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Abstract. This paper serves as an introduction to the world of schemes used

in algebraic geometry to the reader familiar with differentiable manifolds. Af-

ter the basic definitions and constructions are motivated and laid out, an in-
teresting result will be given that emphasizes the importance of such devices.

The aim is to introduce some of the ideas, rather than work through theorems

in detail.
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1. A little motivation

The goal of this paper is to introduce the reader to the concept of schemes that
is used widely in modern algebraic geometry. It will use the category of smooth
manifolds as the primary motivation and analogy. Therefore it is assumed that
the reader has some grasp of this subject. It is also assumed that the reader is
familiar with the varieties of classical algebraic geometry as they serve as central
objects of study in the subject and will appear from time to time in this paper. To
prevent redundancy, all rings used in this paper are assumed to be commutative.
The author would also like to thank his mentor for this project, Tom Church, for
his help in choosing this topic and his guidance through it.

2. What are schemes?

There are really two parts to a scheme: a topological space, and a thing called
the structure sheaf which we think of as functions on the space, all of which is
subject to a few conditions regarding compatibility.

For the sake of analogy, let’s consider manifolds. Topologically, a manifold M is
a space that is “locally Euclidean,” that is, there is an open cover {Ui} of M
such that each Ui is homeomorphic to some Rn. In the smooth category though,
this is not enough, the coordinate patches must satisfy compatibility conditions
that allow us to define what we mean by a smooth function. In fact, we may
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have several essentially distinct smooth structures on a topological manifold, for
example, exotic spheres. Another equivalent way to define a manifold is sort of by
declaring which functions are to be smooth, and then demanding that locally this
looks like the smooth functions on Rn. We will come back to this second way later.

Thus, before we can define what a general scheme is, we need objects that will
play the role that the Rn’s do in the manifold categories. These are spaces associated
to a ring R.

3. Affine Schemes

Definition 3.1. The spectrum of a commutative ring R, is the set of prime ideals
in R, and is denoted by Spec(R)

Classically, we have a natural identification of the maximal ideals in C[x1, . . . , xn]
and points in Cn. These points are still here, but even for a polynomial ring over
C, we’ve just added in a bunch of extra points. Why? One reason is that if we
have a homomorphism of rings f : R → S, we want the Spec operation to give
us a map f∗ relating Spec(R) and Spec(S). A natural way to do this would be
to define f∗(p) = f−1(p), which will be a prime ideal in R, but not necessarily a
maximal one, even if p is maximal. Thus, we need all prime ideals to be included.
The non-maximal points correspond to varieties.

Note that f∗ goes the opposite direction of f : from Spec(S) to Spec(R).
We never really think of this as just a set, though. We equip it with a topology,

making it a topological space, the first part of a scheme.

Definition 3.2. The closed sets of Spec(R) are the sets of the form V (I) = {p ∈
Spec(R)|I ⊆ p}, where I is any ideal in R. This is called the Zariski topology on
Spec(R)

It is fairly easy to verify that this is in fact a topology, at least given the facts
that V (I) ∩ V (J) = V (I + J) and V (IJ) = V (I) ∪ V (J).

The map f∗ we had from before is now a continuous map from Spec(S) to
Spec(R).

However, this topology is often very far from being a nice one: it’s not usually
Hausdorff, or even T1. In fact, the closed points will be exactly the maximal ideals
in R, since V (p) is the closure of {p}.

There are certain open sets of a spectrum that play a key role, we introduce
them now.

Definition 3.3. The distinguished open sets of a ring R are the open sets of the
form Spec(R)f = {P ∈ Spec(R)|f /∈ P} = Spec(R) \ V (f).

These sets form a basis for the Zariski topology on Spec(R).

Now we have a topological space to work with. We’re not done yet, though. One
of the central ideas of algebraic geometry is thinking of rings as sets of “functions”
on certain spaces, namely their spectra. Also, in analogy with smooth manifolds,
we really care about the “functions” more than the space, since they may not be
completely determined by the space. So we need a way to think of R as functions
on Spec(R), and here’s where things get complicated.
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To really grasp what we mean by functions on a space, we need the notion of a
sheaf.

Definition 3.4. A sheaf of rings OX on a topological space X is an assignment
of a ring OX(U) to each open set U in X, together with, for each inclusion U ⊆ V
a restriction homomorphism resV,U : OX(V ) → OX(U), subject to the following
conditions:

• resU,U = idU
• If U ⊆ V ⊆W , then resV,U ◦ resW,V = resW,U
• For each open cover {Uα} of U ⊆ X and for each collection of elements
fα ∈ OX(Uα) such that for all α, β, if resUα,Uα∩Uβ (fα) = resUβ ,Uα∩Uβ (fβ),
then there is a unique f ∈ OX(U) such that for all α fα = resU,Uα(f)

We think of the elements of OX(U) as “functions” defined on U . The restriction
homomorphisms correspond to restricting a function on a big open set to a smaller
one. Intuitively, the axioms say that these elements behave as functions should:

• Restricting a function to its original domain does nothing at all.
• Restricting, and then restricting again is the same as restricting all at once.
• If we have functions defined on some different open sets, and these functions

agree on the overlaps, then we can glue them all together to get a unique
function on the union of these open sets, and if we restrict this glueing to
one of the open sets, we get the corresponding function back.

Definition 3.5. A topological space equipped with a sheaf of rings on it is called
a ringed space.

For examples, consider the manifold category.

Example 3.6. Let M be a smooth manifold. Then for each open set U of M ,
we have C(U), the set of real-valued continuous functions on U . Under point-wise
addition and multiplication, this is a ring. If V ⊆ U then we have the restriction
homomorphism C(U)→ C(V ) given by actually restricting functions. It is easy to
verify that this in fact a sheaf. Together with the next example, this is one of the
prototypical examples of a sheaf, and serves as a basis for much of the intuition.

Example 3.7. With M still a smooth manifold, consider the sets C∞(U) of C∞

real-valued functions on U , where U is an open set in M . These are still closed under
pointwise addition and multiplication, and the same restriction maps as above still
work. It is easy to verify that this, too, is a sheaf. In fact, it is a “subsheaf” of the
previous example.

One interesing thing about smooth manifolds is that they can also be defined the
other way around; instead of defining them as a topological space with a certain
open cover satisfying some conditions, and then deriving a sheaf from that, we can
simply define them as a space together with a sheaf satisfying a similar property.
This definition is equivalent to the coordinate charts definition, and will function
as motivation for our later definition of general schemes.

Definition 3.8. A smooth manifold is a topological space, together with a sheaf of
real-valued continous functions, subject to the condition that there exists an open
covering {Uα}, with the restriction sheaf to each Uα is isomorphic to some Rn. Here
Rn is equipped with the sheaf of standard differentiable functions.
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In the sequel, we will abuse notation and often write just a space X,Y , etc.
when we really mean that space together with a given sheaf of rings on it. Precisely
which sheaf of rings will be clear from context.

There are other sorts of sheaves too, for instance sheaves of abelian groups, and
more generally, of R-modules over some ring R, defined in exactly the same way,
but we won’t consider them here.

We should also define what a map between sheaves is.

Definition 3.9. Let X be a topological space, and OX ,O′X be two sheaves of rings
on X. Then a morphism ϕ : OX → O′X is a collection of ring homomorphisms
ϕ(U) : OX(U) → O′X(U), one for each open set U ⊆ X, which commute with the
restriction maps. That is, if V ⊆ U ⊆ X are open sets, then the following diagram
commutes.

OX(U)
ϕ(U) //

resU,V

��

O′X(U)

resU,V

��
OX(V )

ϕ(V )
// O′X(V ).

There are also a few ways to create a sheaf from an existing one.
Given a sheaf OX on a space X and an open subset U ⊆ X, we can naturally

define what it means to restrict OX to U .

Definition 3.10. If we have a sheaf O on a space X and U an open subset of X
we can define a sheaf O|U on U by taking O|U (V ) = O(V ), for any open subset V
of U , and by keeping the same restriction maps. This will clearly be a sheaf if O is.

We can also push sheaves forward along continous functions.

Definition 3.11. Let X and Y be topological spaces, OX a sheaf on X, and
f : X → Y be a continuous function. We define the pushforward sheaf f∗OX on Y
by declaring f∗OX(U) := OX(f−1(U)) for any open set U in Y , with the obvious
restriction maps. It is eay to check that this will be a sheaf.

One more way of constructing sheaves deserves a comment. If we have a sheaf
on X and a basis of open sets for X, then the sheaf is completely determined by its
values on the basis. That is, to define a sheaf on X, it is enough to declare what it
does on a basis and check that it is a sheaf. Once we have done so, we are assured
of this sheaf being entirely defined. This is not entirely obvious, but we will not
prove it here.

We use this fact to define a certain natural sheaf of rings on the space Spec(R)
via defining it on the distinguished open sets.

Definition 3.12. The structure sheaf of Spec(R) is the scheme OSpec(R) defined
by OSpec(R)(Spec(R)f ) = Rf , the localization of R at the element f .

Again, we will abuse notation and from now on just say Spec(R) when we mean
the set of prime ideals in R together with the Zariski topology and this sheaf of
rings on it.

Spectra of rings are our first example of a scheme, and will play the same part
in defining general schemes as Rn do in defining smooth manifolds. Thus, we give
them a name.
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Definition 3.13. A spectrum of a ring (with the sheaf of rings defined above) is
also called an affine scheme.

Now, we offer a few examples.

Example 3.14. If k is a field, then Spec(k) is the one point space withOSpec(k)(∗) =
k

Example 3.15. Spec(Z) is one point for each prime number (corresponding to the
maximal ideal (p)), as well as one non-closed point, (0).

When the ring has nilpotents, an interesting and entirely non-classical phenom-
enon occurs.

Example 3.16. Let k be a field, and R = k[x]/(x2). Then R has only one prime
ideal, namely, (x), so Spec(R) is one point, with k[x]/(x2) at that point. The key
fact here is that functions are no longer determined by their values. In particular,
the function x is everywhere zero, but is not the zero function.

A question that arises is: what exactly do we mean when we think of elements
of a ring R as functions on Spec(R)? There is a way in which we can sort of make
this rigorous.

Definition 3.17. For a point p ∈ Spec(R), we have the following canonical map:

R→ R/(p)→ κ(p),

where κ(p) is the fraction field of R/(p). For an element f ∈ R, we define f(p) to
be the image of f under this map.

This definition does not always yield actual functions though, as in the following
example.

Example 3.18. Let X = Spec(Z), and consider the element f = 7 ∈ Z. Then
f((2)) = 1 in the ring Z/2Z, f((5)) = 2 in the ring Z/5Z, and f((7)) = 1 in the
ring Z/7Z. In particular, note that the values of f lie in defferent fields.

The set {p ∈ Spec(R)|f(p) = 0} still does make sense though. Also, if k is an
algebraically closed field, and R = k[x1, . . . , xn], then for all maximal ideals m,
κ(m) = k, since it is a finite extension of an algebraically closed field. Therefore,
they really are functions in the classical case.

4. General Schemes

With the notion of affine scheme and isomorphism of sheaves, we can define a
general scheme.

Definition 4.1. A scheme is topological space X, together with a sheaf of rings
which is locally affine in the following sense: the is an open covering {Uα} of X so
that the restriction of OX to each Uα is isomorphic to an affine scheme.

This is just like the smooth manifold category, where we can define a smooth
manifold to be a topological space with a sheaf of differentiable functions on it (the
sheaf of rings), that is locally isomorphic (in the same sense as above) to some Rn
with its standard sheaf of differentiable functions.
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Now that have objects to study we want to define maps between them. For the
smooth manifold case, a continuous map ψ : M → N is C∞ if for all differentiable
functions f defined on an open set U of N , the pullback f ◦ ψ is differentiable
on ψ−1U ⊆ M . We would somehow like to translate this into a definition of a
morphism of schemes. To do this notice that a continous function ψ : M → N
between differentiable manifolds gives a map of sheaves on N

ψ] : C(N)→ ψ∗C(M)

by sending f ∈ C(N)(U) to its pullback f ◦ ψ ∈ ψ∗C(M)(U). With this then, a
continous map ψ is differentiable if ψ] takes C∞(N) into ψ∗C∞(M). That is, the
diagram

C∞(N)

��

ψ] // ψ∗C∞(M)

��
C(N)

ψ] // ψ∗C(M)

commutes, where the vertical arrows are the inclusion maps. The problem with
adapting this definition directly to schemes is that the structure sheaf on a scheme
is not a subscheme of a sheaf of functions that already exists. Therefore, we need
to specify a continous map ψ : X → Y and a pullback map ψ] : OY → ψ∗OX . We
also need a compatibility condition like the above diagram. The only thing that
makes sense involves zeros of functions. Thus, we have the following defintion.

Definition 4.2. A morphism between two schemes X and Y is a continuous map
ψ : X → Y along with a map of sheaves on Y ψ] : OY → ψ∗OX subject to the
condition that if for any point p ∈ X, any neighborhood U of q = ψ(p) in Y , and
any f ∈ OY , f vanishes at q if and only if ψ]f vanishes at p.

This may all seem like a lot of unnecessary complications. Why don’t we just
consider affine schemes? The first answer is that there are interesting schemes that
are not affine, such as projective schemes. The second answer is we need more
general schemes to get a “nice” category, and the third answer is that we don’t
really gain anything at all considering affine schemes over general schemes. That
is, anything that we could do with affine schemes, we could do equally well with just
commutative rings. The following theorem is a rigorous statement of this sentiment,
but will be stated without proof.

Theorem 4.3. Let X be an arbitrary scheme and R a ring. Then there is a
bijection

Hom(X,Spec(R)) ∼= Hom(R,OX(X))

That is, the set of scheme morphisms from X to Spec(R) can be identified with ring
homomorphisms from R to the ring of global sections of X.

In particular, if X = Spec(S) is also an affine scheme, then the maps Spec(S)→
Spec(R) are basically the same thing as maps R → S, except going the other
direction. This is a statement of the fact the category of affine schemes is equivalent
to the opposite category of the cateory of commutative rings. This fact will be used
in the upcoming constructions.
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5. Constructions

We will now define a few useful constructions on schemes.
One of the basic ways to construct new topological spaces out of old ones is to

glue them together. We can also do this to schemes.

Construction 5.1. Consider a collection of schemes {Xα} and an open set Xαβ

in Xα for each β 6= α. If we also have isomorphisms of schemes

ψαβ : Xαβ → Xβα

with the conditions that ψαβ = ψ−1
βα ,

ψαβ(Xαβ ∩Xαγ) = Xβα ∩Xβγ

and
ψβγ ◦ ψαβ |(Xαβ∩Xαγ) = ψαγ |(Xαβ∩Xαγ)

then we can define a new scheme X by identifying the Xα along the maps ψαβ .

Definition 5.2. Given morphisms of schemes f : X → S and g : Y → S, the fiber
product of X and Y over S is a scheme X ×S Y together with maps X ×S Y → X
and X ×S Y → Y that makes the following diagram a pullback:

X ×S Y //

��

X

f

��
Y g

// S.

By virtue of the fact that fiber products are pullbacks, they are unique if they
exist. Also note that the fiber product really does depend on the maps f and g,
despite the terminology and notation.

We will now go about actually constructing these things. We will start as always
by considering affine schemes.

Since affine schemes are dual to commutative rings, a pushout of commutative
rings, dualized, would make a perfectly good fiber product of affine schemes. Now
we notice that the following diagram is, in fact a pushout in the category of com-
mutative rings:

R
f //

g

��

A

��
B // A⊗R B,

where the maps f and g give A and B R-algebra structures, and the tensor product
is taken with this structure in mind. This diagram is a pushout by the universal
property of the tensor product.

Dualizing this we get:

Definition 5.3. Given maps φ : Spec(A)→ Spec(R) and ψ : Spec(B)→ Spec(R),
we define the fiber product to be

Spec(A)×Spec(R) Spec(B) := Spec(A⊗R B).

For arbitrary schemes, we simply decompose them into affine schemes, apply this
definition, and glue them back together using the gluing construction.



8 PETER NELSON

6. Some Results

We will now demonstrate the interaction of schemes and algebraic geometry
with another area of mathematics, namely field theory. The proofs of the results,
however, are a little too far afield.

Let k0 be any field at all, k the algebraic closure of k0 and X a variety over k
defined by polynomials f1, . . . fn. If all the coefficients of the fi are in k0, then we
can consider the variety X0, which is defined in the same way as X, but with k0 as
the base field. Let R = k[X1, . . . Xm]/(f1, . . . fn) be the coordinate ring of X and
R0 = k0[X1, . . . Xm]/(f1, . . . fn) be that of X0. Then R = R0 ⊗k0 k, so by duality,

X = X0 ×Spec(k0) Spec(k)

In fact, the other way also holds. If we have affine varieties X over k and X0 over
k0 satisfying a minor finiteness condition, and so that the last equation is true, then
they are essentially “defined by” the same set of polynomials. But this equation
can hold for any schemes at all; it does not depend on them being affine. Thus, we
can use it as a jumping off point to translate between the algebraically closed case
and the non-algebraically closed case.

To this end, we now define an action of the Galois group Gal(k/k0) on the
topological space X.

Definition 6.1. Let σ ∈ Gal(k/k0), and let ϕ : Spec(k) → Spec(k) be the map
of schemes induced by σ−1. Then we have a map of schemes idX0 × ϕ : X =
X0 ×Spec(k0) Spec(k)→ X0 ×Spec(k0) Spec(k) = X. We define σX to be the map of
topological spaces this morphism defines.

One checks that in fact (σ · τ)X = σX ◦ τX and so we get the Galois group acting
on the space X. We now can state the following theorem:

Theorem 6.2. Let X0 be a scheme over k0, k be the algebraic closure of k0,
X = X0 ×Spec(k0) Spec(k), and p be the canonical projection map p : X → X0.
Then p is surjective, open, and closed. Also, if x, y ∈ X, then p(x) = p(y) if and
only if x and y are in the same orbit of the action by the Galois group. In particular,
X0 is, as a topological space, the quotient of X by the action of the Galois group.

Note that for the nontrivial action of the Galois group to exist, and thus this
result, we needed to venture into the realm of sheaves.

Another related result, concerns rational points.

Definition 6.3. A closed point x ∈ X0 is called rational over k0 if κ(x) = k0.

Such points are of great interest. The following result helps to find them.

Theorem 6.4. If k0 is perfect (in particular, finite or characteristic 0), and x ∈ X,
then under a mild finiteness condition, p(x) is rational over k0 if and only if x is a
fixed point of the action of the Galois group.

And finally, one example using these theorems.

Example 6.5. Take k = C, k0 = R, and X0 = Spec(R[X,Y ]/(X2 + Y 2 − 1)).
Then X, without its nonclosed point, looks like a sphere with north and south
poles at infinity. The real points lie along the equator, and the action of the Galois
group (complex conjugation) exchanges the two hemispheres. Thus, X0 looks like
a disc, and the rational points are the ones along the boundary, corresponding to
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the maximal ideals (X − α, Y − β), with (α, β) on the unit circle. The rest of the
closed points correspond to the maximal ideals (X2 +Y 2− 1, αX +βY − 1), where
(α, β) is in the interior of the unit disc.
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