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Abstract. This paper provides a an introduction to some basic properties of

Brownian motion. In particular, it shows that Brownian motion exists, that

Brownian motion is nowhere differentiability, and that Brownian motion has
finite quadratic variation.
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1. Definition of Brownian Motion

Brownian motion plays important role in describing many physical phenomena
that exhibit random movement. Brownian motion is defined as follows:

Definition 1.1. A real-valued stochastic process {B(t) : t ≥ 0} is called a linear
Brownian motion with start in x ∈ R if the following holds:

(1) B(0) = x,
(2) the process has independent increments, i.e. for all times 0 ≤ t1 ≤ t2 ≤
· · · ≤ tn the increments B(tn)−B(tn−1), B(tn−1)−B(tn−2), . . . , B(tn)−
B(tn−1) are independent random variables,

(3) for all t ≥ 0 and h > 0, the increments B(t + h) − B(t) are normally
distributed with expectation zero and variance h,

(4) almost surely, the function t 7→ B(t) is continuous.
If x = 0, {B(t) : t ≥ 0} is called a standard Brownian motion.

2. Brownian Motion Exists

The definition of Brownian motion poses the nontrivial question of whether
Brownian motion even exists. While it is rather easy to see that one can construct
a stochastic process that fulfills the first three properties of Brownian motion, it is
not immediately clear that the fourth property can be fulfilled.

Definition 2.1. A random variable X is normally distributed with mean µ and
variance σ2 if
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P{X > x} =
1√

2πσ2

∫ ∞
x

e−
(u−µ)2

2σ2 du, for all x ∈ R.

Definition 2.2. A random vector (X1, . . . , Xn) is called a Gaussian random vector
if there exists an n×m matrix A, and an n-dimensional vector b such that XT =
AY + b, where Y is an m-dimensional vector with independent standard normal
entries.

Lemma 2.3. Let X1 and X2 be independent and normally distributed with expec-
tation 0 and variance σ2 > 0. Then X1 + X2 and X1 − X2 are independent and
normally distributed with expectation 0 and variance 2σ2.

Lemma 2.4. Suppose X is standard normally distributed. Then, for all x > 0,
x

x2 + 1
1√
2π
e−x

2/2 ≤ P{X > x} ≤ 1
x

1√
2π
e−x

2/2

Lemma 2.5. Suppose {Xn : n ∈ N} is a sequence of Gaussian random vectors and
lim
n→∞

Xn = X, almost surely. If b := lim
n→∞

E[Xn] and C := lim
n→∞

Cov(Xn) exist,
then X is Gaussian with mean b and covariance matrix C .

Lemma 2.6. Borel-Cantelli Lemma
Let {En : n ∈ N} be a sequence of events such that

∑
n P{En} <∞. Then

P{lim supEn} = P{En, i.o.} = 0.

For proofs of 2.3, 2.4, and 2.5, see [1]. For a proof 2.6, see [2].

Theorem 2.7. Wiener’s Theorem: Standard Brownian motion exists.

Proof. Define

Dn :=
{
k

2n
: 0 ≤ k ≤ 2n

}
, D :=

∞⋃
n=0

Dn.

Let (Ω,F ,P) be a probability triple on which a collection {Zt : t ∈ D} of inde-
pendent, standard normally distributed random variables can be defined. For each
n ∈ N we want to define the random variables B(d), d ∈ Dn such that

(1) for all r < s < t in Dn the random variable B(t) − B(s) is normally
distributed with mean zero and variance t−s, and is independent of B(s)−
B(r),

(2) the vectors {B(d) : d ∈ Dn} and {Zt : t ∈ D \ Dn} are independent.
First consider D0 = {0, 1}. If we let B(0) := 0 and B(1) := Z1, then this construc-
tion adheres to what we wanted for n = 0.
Now suppose that we have successfully constructed our B(d) for some n− 1.
Define B(d) for d ∈ D \ Dn by

B(d) :=
B(d− 2−n) +B(d+ 2−n)

2
+

Zd
2(n+1)/2

Since the first summand is the linear interpolation of the values of B at the
neighboring points of d in Dn−1, B(d) is independent of (Zt : t ∈ D \ Dn) which
fulfills the second property.
Clearly, the first and second summands are independent of each other. For the
first summand, both terms are normally distributed with mean zero and variance
2−(n+1). Thus, by Lemma 2.3, B(d)−B(d− 2−n) and B(d+ 2−n)−B(d) are
independent and normally distributed with mean zero and variance 2−n.
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We now want to show that B(d)−B(d− 2−n) are independent for d ∈ D \ {0}. It
suffices to show that the B(d)−B(d− 2−n) are pairwise independent because the
vector containing B(d)−B(d− 2−n) for d ∈ D \ {0} is Gaussian.
We already know that B(d)−B(d− 2−n) and B(d+ 2−n)−B(d) with
d ∈ Dn \ Dn−1 are independent. Thus, we need to consider the case when the
increments are over intervals separated by some d ∈ Dn−1. Choose d ∈ Dj with
this property and minimal j , so that the two intervals are contained in
[d− d−j , d] and [d, d+ 2−j ]. The increments over these two intervals of length 2−j

are independent, and the increments over the intervals of length 2−n are
constructed from the independent increments B(d)−B(d− 2−j) and
B(d+ 2−j)−B(d), using a disjoint set of variables (Zt : t ∈ Dn). This implies
they are independent which verifies the first property.

Define

F0(t) =


Z1 for t = 1
0 for t = 0
linear in between.

and, for each n ≥ 0,

Fn(t) =


2−(n+1)/2Zt for t ∈ D \ Dn
0 for t ∈ Dn−1

linear between consecutive points in Dn.

Clearly, these functions are continuous on [0, 1]. Furthermore, we claim that for
all n and d ∈ Dn,

B(d) =
n∑
i=0

Fi(d) =
∞∑
i=0

Fi(d).(2.8)

For n = 0, B(0) = 0 and B(1) = Z1 which is what we wanted to show.
Now suppose that (2.7) holds for n− 1. Let d ∈ Dn \ Dn−1. Since for
0 ≤ i ≤ n− 1 the function Fi is linear on [d− 2−n, d+ 2−n], we get

n−1∑
i=0

Fi(d) =
n−1∑
i=0

Fi(d− 2−n) + Fi(d+ 2−n)
2

=
B(d− 2−n) +B(d+ 2−n)

2

Since Fn(d) = 2−(n+1)/2Zd, this gives (2.7).

On the other hand, we have, by definition of Zd and by Lemma 2.4, for c > 0 and
large n,

P{|Zd| ≥ c
√
n} ≤ exp

(
−c2n

2

)
,

so that the series
∞∑
n=0

P{there exists d ∈ Dn with |Zd| ≥ c
√
n} ≤

∞∑
n=0

∑
d∈Dn

P{|Zd| ≥ c
√
n}

≤
∞∑
n=0

exp
(
−c2n

2

)
,
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converges as soon as c >
√

2 log 2. Fix such a c. By the Borel-Cantelli lemma
there exists a random and almost surely finite N such that for all n ≥ N and
d ∈ Dn we have |Zd| < c

√
n. Hence, for all n ≥ N , ||Fn||∞ < c

√
n2−n/2, which

implies that almost surely, B(t) =
∞∑
n=0

Fn(t) converges uniformly on [0, 1].

Denote the continuous limit by {B(t) : t ∈ [0, 1]}.

We need to show that the increments of this process have the right marginal
distributions. Suppose that t1 < t2 < · · · < tn are in [0, 1]. Since D is a dense set,
we can find t1,k < t2,k < · · · < tn,k in D with lim

k→∞
ti,k = tk. And since B is

continuous on [0, 1], for 1 ≤ i ≤ n− 1,

B(ti+1)−B(ti) = lim
k→∞

B(ti+1,k)−B(ti,k).

As lim
k→∞

E[B(ti+1,k)−B(ti,k)] = 0 and

lim
k→∞

Cov (B(ti+1,k)−B(ti,k), B(tj+1,k)−B(tj,k))

= lim
k→∞

I{i=j}(ti+1,k − ti,k) = I{i=j}(ti+1 − ti),

the increments B(ti+1)−B(ti) are, by Lemma 2.5, independent Gaussian random
variables with mean 0 and variance ti+1 − ti, which is what we wanted to show.

All that remains is to glue together a sequence B1, B2, . . . of independent
C[0, 1]-valued random variables with the distribution of the process B : [0, 1]→ R
that we have found. Define

B(t) := Bbtc(t− btc) +
btc−1∑
i=0

Bi(1), for all t ≥ 0.

This gives us a continuous random function B : [0,∞]→ R that meets the
requirements of a Brownian motion. �

3. Brownian Motion is Nowhere Differentiable

Even though Brownian motion is everywhere continuous, the randomness allows
Brownian motion to also be nowhere differentiable.

Lemma 3.1. (Scaling Invariance). Suppose {B(t) : t ≥ 0} is a standard Brownian
motion and let a > 0. Then the process {X(t) : t ≥ 0} defined by X(t) = 1

aB(a2t)
is also a standard Brownian motion.

For a proof of 3.1, see [1].

Theorem 3.2. Almost surely, Brownian motion is nowhere differentiable. Fur-
thermore, almost surely, for all t,

either lim sup
h→0

B(t+ h)−B(t)
h

=∞ or lim sup
h→0

B(t+ h)−B(t)
h

= −∞ or both.

Proof. Suppose ∃ t0 ∈ [0, 1] such that

lim sup
h→0

|B(t0 + h)−B(t)|
h

<∞.
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Since Brownian motion is bounded on [0, 2], for some finite constant M , there exists
t0 with

sup
h∈[0,1]

|B(t0 + h)−B(t)|
h

≤M.

We want to show that this event has probability zero for any M . Fix M . If
t0 ∈ [(k− 1)/2n, k/2n] for n > 2, then for all 1 ≤ j ≤ 2n − k the triangle inequality
gives
|B((k + j)/2n)−B((k + j − 1)/2n)|

≤ |B((k + j)/2n)−B(t0)|+ |B(t0)−B((k + j − 1)/2n)|
≤M(2j + 1)/2n

Define events

Ωn,k := {|B((k + j)/2n)−B((k + j − 1)/2n)| ≤M(2j + 1)/2n for j = 1, 2, 3}

Then by the fact that Brownian motion has independent increments and Lemma
3.1, for 1 ≤ k ≤ 2n − 3,

P{Ωn,k} ≤
3∏
j=1

P {|B((k + j)/2n)−B((k + j − 1)/2n)| ≤M(2j + 1)/2n}

≤ P
{
|B(1)| ≤ 7M/

√
2n
}3

,

which is at most (7M2−n/2)3, since the normal density is bounded by 1/2. Hence

P

(
2n−3⋃
k=1

Ωn,k

)
≤ 2n(7M2−n/2)3 = (7M)32−n/2

which is summable over all n. Hence, by the Borel-Cantelli lemma,

P

{
there is t0 ∈ [0, 1] with sup

h∈[0,1]

|B(t0 + h)−B(t)|
h

≤M

}

≤ P

(
2n−3⋃
k=1

Ωn,k for infinitely many n

)
= 0

�

4. Brownian Motion has Finite Quadratic Variation

As we have seen, even though Brownian motion is everywhere continuous, it is
nowhere differentiable. The randomness of Brownian motion means that it does
not behave well enough to be integrated by traditional methods. However, because
Brownian motion has finite quadratic variation, it can be integrated with Stochastic
calculus.

Proposition 4.1. If α < 1/2, then, almost surely, Brownian motion is everywhere
locally α-Hölder continuous.

Lemma 4.2. If X,Z are independent, symmetric random variables in L2, then
E
[
(X + Z)2|X2 + Z2

]
= X2 + Z2



6 AARON MCKNIGHT

Theorem 4.3. (Lévy’s Downward Theorem). Suppose that {Gn : n ∈ N} is a
collection of σ-algebras such that

G∞ :=
∞⋂
k=1

Gk ⊂ · · · ⊂ Gn+1 ⊂ Gn ⊂ · · · ⊂ G1.

An integrable process {Xn : n ∈ N} is reverse martingale if almost surely, Xn =
E[Xn−1|Gn] for all n ≥ 2. Then lim

n→∞
Xn = E[X1|G∞] almost surely.

Lemma 4.4. Fatou’s Lemma.
P{lim inf En} ≤ lim inf P{En}

For proofs of 4.1, 4.2, and 4.3, see [1]. For a proof of 4.4, see [2].

Definition 4.5. A right-continuous function f : [0, t]→ R is a function of bounded
variation if

V
(1)
f (t) := sup

k∑
j=1

|f(tj)− f(tj−1)| <∞

where the supremum is over all k ∈ N and partitions 0 = t0 ≤ t1 ≤ · · · ≤ tk−1 ≤
tk = t. If the supremum is infinite f is said to be unbounded variation.

Theorem 4.6. Suppose that the sequence of partitions

0 = t
(n)
0 ≤ t(n)

1 ≤ · · · ≤ t(n)
k(n)−1 ≤ t

(n)
k(n) = t

is nested, i.e. at each step one or more partition points are added, and the mesh

4(n) := sup
1≤j≤k(n)

{
t
(n)
j − t(n)

j−1

}
converges to zero. Then, almost surely,

lim
n→∞

k(n)∑
j=1

(
B(t(n)

j )−B(t(n)
j−1)

)2

= t

and therefore Brownian motion is of unbounded variation.

Proof. By Proposition 4.1, for any α ∈ (0, 1/2), ∃ n such that |B(a)−B(b)| ≤ |a−b|α
for all a, b ∈ [0, t] with |a− b| ≤ 4(n), which means that

k(n)∑
j=1

∣∣∣B(t(n)
j )−B(t(n)

j−1)
∣∣∣ ≥ 4(n)−α

k(n)∑
j=1

(
B(t(n)

j )−B(t(n)
j−1)

)2

.

If we can show that the random variables

Xn :=
k(n)∑
j=1

(
B(t(n)

j )−B(t(n)
j−1)

)2

converge almost surely to a positive random variable, then we will have shown that
Brownian motion is almost surely of unbounded variation. We can insert elements
in the sequence when necessary to ensure that at each step exactly one point is
added to the partition.

Let Gn be the σ-algebra generated by the random variables Xn, Xn+1, . . .. Then

G∞ :=
∞⋂
k=1

Gk ⊂ · · · ⊂ Gn+1 ⊂ Gn ⊂ · · · ⊂ G1.
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We now want to show that {Xn : n ∈ N} is a reverse martingale. Suppose
s ∈ (t1, t2) is the inserted point. B(s)−B(t1) and B(t2)−B(s) are symmetric
independent random variables. Let F be the σ-algebra generated by
(B(s)−B(t1))2 + (B(t2)−B(s))2. Then by lemma 4.2,

E[(B(t2)−B(t1))2|F ] = (B(s)−B(t1))2 + (B(t2)−B(s))2,

which shows that

E[(B(t2)−B(t1))2 − (B(s)−B(t1))2 − (B(t2)−B(s))2|F ] = 0,

which implies that {Xn : n ∈ N} is a reverse martingale.

By the Lévy Downward Theorem, lim
n→∞

Xn = E[X1|G∞] almost surely. The limit

has expectation E[X1] = t and, by Fatou’s lemma, its variance is bounded by

lim inf
n→∞

E[(Xn − E[Xn])2] = lim inf
n→∞

3
k(n)∑
j=1

(
t
(n)
j − t(n)

j−1

)2

≤ 3 lim inf
n→∞

4(n) = 0.

Hence, E[X1|G∞] = t almost surely, which is what we wanted to show. �

Definition 4.7. For a sequence of partitions as above, we define

V (2)(t) := lim
n→∞

k(n)∑
j=1

(
B(t(n)

j )−B(t(n)
j−1)

)2

to be the quadratic variation of Brownian motion.

Remark 4.8. From theorem 4.5, we see that Brownian motion has finite quadratic
variation.
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