but since we will not make use of this notion, we will continue with
this notation.

Proposition 4.4. . T (G) is an R-linear vector space.

Proof. Let X ∈ T (G), and suppose that A(t) is the path through G such that
X = A′(0). Then if r ∈ R, A(rt) is also a path through G, and d

dtA(rt) = rA′(t).
Now A(r · 0) = A(0) = I, so rA′(0) = rX ∈ T (G).

Now suppose that X,Y ∈ T (G) and A(t) and B(t) are their corresponding paths
through G (so that A(t) = B(t) = I). Then the path A(t)B(t) is equal to I at
0. We differentiate A(t)B(t) to get a path A′(t)B(t) + A(t)B′(t) which at 0 is
A′(0) +B′(0) = X + Y ∈ T (G). �

Definition 4.5. A matrix A is skew-symmetric if A + AT = 0, meaning that
aij = −aji, and in particular that aii = 0. The set of n-by-n skew-symmetric
matrices is denoted so(n).

Skew-symmetric matrices are important because of their relationship with SO(n).

Proposition 4.6. exp maps so(n), the set of skew-symmetric matrices, into O(n)
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Proof. If X ∈ T (G), then X+XT = 0, and X and XT commute because X(XT ) =
X(−X) = (−X)X = XTX. Thus, eX(eX)T = eXeXT

= eX+XT

= e0 = I. �

Proposition 4.7. The tangents at the identity of SO(n) are skew-symmetric ma-
trices.

Proof. Let A(t) be such that X = A(0) = I and A(t)TA(t) = I (i.e. A(t) is a path
in SO(n)). Then we differentiate both sides of A(t)TA(t) = I to get A′(t)TA(t) +
A(t)TA′(t) = 0. If we evaluate this equation at 0, we get A′(0)T I + IA′(0) =
A′(0)T +A′(0) = X +XT = 0. �

It can be proved similarly that the tangents of U(n) are the matrices X such
that X + X∗ = 0 and that the tangents of Sp(n) are the matrices X such that
X +X∗ = 0.

Proposition 4.8. All n-by-n skew-symmetric matrices can be realized as tangent
vectors of SO(n).

Proof. Let X be skew-symmetric, and let γ(t) = etX , so γ is a path through O(n).
Since γ(0) = I, and since SO(n) and O(n) − SO(n) are disconnected, γ is a path
through SO(n) in particular. We utilize the fact that γ′(t) = XetX , which applies
for any X and can be justified by differentiating the terms of the series. Since
γ′(0) = X, we find that X is a tangent vector of SO(n). �

We can sum all of this up with the following:

Theorem 4.9. The tangent space of SO(n) is so(n).

Example 4.10. A skew-symmetric matrix A ∈ so(2) takes the form A =
(

0 x
−x 0

)
.

eA =
(

1 0
0 1

)
+

(
0 x
−x 0

)
+

1
2!

(
0 x
−x 0

)2

+
1
3!

(
0 x
−x 0

)3

+ . . . =

=
(

1 0
0 1

)
+

(
0 x
−x 0

)
+

1
2!

(
−x2 0
0 −x2

)
+

1
3!

(
0 −x3

x3 0

)
+ . . . =

=
(

1− 1
2!x

2 + . . . x− 1
3!x

3 + . . .
−(x− 1

3!x
3 + . . .) 1− 1

2!x
2 + . . .

)
=

(
cosx sinx
− sinx cosx

)
The tangent space allows us to study the group locally. Again, consider S1,

which exists in R2, but has a one-dimensional surface. Although we represent it in
two dimensions, it has a one-dimensional form.

Definition 4.11. The dimension of G is the dimension of T (G) as a vector space.

Example 4.12. The dimension of GLn(R) is n2 because its tangent space is
Mn(R). Suppose that A ∈ Mn(R), and define a path γ : t 7→ I + tA. Since
det I 6= 0, there is a neighborhood of I that is contained entirely by GLn(R).
hence, for a small enough t, γ is contained in GLn(R). Then, since γ′(0) = A, A is
a tangent vector of GLn(R).

Example 4.13. The dimension of SO(n) as a lie group is defined by the dimension
of so(n) as a linear space. Skew symmetric matrices are defined by the entries
strictly above the diagonal, since the entries below the diagonal are the additive
inverses of those above. Hence, the dimension of SO(n) is n+ (n− 1) + . . .+ 1 =
n(n−1)

2 .
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Tangent spaces can be explored in great detail, but first it is worth discussing
another type of important structure in GLn(R).

5. Maximal Tori

Definition 5.1. A circle group is a group of matrices isomorphic to S1. A torus is
a direct sum of circle groups. A maximal torus is a torus in a matrix group that is
not contained in any other torus.

Example 5.2. The subgroup of matrices of the form
cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1


in SO(4) is a torus, but not a maximal torus, because it sits inside the subgroup

of matrices of the form 
cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cosφ − sinφ
0 0 sinφ cosφ


On the other hand, in SO(3), the subgroup of matrices of the formcos θ − sin θ 0

sin θ cos θ 0
0 0 1


is, in fact, a maximal torus. This makes intuitive sense because we cannot “fit”

any more rotation blocks into the matrix.

Definition 5.3. The rank of a maximal torus T is the number k such that

T = S1 ⊕ . . .⊕ S1︸ ︷︷ ︸
k-times

Since maximal tori are conjugate, as we will prove at the end of this section, and
since the conjugate operation is a group automorphism, the rank of a group is well-
defined.The rank is an isomorphism-invariant property of matrix groups separate
from dimension. For example, SO(2) has a dimension of 1, while SO(3) has a
dimension of 3. However, both have a rank of 1.

Proposition 5.4. An example of a maximal torus in SO(2n) is
cos θ1 − sin θ1 0 0 0
sin θ1 cos θ1 0 0 0

0 0
. . . 0 0

0 0 0 cos θk − sin θk

0 0 0 sin θk cos θk


Furthermore, all maximal tori in U(n) take the form
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
eiθ1 0 0 0
0 eiθ2 0 0

0 0
. . . 0

0 0 0 eiθn


Proof. LetA be an element of any torus containing the torus T depicted in the above
example. It is enough to show that if A commutes with every element of T , then A ∈
T . Let Rk be the matrix with just the

(−1 0
0 −1

)
-block in place of

( a2k−1,2k−1 a2k−1,2k
a2k,2k−1 a2k,2k

)
with ones in the rest of the diagonal entries and zeroes everywhere else. Then Rk

is an element of the maximal torus T . Now let v1, . . . , v2n be the orthonormal basis
represented by the identity matrix. Then

RkA(v2k−1) =Rk(a1v1 + . . .+ a2nv2n) =

=a1v1 + . . .+ (−a2k−1v2k−1 − a2kv2k) + . . .+ a2nv2n

ARk(v2k−1) =A(−v2k−1) = −a1v1 − . . .− a2nv2n

Since RkA(v2k−1) = ARk(v2k−1), it follows that ai = −ai, and hence ai = 0 for
all i 6= 2k, 2k−1. This means that A(v2k−1) is in the 2k−1, 2k-plane and therefore
that A represents a rotation through that plane. This means that A ∈ T .

The proof for SO(n) can be generalized to U(n) following the same methods.
�

From this proof, one could generalize to the case of SO(2n+ 1), in which there
are k blocks and a leftover 1 in the diagonal. We will proceed to prove that tori
are entirely characterized by being compact, connected, abelian matrix groups.

Lemma 5.5. A matrix group G is connected if and only if 〈exp(x) : x ∈ T (G)〉 = G.

Proof. Suppose first that G is connected. Let U be a neighborhood of the identity
of G, and H be the subgroup of G generated by U . Given any h ∈ H, hU is an open
neighborhood containing h. Therefore, H as a whole is open, and so are its cosets in
G. Furthermore, G =

⋃
g∈G gH, meaning that the cosets of H disjointly partition

G. If H 6= G, then the cosets constitute a partition of G in open sets, which is
contrary to our hypothesis. Therefore, it must be the case that H = G, meaning
that G is generated by any open neighborhood of the identity. Since exp(T (G)) is
a neighborhood of the identity, this implies that G = exp(T (G)).

Now suppose that G is generated by G = exp(T (G)), and recall that connect-
edness in G is equivalent to path-connectedness. If g and h are two points of G,
we can write g−1h = exp(X1) exp(X2) . . . exp(Xk) where X1, . . . , Xk ∈ T (G) and
define a path γ(t) = g · exp(tX1) exp(tX2) . . . exp(tXk) through G. Then γ(0) = g
and γ(1) = h. �

Lemma 5.6. The kernel of exp is discrete.

Proof. The fact that the exponential function is bijective on the neighborhood
U or 0 implies that 0 is the only element of K = ker(exp) is contained in this
neighborhood. Therefore, there are no elements x 6= y ∈ ker(exp) such that x−y ∈
U . �

Lemma 5.7. ker(exp) ∼= Zk for some k.
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A detailed proof can be found in [3], but we can provide a sketch: We can choose
a vector v1 in ker(exp) such that v1 = min{v : v = λv1}, meaning that v1 is minimal
in a particular direction. Then we choose v2 in the orthogonal compliment of v1
the same way and so on until we exhaust the dimension of the kernel and get a
set of vectors v1, . . . , vk which form a linear basis for ker(exp). This shows that
ker(exp) = Zv1 ⊕ . . .⊕ Zvk

∼= Zk.

Theorem 5.8. Every compact, connected, abelian matrix group G is isomorphic
to a torus.

Proof. G = exp(T (G)) by Lemma 5.4, so if T (G) is of dimension n ≥ k, then by the
fundamental theorem of group isomorphisms, G ∼= expT (G)/Zk ∼= Rn−k ⊕ Rk/Zk.
If n 6= k, then this space is unbounded and therefore not compact. Thus, dimK = n
and so G ∼= Rk/Zk = Tk.

�

Note that the converse of this theorem is also true: All maximal tori are compact,
connected, and abelian. It is left to show how some connected groups G are covered
by the conjugates of their maximal tori.

For some matrix groups, the conjugates of the maximal tori cover the group.
However, for this condition to hold, the group must be connected. This is because
for a maximal torus T , ∪g∈GgTg

−1 is connected because T , and hence gTg−1, con-
tains the identity and the union of connected sets sharing an element is connected.
Hence, it is not the case that the conjugates of the maximal tori in O(n,R) cover
the group.

Proposition 5.9. The conjugates of the maximal torus in U(n) cover the group.

Proof. This is essentially an application of the Spectral Theorem for linear operators
using the fact that the maximal torus is the group of diagonal unitary matrices. If
A ∈ U(n), then we know that A∗ = A−1, and hence A and A∗ commute. Thus, we
can apply the spectral theorem to find that A is conjugate by a unitary matrix B
to a diagonal matrix. Since the maximal torus T consists of diagonal matrices, this
means that BAB−1 ∈ T . �

Proposition 5.10. The conjugates of the maximal torus in SO(n) cover the group.

Proof. There is a more specific statement that can be deduced from the spectral
theorem, namely that every real symmetric matrix is conjugate via B ∈ SO(n) to
a diagonal matrix. From this we can deduce that for A ∈ SO(n), Rn can be broken
up into subspaces of dimension 1 or 2 that are invariant under A.

It suffices to demonstrate that Rn has at least one invariant subspace of desired
dimension. Define S = A+AT , which is symmetric and therefore has an eigenvector
v. If Av and v are linearly dependent, then our A-invariant subspace is the space
spanned by v, so suppose that Av and v are linearly independent and define V =
span(Av, v). Then an element of V can be written αv + βAv. Since v is an
eigenvector, Sv = (A + AT )v = (A + A−1)v = Av + A−1v = λv for some λ ∈ R,
which can be written as A2v + v = λAv. Hence, we can calculate A(αv + βAv) =
αAv + βA2v = αAv + β(λAv − v) = −βv + (α+ βλ)Av, which is an element of V .

We now choose an orthonormal basis v1, . . . , vn of R such that each A-invariant
subspace is generated by precisely one or two vectors in the basis. To be more
specific, let us say that v1, . . . vk are the one-dimensional A-invariant spaces and
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wk+1, wk+2, . . . , wn−1, wn are the two-dimensional A invariant spaces. Then let B
be the matrix that maps ei from the standard basis to vi in our new basis for all
1 ≤ i ≤ n. If detB = 1, then it follows that BAB−1 ∈ T . If detB = −1, then we
can reorder two of the “w” vectors and relabel the new matrix as B, and again we
can say that BAB−1 ∈ T .

�

Explanations of the usage of the spectral theorem can be found in [1].

Lemma 5.11. Let r ∈ S1 be a rotation by an irrational angle α. Then O =
{rk(1)}∞k=0 is dense in S1.

Proof. First of all, O is infinite. If it were finite, then it would the case that
kα = z ∈ Z and thus α = z/k ∈ Q, which is a contradiction. Now, since S1 is
compact, we can cover S1 with a finite set I = {I1, . . . , In} of open intervals of
length (by which I mean |x− y| is the angle of their difference) less than ε. By the
pigeon-hole principle, there exist n,m ∈ Z such that |rm(1)− rn(1)| < ε. Now find
x such that rm(x) = rn(1), so r(n−m)(1) = x. Then |x− 1| < ε. Since it is possible
to reach a point arbitrarily close to 1 in m− n = k steps, O comes within ε of any
point on S1 through iterations of rk.

�

Theorem 5.12. In a connected matrix group G, all of the maximal tori are con-
jugate.

Proof. Let G be of rank n, and let T and T ′ be two maximal tori in G. Now let
{r1, . . . , rn} be a set of irrational rotations of S1 that are linearly independent over
Q. In this context, this means that q1r1 + . . .+ qnrn = 0 implies that the rational
qi’s are all zero. Now define r = r1⊕ . . .⊕ rn to be a rotation of G. By the lemma,
the orbit O of r is dense in each component. Given x = (x1, . . . , xn) ∈ T , we can
independently choose elements in the orbits {rk

1 (1)}, . . . , {rk
n(1)} to be arbitrarily

close to x1, . . . , xn. Therefore, the orbit of r is dense in T ′.
Since every element in G is in a conjugate of T , it follows that r ∈ xTx−1 for

some x ∈ G. But xTx−1 is a group, so O ⊂ xTx−1. But we already know that
O ⊂ T ′. Since T ′ ∩ xTx−1 is closed, this means that T ′ ∩ xTx−1 = T ′, meaning
T ′ ⊂ xTx−1. But since T ′ is maximal, it follows that T ′ = xTx−1.

�

6. Lie Algebras

In this section, we will examine the relationship between conjugation in a matrix
group G and operations in the tangent space T (G).

Proposition 6.1. If X and Y are tangent vectors of G, then XY − Y X ∈ T (G).

Proof. Define γ(s, t) = esXetY (esX)−1 = XetY X−1, which is a smooth path such
that γ(0) = 1, so d

dtγ|t=0 = X(Y e0)X−1 ∈ T (G). Furthermore, η(s) = d
dtγ|t=0 =

esXetY (esX)−1 = esXY (esX)−1 is a smooth function of s, so its tangent is also in
T (G).

d

ds
η(s) =

d

ds
(esXY e−sX) = (XesX)(Y e−sX) + (esXY )(−esX)

Therefore, η′(0) = XY − Y X ∈ T (G).
�
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Hence, the matrix XY − Y X in a sense measures the extent to which X and Y
are non-commutative, and the extent to which the paths that they are tangent to
twist one another.

Definition 6.2. The operation [A,B] = AB−BA which we derived above is called
the bracket operation.

Definition 6.3. The Lie algebra defined on the tangent space of a matrix group
is the tangent space with linear operations as well as the bracket operation.

The Lie algebra is also closed under the bracket operation by Proposition 6.1,
and the bracket operation characterizes the tangent space as an algebraic object.

Proposition 6.4. The Lie bracket has the following properties:
(1) Linearity: [A+B,C] = [A,C] + [B,C]
(2) Anti-commutativity: [A,B] = −[B,A]
(3) The Jacobi Identity: [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

Example 6.5. If G is abelian, then T (G) is abelian, and [X,Y ] = XY −XY = 0
for all X,Y ∈ T (G). This is why the tangent space of S1 does not give us a clear
idea of what tangent spaces are like in other matrix groups.

Definition 6.6. An ideal I in T (G) is a subspace such that [X,Y ] ∈ T (G) for all
X ∈ T (G) and Y ∈ I.

Proposition 6.7. The tangent space T (H) of a normal subgroup H of a matrix
group G is an ideal in T (G).

Proof. It should be clear that T (H) a Lie algebra, so we need so show that it is
closed under the bracket operation with elements of T (G). Let X ∈ T (G) and
Y ∈ T (H). Since H is normal, it is closed under conjugation This means that we
can define a function η like the one we used in Proposition 6.1, and its tangent
vector is XY − Y X. �

Proposition 6.8. A differentiable group homomorphism ψ : G → H induces a
homomorphism of Lie algebras between T (G) and T (H).

Proof. Let ϕ(X) = d
dtψ(exp(tX))|t=0. ϕ will be the homomorphism of Lie algebras

in question. First, we can find

d

ds
ψ(exp(sX)) =

d

dt
ψ(exp((s+ t)X)|t=0 =

=
d

dt
ψ(exp(sX) exp(tX))|t=0 =

=ψ(exp(sX)
d

dt
ψ(exp(tX))|t=0 =

=ψ(exp(sX))ϕ(X)

This is the familiar differential equation d
dtf(at) = af(at), which has the solution

f(at) = eat. Hence, this shows that ψ(expX) = exp(ϕ(X)). From this, we get

ψ(exp(tX) exp(sY ) exp(−tX)) = exp(tϕ(X)) exp(sϕ(Y )) exp(−tϕ(X))

We differentiate both sides with respect to s as s = 0 to get
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ϕ(exp(tX)Y exp(−tX) = exp(tϕ(X))ϕ(Y ) exp(−tϕ(X))
Finally, we differentiate both sides with respect to t at t = 0. The computation

is the same as that for the proof of proposition 6.1. It follows that ϕ[X,Y ] =
[ϕ(X), ϕ(Y )].

�

This proof can be found in [3].

Example 6.9. The skew-symmetric three-by-three matrices all take the form 0 a b
−a 0 c
−b −c 0


So they can be thought of as a vector space with the basis of the matrices,

E1 =

0 0 0
0 0 1
0 −1 0

 , E2 =

 0 0 1
0 0 0
−1 0 0

 , E3 =

 0 1 0
−1 0 0
0 0 0


One can calculate that [E1, E2] = E3, [E2, E3] = E1, and so on. This space is

isomorphic as an algebra to R3 under the cross product. If ϕ sends E1 to î, E2 to
ĵ, and E3 to k̂, then ϕ[A,B] = [ϕ(A), ϕ(B)].

Suppose we tried to solve the equation eXeY = eZ for Z. Then we could write
Z = log(eXeY ) and expand to get

Z =
∞∑

k=1

(−1)k−1

k

{( ∞∑
i=0

Xi

i!

)( ∞∑
j=0

Y j

j!

)
− 1

}k

=(6.10)

=
∞∑

k=1

(−1)k−1

k

{ ∑
i,j≥0,i+j≥1

XiY j

i!j!

}k

=(6.11)

=
∑ (−1)k−1

k

Xi1Y j1 . . . XikY jk

i1!j1! . . . ik!jk!
(6.12)

This is indeed a very cumbersome expression, but it turns out that the first few
terms are

(6.13) Z = X + Y +
1
2
[X,Y ] + . . .

In fact, all of the terms can be expressed in nested Lie brackets. This statement
is known as the Campbell-Baker-Hausdorff Theorem:

Theorem 6.14. The terms in the series (6.12) can all be expressed in terms of
rational coefficients multiplied by Lie brackets.

Proofs of entirely different natures can be found in [3] and [4]. Note that if
X and Y commute, then all of the terms are 0 and Z = X + Y . But this is
the result of Proposition 3.5. The Campbell-Baker-Hausdorff Theorem defines Lie
theory on a qualitative level, because it demonstrates the extent of the interplay
between conjugation in the Lie group and the bracket operation in the Lie algebra.
It produces many interesting results.
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Proposition 6.15. Suppose that G and H are connected matrix groups. Then a
homomorphism between their respective tangent spaces T (G) and T (H) induces a
homomorphism between G and H.

Proof. Let ϕ : T (G) → T (H) be a homomorphism. Then for X ∈ T (G), define a
function Φ(X) = eϕ(X). Note that any element of g ∈ G can be written as eX for
X ∈ T (G) and every element of h ∈ H can be written as eY for Y ∈ T (H). Then
we use the fact that ϕ[X,Y ] = [ϕ(X), ϕ(Y )] in the following:

Φ(gh) =Φ(deXeY ) = Φ(e(X+Y + 1
2 [X,Y ]+...)) = eϕ(X+Y + 1

2 [X,Y ]+...) =

=e(ϕ(X)+ϕ(Y )+ 1
2 [ϕ(X),ϕ(Y )]+...) = eϕ(X)eϕ(Y ) = Φ(g)Φ(h)

�

In this proof, we used the facts that the solution of eXeY = eZ can be written
in terms of Lie brackets. In fact, this proof can be generalized to matrix groups
that are not necessarily connected, but that proof involves more topology. It can
be found in [3] and [4].
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