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ABSTRACT. Neo-Riemannian theory developed as the mathematical analysis
of musical trends dating as far back as the late 19th century. Specifically, the
musical trends at hand involved the use of unorthodox sets of pitches. These
sets had the characteristic of retaining their triadic harmonies, but of sound-
ing atonal. Neo-Riemannian theory not only allowed for the mathematical
construction and description of these sets, some of which later were called the
Hexatonic Systems, but also a means to explain how these systems were used.
Involving the application of the PLR Operations, the analysis of the Hexatonic
Systems is a primary component of neo-Riemannian theory. In this paper, I
give a self-contained description of Rick Cohn’s Hexatonic Systems, as well as
the group-theoretic structures at hand.
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1. INTRODUCTION
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Neo-Riemannian theory was initiated by David Lewin in the late 20th century,

Date: August 31, 2009.

reviving the theory originally established by Hugo Riemann, a music theorist of the
late 19th century, after whom the theory is named. Riemann developed a system
to relate triads to each other, and, continued by Lewin, this system was expanded
to allow for a more complete description of triadic sets via the P, L, and R oper-
ations. Adding to this theory, Rick Cohn developed the Hexatonic Systems, sets
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of pitches whose mathematical and musical construction involved PLR manipula-
tion of triadic strucutres. As a major focus of neo-Riemannian theory, the P, L,
and R operations will be a crucial component of this paper. More specifically, this
paper will explore the mathematical derivation of the Hexatonic Systems through
the PLR operations, focusing greatly on the mathematical implications involved in
this derivation.

There are four Hexatonic Systems, each of which denotes a set of six pitch
classes. In music, these systems manifest themselves as collections of pitches such as
scales and chords. In the analysis of music, Hexatonic Systems often sound atonal
despite their triadic harmonies. Hence, because of this atonal quality, they are
not accessible through traditional, tonal analyses. Recognizing Hexatonic Systems
under neo-Riemannian theory, however, allows one to understand the relationship
between pitches. Generally, it helps to identify relationships under a Hexatonic
System or between Hexatonic Systems where, under other means, no relationships
seem to exist.

Mathematically, the Hexatonic Systems are derived by the application of the
L and P operations to the set of major and minor triads. The mathematical
components of the Hexatonic Systems which I will focus on deal mainly with the
PLR operations and the groups that they generate.

2. THE BASICS

To understand the Hexatonic Systems under neo-Riemannian theory, it is nec-
essary to establish some pre-requisite knowledge. This knowledge is primarily a
knowledge of music: namely, pitch and the major and minor triads. These topics,
however, will be explained within a mathematical context.

2.1. Pitch. Pitch is a fundamental concept in music. Simply defined, the term
pitch refers to the specific frequency of a sound. Though there are many frequencies
and corresponding pitches, it is through a specific grouping of pitches that we
structure music. Much of Western music, for example, is based on the major scale,
a special subset of the 12-tone system. Briefly recalled now, this system is founded
on 12 fundamental pitches. Though there are more than 12 pitches, every pitch of
this system is a whole number of octaves from these 12 fundamental pitches.

To understand what an octave is mathematically, it is useful and common to
arrange pitches on a logarithmic scale base 2, where the unit for this scale is an
octave. In other words, an octave is such that if pitch-1 has twice or half the
frequency as that of pitch-2, then pitch-1 and pitch-2 are octaves of each other.

From this system, we define an equivalence relation on pitches by saying that
two pitches are equivalent if they differ by an integer amount of octaves. The
equivalence classes which result from this equivalence relation are called the pitch
classes.

In the 12-tone system, there are 12 commonly used pitch classes which divide an
octave into 12 equal parts on a logarthmic scale. These pitch classes can be seen
in the following.

A|A# | B|C|C# |D|D# |E|F|F#|G|G#|A
Bb Db Eb Gb Ab
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The pitch classes are named by a combination of letters, sharps (#), and flats
(b). The interval between each adjacent pitch class is called a half-step or semitone.
Pitches with two names are called enharmonically equivalent pitches.

2.2. The Integer Model of Pitch. The integer model of pitch arises from the
redefinition of pitch classes to integers modulo 12, where the pitch class C' is taken
as 0 and can be seen as follows.

AjA# | B|C|C#|D | D#|E|F |F#|G|G#|A
Bb Db Eb Gb Ab
910 |11|0| 1 |2| 3 |4|5|6 7|89

Addition and subtraction is modulo 12, thus identifying the pitches with Zi,.
For example, 10 + 3 = 1 mod12, and 2 — 3 = 11 mod12. Modular arithmetic can
be used to determine musical intervals between pitch classes. For example, the
musical interval between F' and D is 5 — 2 = 3. An interval of 3 is described as an
interval of 3 semitones, or half-steps. Furthermore, modular arithmetic allows for
a mathematical definition of musical transposition and inversion.

Definition 2.1. Musical transposition, T, is mathematical translation such that

Th: 72— 7
T.(x) =x +n.

Definition 2.2. Musical inversion, I,, is mathematical reflection such that

1,7 —Z
I(z)=—z+n.

Transposition and inversion map a pitch, a pitch-class, or, more importantly, a
triad to any another pitch, pitch-class, or triad. Transposition and inversion will
be necessary later.

2.3. The Major and Minor Triads. Through the integer model of pitch, the
major and minor triads can also be defined mathematically. A triad is an ordered
set of three pitches which are sequentially called the ‘root’, the ‘third’, and the
‘fifth’. A magor triad is an ordered set of three pitches in which the third is four
semitones above the root, and the fifth is seven semitones above the root. The C
major triad, for example, is C, E, G, or {0,4,7}. A minor triad, on the other
hand, is an ordered set of three pitches in which the third is three semitones above
the root, and the fifth is seven semitones above the root. The ¢ minor triad, for
example, is C, Eb, G, or {0,3,7}.

The order of the triads does not matter when playing the triads aloud. However,
the ordering that is written is helpful for establishing clear definitions under the
mathematical system in use. Note that a triad is conventionally named after its
root. Also note that, by convention, major triads are associated with upper-case
letters, whereas minor triads are associated with lower-case letters. This can be
shown in the following table of all the major and minor triads.
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Major Triads | Minor Triads
C=10,4,7) | (0,3,7) =¢
C#,Db = (1,5,8) | (1,4,8) = c#,db
D =1(2,6,9) | (2,5,9) =
D# Eb = (3,7,10) | (3,6,10) = d#, eb
E={4,811) | (4,7,11) =e

F=(5,9,0) | (5,8,0) = f
F#,Gb = (6,10,1) | (6,9,1) = f#,¢b
G=(7,11,2) | (7,10,2) =
G#, Ab = (8,0,3) | (8,11,3) = g#,ab
A=19,1,4) | (9,0,4) =a
A#, Bb = (10,2,5) | (10,1,5) = a#,bb
B =(11,3,6) | (11,2,6) =b

3. THE PLR OPERATIONS

Having defined the integer model of pitch and the major-minor triads, we can
now move on to neo-Riemannian theory. Specifically, we will be dealing with the
P, L, and R operations.

The PLR operations are bijections which map a major triad to a minor triad,
and vice versa.

Definition 3.1. The parallel operation, P, maps a major triad to its parallel
minor triad, and vice versa. A major triad’s parallel minor has a third which is one
semitone below the third of the major triad. A minor triad’s parallel major has a
third which is one semitone above the third of the minor triad. All other pitches
between parallel triads are the same.

Example 3.2. An example of the P operation is as follows:
P(C)=cand P(c)=C
or P{0,4,7) =(0,3,7) and P(0,3,7) = (0,4,7).

Definition 3.3. The leading tone exchange operation, L, maps a major triad to
the minor triad whose fifth is one semitone below the root of the major triad. It
maps a minor triad to the major triad whose root is one semitone above the fifth
of the minor triad. All other pitches between leading tone exchange triads are the
same.

Example 3.4. An example of the L operation is as follows:
L(C)=eand L(e) =C
or L(0,4,7) = (4,7,11) and L {4,7,11) = (0,4, 7).

Definition 3.5. The relative operation, R, maps a major triad to its relative
minor triad, and vice versa. The relative minor of a major triad has a root that is
two semitones above the major triad’s fifth. The relative major of a minor triad has
a fifth which is two semitones below the root of the minor triad. All other pitches
between relative triads are the same.

Example 3.6. An example of the R operation is as follows:
R(C)=a and R(a) =C
R{0,4,7) = (9,0,4) and R (9,0,4) = (0,4, 7).
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The PLR operations generate the group known as the PLR-group. The PLR-
group consists of all composites of the P, L, and R operations. It is helpful to
consider the PLR operations as certain permutations of the set of major and minor
triads, and the PLR-group consequently as a subgroup of all permutations of the
set of major and minor triad. Through this particular sense of the PLR operations
and the PLR-group, it is logical to look at the operations separately as subgroups
of the PLR-group. The group (L, P), the LP-group, is a subgroup of the PLR-
group that consists of all the composites of L and P. When (L, P) acts on the set
of all major and minor triads, orbits of the triads are produced. The pitch classes
which make up the triads of each orbit are called a Hezxatonic System. There are
four orbits generated by (L, P), and hence there are four Hexatonic Systems. To
demonstrate the derivation of these systems, however, we must first define group
actions.

Definition 3.7. A group action of a group G on a set X is a function G x X — X,
or (g,x) — gz, such that

(1) ex = x Yz € X where e is the identity element of G
(2) (91,92)7 = 91(ga1).

Lemma 3.8. If G is a group and X is a set, then a group action of G on X may
be defined as a group homomorphism h : G — Sym(X).

Definition 3.9. If G acts on X, the orbit of z € X is orbit(z) = {gz |g € G}.

4. THE HEXATONIC SYSTEMS

The group (L, P) is the subgroup of the PLR-Group generated by L and P, and
contains all composites of L and P. The orbits produced when (L, P) acts on the
set of major-minor triads are each composed of six triads. The pitch classes which
make up each set of these six triads are the Hexatonic Systems. This construction
of the Hexatonic Systems was conceptually developed by Richard Cohn, as can be
seen in [2]. It is important to note that a Hexatonic System is not an orbit, but
the set of pitch classes which make up the triads of an orbit. It is also important
to note that the Hexatonic Systems are not disjoint.

Example 4.1. The derivation of the Hexatonic Systems can be shown as follows.
G = (L, P) C Sym(X) where X is the set of all major and minor triads. We assume
now that (L, P) has six distinct elements: idx, P, LP, PLP, LPLP, PLPLP. This
is assumed to demonstrate the calculation of the Hexatonic Systems, but it will be
proved later that (L, P) does indeed have six elements. Note that L? = idx = P2
Also note that idx is used instead of e to represent the identity element. This is
because e is used to represent the minor chord, e.

Thus, applying these six members to the C' major triad, we calculate the orbit of
the C' major triad under (L, P):

1dxC =C
PC=c
LPC = Lc = Ab

PLPC = PAb = ab

LPLPC =Lab=F

PLPLPC =PE=ce

Therefore, orbit(C) = {C, ¢, Ab,ab, E, e}.
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The pitches underlying orbit(C') are called a Hexatonic System. Therefore, Hex(C) =
{0,3,4,7,8,11}.

Continuing this application to the rest of the triads, it can be shown that only four
Hexatonic Systems exist.

Lemma 4.2. Ify € orbit(x), then orbit(x) = orbit(y). (This is standard and will
not be proved here).

Theorem 4.3. There are only four orbits produced when the group G = (L, P) acts
on the set of major-minor triads; hence, there are only four Hezatonic Systems.

Proof. Direct computation shows that orbit(C) = {C, ¢, Ab, ab, E, e}. The resulting
Hexatonic System is Hex(C) = {0, 3,4,7,8,11}.

Continuing this method of computation through the major triads to C#, orbit(C#) =
{C#,c#,A,a, F, f} by the following calculation:

idxC# = C#

PC# = c#

LPC# = Lc#t = Ab

PLPC# = PAb = ab

LPLPC# = Lab=F

PLPLPC#=PFE =c¢

And the resulting Hexatonic System is Hex(C#) = {1,4,5,8,9,0}.

Continuing through the major triads to D, orbit(D) = {D,d, Bb,bb, F#, f#} by
the following calculation:

idxD =D

PD = d#

LPD = Ld# = Bb

PLPD =PBbh=1h

LPLPD = Lbb = F#

PLPLPD = PF# = f#

And the resulting Hexatonic System is Hex (D) = {2,5,6,9,10, 1}.

Continuing through the major triads to D#, orbit(D#) = {D#,d#, B,b,G, g} by
the following calculation:

idx D# = D#

PD# = d#

LPD# = Ld# =B

PLPD#=PB=%b

LPLPD#=Lb=G

PLPLPD#=PG=g

And the resulting Hexatonic System is Hex(D#) = {3,6,7,10, 11, 2}.

It is unnecessary to continue from here. Each orbit calculated thus far has six
members, representing all twenty-four of the major and minor triads without repi-
tion. This is evident from the fact that the orbits are pairwise disjoint: orbit(C') N
orbit(C#) = 0, orbit(C#) N orbit(D) = 0, etc. Thus, because each major and
minor triad is included in these four orbits, by Lemma 3.2, continuing to apply
(L, P) through the triads will only yield one of the four orbits already calculated.
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So, there can only be four orbits. Thus, by definition, there must only be four
Hexatonic Systems, as each Hexatonic System is based on an orbit. ([

Theorem 4.4. The group (L, P) has siz elements.

Proof. The elements idxC, PC, LPC, PLPC, LPLPC, and PLPLPC are each a
member of the group (L, P), and they are all different by the computations shown
above. This implies, by Remark 4.4, that idx, P, LP, PLP, LPLP, and PLPLP
are all different. Therefore, (L, P) has at least six members, or |(L, P)| > 6.

For permutations longer than these six configurations, we observe three things:

1. Observation: L? = idy = P2. Consequently, only alternating words will be
significant.

2. Observation: L(PLPLP)C = C by direct computation. It is known that
9T, = Thg and I,g = gI,, V g € (P,L,R) and V n € Zqo [1]. It is also known
that every major chord is of the form 7,,C for some n € Zi5, and every minor
chord is of the form I,,C for some n € Zjs [1]. It can therefore be shown that
L(PLPLP) =idx:

Applying T,, to L(PLPLP)C = C, we get

T,.L(PLPLP)C =T,C

= L(PLPLP)T,,C =T,C V¥ n € Z

= L(PLPLP) =idx for the major chords.

Similarly for the minor chords:

Applying I, to L(PLPLP)C = C, we get

I,L(PLPLP)C =I,C

= L(PLPLP)I,C =1,C V¥ n€Z

= L(PLPLP) =idx for the minor chords.

Therefore, L(PLPLP) = idx for all major and minor chords under any transposi-
tion or inversion

3. Observation: LC' = e = PLPLPC by direct computation. This implies that
L=PLPLP

From these three observations, we conclude that any (alternating) permutation
longer than L(PLPLP) will be a repetition of the six original elements: idxC),
PC, LPC, PLPC, LPLPC, and PLPLPC. We also conclude that any permu-
tation ending in L is equivalent to a permutation ending in PLPLP, which is
equivalent to the permutations already considered.

= (L, P) must have at most six elements, or [(L, P)| < 6.

Therefore, because |(L, P)| > 6 and (L, P)| <6 = [(L, P)| = 6. O

Example 4.5. The sets of pitch classes encompassed by the Hexatonic Systems
have been used throughout music, even before this mathematical formulation of the
Hexatonic Systems was developed. One example is the augmented scale: C, D#,
FE, G, G#, B. The augmented scale is the Hexatonic System underlying the orbit
of the C' major triad. The augmented scale can be cited in classical music such
as Franz Liszt’s Die Legende vom heiligen Stanislaus [2] from the early nineteenth
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century, and in jazz music from the twentieth century.

Identifying Hexatonic Systems in a piece of music allows one to better understand
the progression of pitches underneath the Hexatonic System and the progression of
pitches from one Hexatonic System to another.

5. FURTHER INQUIRY

5.1. The Group (L, P) is Isomorphic to S;. As shown in Section 4, (L, P) is
a group of order 6. Consequently, it can be determined as to whether (L, P) is
isomorphic to the only other groups of order 6. It is well known that every group of
order 6 is either Zg or S3, where S5 is the group of permutations on three elements.
Because Zg is abelian and S3 is not abelian, we need only to check if (L, P) is
abelian.

Definition 5.1. A group G under the operation e is abelian if it is commutative.
That is,

Va,beG,aeb=beq
Theorem 5.2. The group G = (L, P) is isomorphic to Ss.

Proof. The group G = (L, P) is a group under the operation: function composition.
G is isomorphic to S3 if G is not abelian.

Assume G is abelian.

This implies that for P,L € G, PL = LP.

Given L = PLPLP and PL=LP = L =LPPLP.

Because P?> = idx = L?, L = LPPLP can be written as L = Lidx LP = LLP =
idx P = P.

Thus, L = P, which is a contradiction.

Therefore, G is not commutative and, obviously, not abelian.

Thus, G is isomorphic to Ss. (I

5.2. The Groups (L,R) and (P, R). Besides (L, P), the other subgroups of
(P, L, R) that can further be considered are (L, R) and (P, R).

In [1], it is proved that the PLR group is equal to (L, R), so in this case we obtain
the chromatic system Zi,.

When the group (P, R) acts on the set of major and minor triads, the Octatonic
Systems are produced. The same method used to compute the Hexatonic Systems
can be used to derive the Octatonic Systems. Only the results will be shown here.
No theorems or proofs about the Octatonic Systems will be given.

Example 5.3. The derivation of the Octatonic Systems can be shown as follows.
G = (P,R) C Sym(X) where X is the set of all major and minor triads. We assume
that (P, R) has eight elements: idx, P, RP, PRP, RPRP, PRPRP, RPRPRP,
and PRPRPRP. Note that R? = idx = P2

Then, by applying idx, P, RP, PRP, RPRP, PRPRP, RPRPRP,and PRPRPRP
to the C' major triad, we calculate the orbit of the C' major triad under the group
(P, R):

idxC =C

PC=c

RPC = Rc= D#

PRPC = PD# = d#

RPRPC = Rd# = F#
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PRPRPC = PF# = f#

RPRPRPC = Rf#t=A

PRPRPRPC = PA=a

Therefore, orbit(C) = {C, ¢, D#, d#, F'#, f#, A a}, and Oct(C) = {0,1, 3,4,6,7,9,10}.

Continuing through the major triads to C#, we calculate the orbit of the C# major
triad under the group (P, R):

idxC# = C#

PC# = c#

RPC#=Rct=F

PRPC#=PE =c¢

RPRPC# = Re=G

PRPRPC#=PG=yg

RPRPRPC# = Rg = A#

PRPRPRPC# = PA# = a#

Therefore, orbit(C#) = {C#,c#, E, e, G, g, A#, a#}, and Oct(C#) = {1,2,4,5,7,8,10,11}.

Continuing through the major triads to D, we calculate the orbit of the D ma-
jor triad under the group (P, R):

< P,R >:

idxD =D

PD=d

RPD =Rd=F

PRPD =PF =f

RPRPD = Rf = G#

PRPRPD = PG# = g#

RPRPRPD = Rg# =B

PRPRPRPD = PA#=1b

Therefore, orbit(D) = {D,d, F, f, G#, g#, A, a}, and Oct(D) = {2,3,5,6,8,9,11,0}.
Notice that the orbits found in this example are pairwise disjoint, suggesting that
all 24 of the major-minor triads are included.

These are the familiar octatonic scales found in Arabic music for centuries, as well as
Jazz and other 20th century music. Hence, their recent mathematical development
is especially interesting.
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