
CONFIGURATION SPACES

EMILY MACKEVICIUS

Abstract. A wide variety of spaces can be expressed as the configuration
space of a linkage or of points on a circle. It is possible to build a linkage
whose configuration space includes an open subset of the zero set of any real
valued function. The configuration space of n labeled points on a circle is a
n-torus. It is possible to make the configuration space any Euclidean manifold
by identifying some of these points.
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1. Introduction to Linkages and their Configuration Spaces

Linkages are machines made of rods connected by hinges. More abstractly, link-
ages are graphs with a length assigned to each edge. We can ask whether we can
actually build a particular abstract linkage in the plane (for example, we cannot
build a linkage including a triangle with one side longer than the sum of the other
two). We classify the space of all ways to build a particular linkage (realizations),
and call this space the configuration space of the linkage. We can also fix certain
vertices and construct the configuration space of all realizations that maintain the
position of those vertices.

Definition 1.1. A graph G = (V(G), E(G)) is a set of vertices, V(G), and a set of
edges, E(G) ⊆ {{p, q}|p "= q and p, q ∈ V(G)}.

Definition 1.2. A linkage L = (L, !,W ) is a graph L, a function ! : E(L) → R+,
and a set W ⊆ E(L) called the marked set. In diagrams, an edge will be labeled e∗

if both endpoints are marked vertices.

Definition 1.3. A planar realization of a linkage is a map φ : V(L) → R2 where

|φ(v)− φ(w)| = !({v, w}) ∀{v, w} ∈ E(L).

We can think of a planar realization as a way of drawing a linkage in R2, re-
specting the lengths of the edges.
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Definition 1.4. The configuration space of a linkage L is the set of all realizations of
L and is denoted C(L). C(L) inherits a metric from R2|V (L)|, since each realization
can be written

φ = (φ(v1), φ(v2), . . . ,φ(vn)) ∈ R2|V (L)|.

Definition 1.5. If L = (L, !,W ) is a linkage and Z : W → R2 specifies the image
of each marked vertex, then the relative configuration space of L with respect to Z,
denoted C(L, Z), is the set of all realizations φ where φ(v) = Z(v) for all v ∈ W .

Example 1.6. Consider a square linkage given by the following:

L = ({A, B,C, D}, {{A, B}, {B, C}, {C, D}, {D,A}})

!(v) = 1 ∀v ∈ E(L)

W = {A, B}, Z(A) = (0, 0), and Z(B) = (1, 0)

Here is a realization of (L, !,W ):

φo : D

e∗

C

A B

Notice two degenerate realization types:

φ1 : D

e∗
AC B

φ2 : C

e∗
A DB

Also notice three realizations which lie exclusively on the x-axis:

φ3 : A
e∗

BD C

φ4 : D
e∗

AC B

φ5 : AC
e∗

BD

Each realization type (the two degenerate types, [φ1] and [φ2], and one non-
degenerate type, [φo]) allows for a circle’s worth of motion. There are two positions
on each circle where the entire realization lies on the x-axis, permitting a switch
to one other type. Thus the configuration space is three circles, joined pairwise at
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points:
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Remark 1.7. Such degenerate forms of parallelograms and the singularities they
introduce (in this case φ3, φ4 and φ5) complicate attempts to create a linkage whose
configuration space is a manifold. However, we can eliminate the singularities by
constructing rigidified parallelograms using degenerate triangles:

• • •

• • •

2. Functional Linkages and Fiber Sums

We can treat linkages as “functional linkages” by designating some vertices as
inputs and some others as outputs, so long as fixing a realization on the inputs
specifies the positions of the output vertices. Functional linkages were particularly
interesting to early linkage studiers who wanted to solve engineering problems, like
how to convert linear motion of a piston to circular motion of a railroad wheel
(Kempe, Muirhead). The fiber sum is a way of identifying vertices of two linkages
to create a new linkage.
Definition 2.1. If L is a linkage and S ⊆ V (L), then realizations φ1, φ2 are
equivalent with respect to S (denoted φ1 ∼S φ2) if

φ1(s) = φ2(s) ∀s ∈ S.

Definition 2.2. A functional linkage is a linkage with designated input vertices
P ⊆ V (L) and output vertices Q ⊆ V (L) such that:

φ1 ∼P φ2 =⇒ φ1 ∼Q φ2 ∀φ1, φ2 ∈ C(L, Z).

Remark 2.3. This allows us to associate a function F : O → R2|Q| to L, where the
input domain O is given by:

O = {(φ(p1), φ(p2), . . . ,φ(pn)) ∈ R2|P ||φ ∈ C(L, Z)}.
Example 2.4. The following rigidified square is a functional linkage:

p1 • q1

• e∗ • •
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Example 2.5. However, the following non-rigidified square is not, because the
position of p1 does not uniquely specify the position of q1:

p1 q1

•
e∗

•

p1

•q1
e∗

•

Definition 2.6. Given two linkages L′ = (L′, !′, W ′) and L′′ = (L′′, !′′, W ′′), with
fixing functions Z ′ and Z ′′ respectively, a map β : S′ ⊆ V(L′) → V(L′′) is compatible
if:

Z ′(w′) = Z ′′(β(w′)) ∀w′ ∈ W ′ ∩ S′,

and for all (v, u) ∈ (S′ × S′) with {v, u} ∈ E(L′),

{β(v), β(u)} ∈E (L′′) =⇒ !′({v, u}) = !′′({β(v), β(u)}).

Definition 2.7. Given two linkages L′ and L′′, fixing functions Z ′ and Z ′′ and a
compatible map β, the fiber sum of L′ and L′′ with respect to β, L′ ∗β L′′, is a
linkage L = (L, !,W ) such that:

L = (L′ , L′′)/(β(v) = v)

W = (W ′ ,W ′′)/(β(v) = v)

Z(w) =
{

Z ′(w) w ∈ W ′

Z ′′(w) w ∈ W ′′ ∀w ∈ W

!({v, w}) =
{

!′({v, w}) {v, w} ∈ E(L′)
!′′({v, w}) {v, w} ∈ E(L′′)

Remark 2.8. Note that β must be compatible for L to be well-defined.

3. Elementary Linkages

This section includes constructions of elementary (translation, addition, mul-
tiplication, etc.) functional linkages. The purpose is to exhibit that with these
elementary functional linkages, using the fiber sum to compose functional linkages,
we can create functional linkages for any polynomial. By fixing the output at zero,
we can create linkages whose configuration space contains an open subset of the
zero-set of any polynomial.

Construction 3.1. This translator takes an input value, φ(p1), in the input do-
main O = {(x, y) | |(x, y)−Z(w1)| ≤ !(e1)+!(e2)} and returns φ(q1) = φ(p1)+!(e3).
Alternatively, switch the roles of p1 and q1 for subtraction. Assume both parallelo-
grams in the translator are rigidified. By adjusting the lengths of e1, e2 and e3, we
can construct a translator with any desired input domain and translation distance.

p1
e3

e2 22
22

22
22

q1

33
33

33
3

• •

w1

e1
44444444 e∗ •

55555555
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Construction 3.2. The pantograph can be used to construct several functional
linkages. Assume the parallelogram is rigidified, and note that no vertices have
been fixed yet.

•

66
66

66
6

33
33

33
3

•

66
66

66
6

33
33

33
3 •

66
66

66
6

33
33

33
3

• • •

Example 3.3. Negation: We can use the pantograph to rotate around the origin,
Z(w1). By setting !(e1) = !(e2) = . . . = !(e6) and treating φ(q1), φ(p1) ∈ C, we get
φ(q1) = −φ(p1). We can adjust the input domain O = {(x, y) | |(x, y)| ≤ 2!(e1)}
to be include anything we wish by choosing an appropriate value for !(e1).

•

e5
44

44
44

44

e6 22
22

22
22

•

e155
55

55
5

e2 22
22

22
22

•

e3
55

55
55

55

e4 33
33

33
3

p1 w1 q1

Example 3.4. Scalar multiplication: The pantograph with input value φ(p1) and
Z(w1) = (0, 0) returns φ(q1) = "(e1)

"(e2)
φ(p1). It is a functional linkage for scalar

multiplication, and adjusting the relative and absolute lengths of e1, e2 and e3

(assume the pantograph is symmetric) allows us to build a linkage for multiplication
by any λ > 1 with any input domain O = {(x, y) | |!(e3) − !(e2)| ≤| (x, y)| ≤
!(e2)+!(e3)}. We can switch the roles of p1 and q1 to get multiplication by a scalar
1
λ < 1.

•

55
55

55
55

77
77

77
77

e1

•

e2
55

55
55

55

e3 77
77

77
7 •

55
55

55
5

33
33

33
3

w1 p1 q1

Example 3.5. Addition: The following is a functional linkage that takes in-
puts φ(p1), φ(p2) and returns φ(q1) = φ(p1) + φ(p2). This is the fiber sum of
two pantographs: A, which takes inputs φ(p1), φ(p2) and returns their average,
φ(v1) = φ(p1)+φ(p2)

2 ; and B, which has fixed point Z(w1) = (0, 0), takes input φ(v1)
and returns φ(q1) = 2φ(v1). Their fiber product is the composition of the two –
it takes inputs φ(p1), φ(p2) and returns φ(q1) = φ(p1) + φ(p2). The input domain
of the fiber product is O = OB ∩ A(OA). Making A large lets us average numbers
that are far apart, and making B large lets us double large averages. Therefore,
we can build a functional linkage for addition whose input domain is an arbitrarily
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large region around (0, 0).

B

44
44

44
44

44
44

44
44

4

22
22

22
22

22
22

22
22

2

•

66
66

66
66

66
66

66
66

6
A

88
88

88
8

33
33

33
3 •

99
99

99
99

99
99

99
99

9

•

55
55

55
5

77
77

77
7 •

55
55

55
5

77
77

77
7

w1 p1 v1 p2 q1

Construction 3.6. The Peaucellier inversor, with Z(w1) = (0, 0), !(e1) = !(e3) <
!(e2), and symmetry of edge lengths across the line containing w1, p1 and q1 is
meant to output:

φ(q1) =
!(e2)2 − !(e1)2

φ(p1)

where φ(p1) is the complex conjugate of φ(p1).

• q1

p1 •e1

e3

w1

:::::::::::::::
e2

"""""""""""""""

However, even rigidifying the parallelogram allows for some degenerate configu-
rations such as:

q1

e3

•
e1

w1

e2

;;;;;;;;;;;;;

;;;;;;;;;;;;; p1

Kapovich and Millson suggest adding a “hook,” which restricts the image domain
in order to eliminate these degeneracies:

• q1

p1 •e1 •

<<<<<<<<<<<<<<<

w1

:::::::::::::::
e2

"""""""""""""""
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By adjusting !(e1), !(e2), and the size of the hook, we can make an inversor
whose input domain is an arbitrarily large washer about (0, 0).

Construction 3.7. Multiplication: Kapovich and Millson use algebraic tricks to
build a linkage for multiplication. Connecting the outputs of functional linkages
to the inputs of another functional linkage allows for function composition. The
following diagram illustrates how to create a linkage for squaring using our previous
constructions – functional linkages for translation (T ), negation (N ), inversion of
conjugates (I), scalar multiplication (M), and addition (S):

Let z = a + bi

z=

T

!!>>>>>>>>>>>>>>>>>>> ?

T

""@@@@@@@@@@@@@@@@@@@

z − 1
2$

I
##

z + 1
2$

I
##

1(
z− 1

2

) = 1
z− 1

2

A

S

$$BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB

1(
z+ 1

2

) = 1
z+ 1

2
$

N
##

− 1
z+ 1

2C

S

%%"""""""""""""""

1
z− 1

2
+− 1

z+ 1
2

= 1
z2− 1

4$

I
##

z2 − 1
4 = z2 − 1

4$

T
##

z2

Using this construction (Q) and more algebraic tricks, we can create a linkage for
multiplication:

Let z = a + bi and w = c + di
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z$

Q
##

D

S &&&&&&&&&&&&&&&& w=

S

!!>>>>>>>>>>>>>>>>>> E
Q

''FFFFFFFFFFF

z2
#

S

((

z + w$

Q
##

w2

S

))GG
GG

GG
GG

GG
GG

GG
GG

G

(z + w)2
$

S

##

z2 + w2
$

N
##

−(z2 + w2)H
S

!!IIIIIIIIIIIIII

(z + w)2 +−(z2 + w2)
$

M
##

(z+w)2+−(z2+w2)
2 = zw

The input domain of this multiplication functional linkage is restricted by the
input domains of each of its parts. The input domains of T , N , M, and S can be
arbitrarily large regions about zero, and the input domain of I can be an arbitrarily
large washer about zero. Note that the images of open sets under these functions
contain open sets. The multiplier’s input domain contains an open set, because it
contains intersections of large open sets.

Construction 3.8. The Peaucellier straight-line motion linkage restricts motion of
the input, p1, which in this case is also the output, to a straight line. It will be useful
in restricting the complex-valued functions our linkages represent to form real-
valued functions. Its original construction was inspired by engineering questions
about using linkages to turn linear motion (p1) into circular motion (c).

•

JJ
JJ
JJ
JJ
JJ
JJ
JJ

KKKKKKKKKKKKKK c

LL
LL

LL
LL

LL
LL

LL

p1 •

MMMMMMMMMMMMMMM •

• e∗ •
Theorem 3.9. Functional linkages for arbitrary polynomials: By composing our
elementary linkages for translation, scalar multiplication, addition, negation and
multiplication, we can create functional linkages for arbitrary complex polynomials.
We can also use the straight-line motion linkage to create functional linkages for
arbitrary real polynomials by restricting inputs to the real axis.

Proposition 3.10. Expansion of domain: When composing functional linkages
(with the fiber sum operation), we must be careful about the image domains. Suppose
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we want to compose polynomial linkages L and M, with image domains OL and OM
respectively. For our composition to make sense, we need FL(OL) ⊆ OM, where
FL is the function associated with L.

Assuming OM contains a region around the origin and M is a homogeneous
polynomial of degree n, we can expand the image domain of M by a factor of
λ ∈ R by building the composition Sλn ◦M◦S λ−1 , where Sλn and Sλ−1 are scalar-
multiplication linkages with arbitrarily large input domains for multiplication by
λn and λ−1 respectively.

But all polynomials are sums of homogeneous polynomials, and we can make our
summing machine have as large a domain as we wish. And if OM does not contain
a region around the origin, as long as it contains a region around some p ∈ R2, we
can translate it by −p so it does, do the same process, then translate back, since we
can make negators and translators with arbitrarily large domains.

Since we can expand the domain of any polynomial linkage M, we can compose
any two polynomial linkages, and build up from our elementary linkages to arbitrary
polynomials.

Theorem 3.11. Given a functional linkage with one output, we can create a linkage
whose configuration space of inputs (C(L, Z)/ ∼P ) contains an arbitrary large open
subset of the zero-set of that function simply by fixing the output of the functional
linkage to zero.

Since we can construct functional linkages for any real-valued polynomial, this
gives us a method for obtaining configuration spaces that are zero-sets of any real-
valued polynomial.

Theorem 3.12. Since any smooth curve can be approximated by a polynomial, we
can create functional linkages whose outputs approximate arbitrary smooth curves.

4. Points on a Circle

We can also talk about the configuration spaces of collections of points on a
circle. The configuration space of n distinct points is a n-torus, and we can identify
our points to get configuration spaces of moduli spaces of n-tori.

Construction 4.1. Consider a circle with two points on it, % and •:

S1
%• : % • C(S1

%•) :

The configuration space of this circle is a square with opposite sides identified
(a 2-torus), because each configuration of % and • defines an ordered pair of angles
between 0 and 2π, with 0 and 2π identified.

Construction 4.2. Now consider a circle with three points on it, ◦, % and •:

S1
◦%• : % •

◦

C(S1
◦%•) :

66
66

66
66

66
66
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The configuration space is a cube with opposite faces identified (a 3-torus), since
configurations of ◦, % and • define ordered triples of angles between 0 and 2π, with
0 and 2π identified. Likewise, the configuration space of a collection of n distinct
points on a circle is the n-torus.
Construction 4.3. We can get a different configuration space by identifying points
on our circle. For example:

S1
%% : % % C(S1

%%) :

6
6

6
6

6
6

6

$
−−−−−−−−→

=

$
$$$$

$ $ $ $&

Since we have identified the two points, a configuration defines an unordered pair
of points in [0, 2π]/(0 = 2π). Thus each point (a, b) on the square is identified with
its reflection along the dotted line, (b, a). C(S1

%%) is a triangle with two consecutive
sides identified, in other words a Möbius strip.
Construction 4.4. Let’s explore what happens to the configuration space of the
circle with three points when we identify all three points. When the points were
distinct, the configuration space was a cube with opposite faces identified. Now the
ordered triples become unordered triples. All edges of our cube become identified,
and all corners. If we graph triples {a, b, c | a ≤ b ≤ c} as (a, b, c), all points lie in
the tetrahedron surrounded by dashed lines:

S1
%%% : % %

%

C(S1
%%%) :

66
66

66
6

66
66

66
6

6
6

6
6N
N
N
N
N
N
N

$ $ $ $ $ $ $6
6

6
6

6
6

6

O
O

O
O

O

P
P
P
P
P
P

The back left side of this tetrahedron is identified with the top, with a twist. The
front and right sides, where two coordinates are equal, form the boundary, which
is a 2-torus.
Remark 4.5. We can construct any Euclidean manifold by identifying some points
on our circle, and taking the configuration space.

Euclidean manifolds can be classified by their fundamental groups, and every
n-dimensional Euclidean manifold can be covered by an n-torus (Thurston 125,
222).

The fundamental group of an n-torus is the free abelian group with n generators,
which correspond to n points on a circle. The configurations space of a circle with
points identified can be covered by the configuration space of a circle with points
distinct. Thus, any Euclidean manifold is the configuration space of some collection
of points on a circle.
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nating topics.
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