
PRINCIPAL COMPONENT ANALYSIS

MIKE MEI

Abstract. The following paper will explore the concepts of linear algebra that
are relevant to the statistical method of principal component analysis (PCA).
We will prove the spectral theorem for real inner product spaces and explain
how spectral decomposition is essential for finding principal components of
random vectors. The reader is assumed to have knowledge of basic concepts
in linear algebra and be familiar with statistical terms and their fundamental
properties.
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1. Introduction

In many theoretical and real-life situations that involve the collection of vector
data for statistical purposes, the vectors are determined by as many random ele-
ments as dimensions measured. However, the actual variation in the vector data
may occur in only a few dimensions, a number which is less than the number of
vector components. In other words, the data can be repetitive, confusing, and un-
necessarily complicated because the method of collection looked at more dimensions
than necessary.
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For example, suppose we have a vector that varies mostly in one direction on a
line and we record two-dimensional projections of this vector with three different
cameras. If these cameras are in different positions and are at angles that are not
necessary perpendicular to each other, we may record substantial variation in all
the data from each camera. How we discover the simple underlying behavior of a
one-dimensional vector from a collection of seemingly complicated six-dimensional
vector data (two dimensions from each camera) is of interest to us.

We are, in short, interested in representing most of the variation in the data by
transforming the original random vector into variables called principal components.
These components are all orthogonal and are ordered so that the first few explain
most of the variation of the random vector. Therefore, the goal is to find an
orthogonal basis that aligns itself with the data and thus explains a substantial
amount of variation in just a few dimensions. The methods that allow us to find
such bases and principal components, of course, come from interesting ideas rooted
in linear algebra.

2. The Spectral Theorem

Definition 2.1. An inner product space is a vector space over R or C that has an
inner product operation satisfying the following properties:

1) 〈x, y〉 = 〈y, x〉
2) α〈x, y〉 = 〈αx, y〉
3) 〈x + z, y〉 = 〈x, y〉 + 〈z, y〉
4) 〈x, x〉 > 0 ∀x $= 0

Definition 2.2. An adjoint of a linear map A: V → V is another linear map
A∗: V → V that satisfies

〈Ax, y〉 = 〈x, A∗y〉 ∀x, y ∈ V

Proposition 2.3. If A is a linear map A: V → V, then the adjoint A∗ exists.
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Proof. Let φ be any linear map φ: V → R or C for some inner product space V.
Let {e1, e2, ..., en} be an orthonormal basis in V. Note that

φ(u) = φ(〈u, e1〉e1 + 〈u, e2〉e2 + ... + 〈u, en〉en)
= φ(e1)〈u, e1〉+ φ(e2)〈u, e2〉+ ... + φ(en)〈u, en〉
= 〈φ(e1)u, e1〉+ 〈φ(e2)u, e2〉+ ... + 〈φ(en)u, en〉

= 〈u,φ(e1)e1〉+ 〈u,φ(e2)e2〉+ ... + 〈u,φ(en)en〉

= 〈u,φ(e1)e1 + φ(e2)e2 + ... + φ(en)en〉

Let v ∈ V be given. Note that the inner product 〈Au, v〉 is, like φ, a linear map
that takes a vector u ∈ V to an element in R or C. Let φ∗(u) = 〈Au, v〉. We know
from above that

〈Au, v〉 = 〈u,φ∗(e1)e1 + φ∗(e2)e2 + ... + φ∗(en)en〉
We can set

A∗v = φ∗(e1)e1 + φ∗(e2)e2 + ... + φ∗(en)en

This shows that

〈Au, v〉 = 〈u, A∗v〉
So the adjoint A∗ exists.

!
Definition 2.4. The linear map A on a real inner product space is self − adjoint
if A = A∗.

Proposition 2.5. Suppose the linear map A has a matrix T with respect to an
orthonormal basis in a real inner product space V. Then T∗, the matrix of A∗ with
respect to the same basis, is the transpose of T.

Proof. Let {e1, e2, ..., en} be the orthonormal basis of V. Because A is a linear map,
matrix T is composed of n columns, the ith one being the coordinates of Aei with
respect to the basis. Specifically, there are scalars a1, a2,...,an such that

Aei = a1e1 + a2e2 + ... + anen

Because the basis is orthonormal, it follows that

〈Aei, ej〉 = 〈a1e1 + a2e2 + ... + anen, ej〉
= 〈a1e1, ej〉+ 〈a2e2, ej〉+ ... + 〈anen, ej〉
= a1〈e1, ej〉+ a2〈e2, ej〉+ ... + an〈en, ej〉
= aj

Therefore, Aei = 〈Aei, e1〉e1 + 〈Aei, e2〉e2 +...+ 〈Aei, en〉en. In other words,
Tji, the ith column, jth row of T is 〈Aei, ej〉. By repeating this derivation for the
matrix entries of A∗, we get that T∗ji is likewise

〈A∗ei, ej〉 = 〈ei, Aej〉

= 〈Aej , ei〉
= 〈Aej , ei〉
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The last line follows from the fact that we are in a real inner product space. The
result shows that T∗ji = Tij . Thus T is the transpose of T∗. !

This proposition shows that a self-adjoint operator has a matrix that is equal
to its transpose. In other words, the matrix is symmetric across the diagonal.
Symmetric matrices which represent linear maps have important properties that
are very useful to PCA, as we will see later with covariance matrices.

Now we will attempt to prove a very important theorem related to symmetric
matrices and their self-adjoint operators. Given a symmetric matrix or self-adjoint
operator, the Spectral Theorem will allow us to find orthonormal eigenvectors,
which is exactly what we want for PCA.

Lemma 2.6. If A: V → V is a self-adjoint linear map, then A has a real eigenvalue.

Proof. A has a matrix T with respect to some basis. Consider the matrix (T - Iz),
where I is the identity matrix. Then det(T − Iz) is a polynomial function of z. By
the fundamental theorem of algebra, this polynomial vanishes at a complex value
λ. Therefore, there is a v ∈ V such that

(T − λI)v = 0
Tv = λIv

Tv = λv

Av = λv

So λ is an eigenvalue. In addition we also know that λ is real because

λ|v|2 = 〈Tv, v〉
= 〈v, Tv〉

= 〈Tv, v〉

= λ|v|2

= λ|v|2

This gives λ = λ, which must be real.
!

Theorem 2.7. (The Real Spectral Theorem) Let V be a real inner product space,
and let A: V → V be a linear map. Then there is an orthonormal basis in V
consisting of eigenvectors of A if and only if A is self-adjoint.

Proof. Let {e1, e2, ..., en} be an orthonormal eigenbasis in V. Then, with respect to
that basis,

Ae1 = λ1e1

Ae2 = λ2e2

...
Aen = λnen

It is clear that A has a diagonal matrix
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λ1 0 ... 0
0 λ2 ... 0
...

...
. . .

...
0 0 ... λn





This matrix is equal to its transpose, and therefore A is self-adjoint.
The converse will be proven by induction on the dimension of V. Our induction

hypothesis will be that for dimension n greater than 1, the theorem holds for vector
spaces of dimension less than n. However, we will first need to construct our proof
by introducing a special subspace U that has the desired properties.

If A is self-adjoint, we know from Lemma 2.6 that the matrix of A has a real
eigenvalue. Let u ∈ V be the corresponding eigenvector. We can scale u so that
the norm is 1.

Let U be the set of all scalar multiples of u. U is a subspace of V with dimension
1. Let U⊥ = {v ∈ V |〈u, v〉 = 0}. Given v0 ∈ U⊥, note that

〈u, Av0〉 = 〈Au, v0〉
= 〈λu, v0〉
= λ〈u, v0〉
= 0

Therefore, v0 ∈ U⊥ implies Av0 ∈ U⊥. In other words, U⊥ is invariant under A.
Let S be the linear map on V defined by S = A|U⊥ (i.e., A restricted to the domain
of U⊥). Let x, y ∈ U⊥.

〈Sx, y〉 = 〈Ax, y〉 = 〈x, Ay〉 = 〈x, Sy〉

This shows that S is self-adjoint. Now suppose that the theorem holds for the
n-dimensional subspace U⊥. Let {u2, u2, ..., un} be the orthonormal eigenbasis
for U⊥. Then {u, u2, u2, ..., un} is an orthonormal eigenbasis for V, which is n+1
dimensional.

The trivial step is to show that the theorem holds when the dimension = 1; the
theorem holds because all transformations by linear maps on a real one-dimensional
inner product space are simply scalar multiplications by real numbers.

!

Corollary 2.8. Let T be the self-adjoint matrix of a linear map of a real inner
product space V. Then T can be decomposed into T = EΛET = λ1e1eT

1 + λ2e2eT
2

+ ... +λneneT
n , where E is a diagonalizing matrix with orthonormal columns.

Proof. Since the linear map is self-adjoint, we know there is an orthonormal eigen-
basis in V. Let this basis be {e1, e2, ..., en}. Let E be the matrix with the basis
vectors on the columns,

E =
(
e1 e2 . . . en

)

and let
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Λ =





λ1 0 ... 0
0 λ2 ... 0
...

...
. . .

...
0 0 ... λn





It is clear that TE = EΛ since Tei = λiei. This implies that T = EΛE−1.
Note that E−1 = ET because EET = I (since 〈ei, ei〉 = 1 and 〈ei, ej〉 = 0 for

i $= j). Thus we have a diagonalizing matrix E (with orthonormal columns) such
that T = EΛET .

EΛET =
(
e1 e2 . . . en

)





λ1 0 ... 0
0 λ2 ... 0
...

...
. . .

...
0 0 ... λn









eT
1

eT
2
...

eT
n





=
(
e1 e2 . . . en

)





λ1eT
1

λ2eT
2

...
λneT

n





= λ1e1e
T
1 + λ2e2e

T
2 + ... + λneneT

n(2.9)

!

3. Principal Component Analysis

We are interested in finding vectors in a real inner product space that are sta-
tistically uncorrelated. In the language of linear algebra, this means that they are
orthogonal (and thus linearly independent). The Real Spectral Theorem helps us
use the covariance matrix, which is a symmetric matrix (and therefore is the matrix
of a self-adjoint linear map). The Real Spectral Theorem guarantees that we will
find an orthonormal basis of eigenvectors. As we will see, these eigenvectors will
have corresponding eigenvalues of great significance.

Definition 3.1. Let E(u) be the expected value, or the mean, of a random variable
u. The covariance of two random variables x, y is cov[x, y], where

cov[x, y] = E(xy)− E(x)E(y)

Definition 3.2. The variance of a random variable x is var[x], where

var[x] = cov[x, x]

Definition 3.3. With regards to a basis, x is a vector in an n-dimensional real inner
product space (equipped with a dot product) determined by n random scalars.

Definition 3.4. For k = 1, 2,...,n, αk is the vector satisfying the following prop-
erties:

1) αkx = ak1x1 + ak2x2 + ... + aknxn, where αk = (ak1 ak2 ... akn) and
x = (x1 x2 ... xn)

2) The variance of αkx is maximized under the constraint that 〈αk, αk〉 = 1
3) αk+1 is calculated after αk and is uncorrelated to αk
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Definition 3.5. Let x = (x1 x2 ...xn). The covariance matrix Σ of x is the matrix
with entries Σij = cov[xi, xj ].

Proposition 3.6. Let Σ be the covariance matrix for the elements of x. Then
var[αkx] = αkΣαT

k .

Proof. Let αk = (ak1 ak2 ... akn) and x = (x1 x2 ... xn). Note that cov[αkx,x] is the
1 x n matrix M where Mij = cov[αkx, xj ]. M equals
(
cov[(αk1x1 + αk2x2 + ... + αknxn), x1] ... cov[(αk1x1 + αk2x2 + ... + αknxn), xn]

)

Because αk is constant, we can factor it out of the covariance bracket.

M =
(∑n

i=1 αkicov[xi, x1]
∑n

i=1 αkicov[xi, x2] ...
∑n

i=1 αkicov[xi, xn]
)

=
(
αk1 αk2 ... αkn

)





cov[x1, x1] cov[x1, x2] ... cov[x1, xn]
cov[x1, x2] cov[x2, x2] ... cov[x2, xn]

...
...

. . .
...

cov[x1, xn] cov[x2, xn] ... cov[xn, xn]





= αkΣ

Since cov[αkx, x] = αkΣ, by a similar argument, cov[x, αkx] = ΣαT
k . Thus,

var[αkx] = cov[αkx, αkx] = αkΣaT
k .

!

To actually get interesting results from the properties set in Definition 3.4, Propo-
sition 3.6 suggests that it will be necessary to maximize αkΣαT

k . However, there is
one assumption in PCA not fully disclosed yet, and it is that the covariance matrix
Σ has distinct eigenvalues. Though having eigenvalues of multiplicities greater than
one is theoretically possible and does not pose problems for the purposes of this
paper, it does pose problems in statistics because principal components are not
uniquely defined (i.e., they are not necessarily ordered). Because such occurrences
are very uncommon, the assumption usually holds (Jolliffe, 27).

Theorem 3.7. (Principal Components) Let Σ be the covariance matrix for x. If Σ
has distinct eigenvalues, then for k = 1, 2,...,n, αT

k is an eigenvector corresponding
to the kth largest eigenvalue of Σ.

Proof. By the third property of Definition 3.4, α1 is derived first. The maximization
of var[αkx] = αkΣαT

k is set up as a Lagrange maximization problem. Let β be the
Lagrange multiplier.

L = α1ΣαT
1 − β(αkαT

k − 1)

Differentiating both sides with respect to α1 yields:

ΣαT
1 − βαT

1 = 0

ΣαT
1 = βαT

1

So β is an eigenvalue of Σ. The fact that β is the largest eigenvalue follows from
the observation that the variance that is being maximized is α1ΣαT

1 = α1βαT
1 =

βα1αT
1 = β, so β must not only be maximized as an eigenvalue, it must also equal

the largest variance.
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We will now look at α2. To satisfy the third property of Definition 3.4, we need
to maximize α2ΣαT

2 with the additional restriction that α2x is uncorrelated with
α1x, i.e., cov[α1x, α2x] = 0. Note that

cov[α1x, α2x] = α1ΣαT
2 = α2ΣαT

1 = α1βαT
2 = βα1α

T
2 = βα2α

T
1 = 0

So α2αT
1 = 0. We can therefore set up the Lagrange maximization problem to be

the following, where γ and δ are the Lagrange multipliers.

L = α2ΣαT
2 − δ(αkαT

k − 1)− γ(α2α
T
1 )

Differentiating both sides with respect to α2 yields:

ΣαT
2 − δαT

2 − γαT
1 = 0

α1ΣαT
2 − δα1α

T
2 − γα1α

T
1 = 0

0− 0− γ = 0
γ = 0

This means ΣαT
2 = δαT

2 .
Thus, δ is an eigenvalue and αT

2 is the corresponding eigenvector, and it is likewise
maximized, but not greater than or equal to β because β was maximized first and
Σ has distinct eigenvalues. By the repetition of this process for αkx for k≥3, we
have eigenvectors αT

k corresponding to the kth largest eigenvalue.
!

Definition 3.8. Principal components are the variables αkx, where αk are the
transposes of the eigenvectors αT

k from Theorem 3.7.

Corollary 3.9. Let A be the matrix that has αk, the kth eigenvector of Σ, as the
kth column. Then Σ = λ1αT

1 α1 + λ2αT
2 α2 +...+ λnαT

nαn.

Proof. Let Λ be the diagonal matrix with eigenvalues from the maximization pro-
cess in Theorem 3.7. Because Σ has eigenvalues and eigenvectors,

ΣA = AΛ

⇒Σ = AΛAT

Therefore, Σ = λ1αT
1 α1 + λ2αT

2 α2 +...+ λnαT
nαn by equation 2.9.

!

Theorem 3.7 shows that the random vector x can be transformed into numerous
ordered principal components and that the eigenvalue corresponding to a given
eigenvector is actually the variance of akx. Corollary 3.9 expands on this and
decomposes the covariance matrix into parts λiαT

i αi. This gives more detail into
exactly how the variation is spread out among individual principal components.

Going back to our example of the one-dimensional vector recorded in six-dimensional
inner product space, the first principal component α1x will probably explain an
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overwhelming majority of the variation in the data simply because the vector varies
in one direction. Of course, the reduction of dimension via PCA can be unclear
in circumstances where there is no clear cutoff for a principal component. Of-
ten, dimensions are reduced until a set percentage of variation, e.g., 80 percent, is
accounted for.

Theorem 3.10. Let T be an n×n symmetric matrix that has distinct eigenvalues.
Then T has exactly n eigenvalues.

Proof. The Spectral Theorem already guarantees at least n eigenvectors, which
gives n eigenvalues. For any eigenvector v ∈ V, we know that

Tv = λv

(λI − T )v = 0

Note that since v $= 0, (λI - T) is a singular matrix that has a determinant of
zero. As seen in Lemma 2.6, the determinant is a polynomial function of λ, which
vanishes at at most n points. T has exactly n eigenvalues.

!
The significance of the deceptively simple theorem above is that by simply find-

ing the eigenvalues and corresponding eigenvectors of the covariance matrix Σ and
ranking the eigenvalues by size, we are effectively performing PCA. There is no
“maximization” procedure needed because the eigenvalues of Σ, as shown in The-
orem 3.7, are already the largest variances of some αk. Of course, the actual
process of finding eigenvalues and eigenvectors in a space with many dimensions
is much more complicated than it seems, and further investigation into this topic
may include statistical inference on principal components and procedures when the
covariance matrix is not fully known. It may also be important to understand the
limitations of PCA in explaining vector behavior. In any case, we hope you enjoyed
this brief overview of some ideas in linear algebra.
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