
FOURIER ANALYSIS USING REPRESENTATION THEORY

NEEL PATEL

Abstract. In this paper, it is our goal to develop the concept of Fourier

transforms by using Representation Theory. We begin by laying basic def-

initions that will help us understand the definition of a representation of a
group. Then, we define representations and provide useful definitions and the-

orems. We study representations and key theorems about representations such

as Schur’s Lemma. In addition, we develop the notions of irreducible repre-
senations, *-representations, and equivalence classes of representations. After

doing so, we develop the concept of matrix realizations of irreducible represen-

ations. This concept will help us come up with a few theorems that lead up to
our study of the Fourier transform. We will develop the definition of a Fourier

transform and provide a few observations about the Fourier transform.
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1. Essential Definitions

Definition 1.1. An internal law of composition on a set R is a product map

P : R×R→ R

Definition 1.2. A group G, is a set with an internal law of composition such that:
(i) P is associative. i.e. P (x, P (y, z)) = P (P (x, y), z)
(ii) ∃ an identity, e,3 if x ∈ G, then P (x, e) = P (e, x) = x
(iii) ∃ inverses ∀x ∈ G, denoted by x−1, 3 P (x, x−1) = P (x−1, x) = e.

Let it be noted that we shorthand P (x, y) as xy.

Definition 1.3. Given a group G, we call the group abelian if xy = yx ∀x, y ∈ G.
(In other words, the map is commutative.)
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Definition 1.4. If #(G) is finite, then we call #(G) the order of G and denote it
by o(G).

Definition 1.5. A is a subgroup of G if ∀x, y ∈ A, both xy and x−1 are in A.

Definition 1.6. A bijection is a map φ : A→ B such that the map is:
(i) surjective: ∀b ∈ B ∃ a ∈ A 3 φ(a) = b.
(ii) injective: ∀b, y ∈ B and a, x ∈ A 3 φ(a) = b and φ(x) = y, b = y implies

a = x.

Definition 1.7. A map φ : G → H, where G and H are groups, is called a
homomorphism if φ(xy) = φ(x)φ(y)∀x, y ∈ G. If a homomorphism is a bijection,
then we call it an isomorphism. If an isomorphism is from G to itself, then it is
called an automorphism.

Note that this definition of a homomorphism implies that φ(x−1) = (φ(x))−1

and that φ(e) = e. Also, Hom(G,H) will be the family of homomorphisms from G
to H. Similarly, Aut(G) will be the automorphisms of G.

Definition 1.8. Given a groupG and an element g ∈ G, we define an inner automorphism
generated by g as ig(x) = gxg−1.

Definition 1.9. If N is a subgroup of G and ig(N) ⊂ N ∀g ∈ G, then we call N
a normal subgroup of G.

Definition 1.10. A direct product of two groups G and H is denoted by G ×H
and is a Cartesian product, {(g, h) |g ∈ G, h ∈ H} , equipped with the operations:

• (g, h)(g
′
, h
′
) = (gg

′
, hh

′
)

• eGeH = eG×H
• (g, h)−1 = (g−1, h−1).

The following theorem is a simple theorem that illuminates several key points
about the direct product.

Theorem 1.11. Given groups G,K, let G̃ = {(g, e)|g ∈ G} , K̃ = {(e, k)|k ∈ K}.
Both G̃ and K̃ are contained in G×K. The following are true:
(i) G̃ and K̃ are normal subgroups of G×K.
(ii) G̃ ∩ K̃ = {eG×K}.
(iii)G̃ and K̃ generate G×K, i.e. if x ∈ G×K then x = g̃k̃ for some g̃ ∈ G̃ and
k̃ ∈ K̃.
(iv) If H is a group and G̃ and K̃ obey (i)-(iii), where G×K is replaced by H, we
can conclude that H is isomorphic to G̃× K̃.

Proof. (i) Let x ∈ G×K, where x = (g′, k′). Then ix((g, e)) = (g′gg′−1, e) and we
know that g′gg′−1 ∈ G since g ∈ G, g′ ∈ G. So ix(G̃) ⊂ G̃ ∀x ∈ G×K.
The proof is similar for K̃.
(ii) In one direction, it is clear that G̃ ∩ K̃ ⊃ {eG×K}
To show the other direction, suppose G̃ ∩ K̃ ⊂ {eG×K} is not true. Then ∃ some
(g, e) or (e, k) 3 it is in both G̃ and K̃. Then, this implies that there exists more
than one identity in G or K, which is impossible.
(iii) Let x = (g, k) for some g ∈ G and k ∈ K. Then (g, e)(e, k) = (g, k) for
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(g, e) ∈ G̃, (e, k) ∈ K̃.
(iv) First note that if g̃k̃ = gk, where g̃, g ∈ G̃ and k̃, k ∈ K̃, then g−1g̃ = kk̃−1 ∈
G̃ ∩ K̃ ⇒ g = g̃, k = k̃.
Furthermore, since H obeys (iii), we see that τ : G̃ × K̃ → H, where (g̃, k̃) 7→ g̃k̃,
is a bijection.
To show that τ preserves products, we first see that given g ∈ G̃ and k ∈ K̃,
gkg−1k−1 = (gkg−1)k−1 ∈ K̃.

Similarly, g(kg−1k−1) ∈ G̃. Both of the last two statement are true due to (i)
and imply that gk = kg, i.e. we have commutativity by (ii).
τ((g, k), (g̃, k̃)) = τ(gg̃, kk̃) = (gg̃)(kk̃) = (gk)(g̃k̃) = τ((g, k))τ((g̃, k̃)). Thus τ

preserves products and is an isomorphism. �

In the next definition, we assume the reader knows the definition of a vector
space.

Definition 1.12. A linear map T : V → V , where V is a vector space, is linear if it
preserves vector addition and scalar multiplication. That is, T (v+w) = T (v)+T (w)
and T (a · v) = aT (v), ∀v, w ∈ V and ∀ scalars a.

In the next definition, the reader should know that a basis for a vector space is
a set of linearly independent vectors such that any vector in the vector space can
be written as a linear combination of vectors in the basis.

Definition 1.13. The dimension of V , a vector space, is the number of elements
of a basis of the vector space.

Just for the reader’s knowledge, any two bases of a vector space have the same
cardinality, or number of vector elements. Also, if a linear map T has an inverse,
then it is called invertible. The set of all invertible linear maps is denoted by
GL(V ).

2. Group Representations

Definition 2.1. Given a group G, a group representation of that group is an
element of Hom(G, GL(V )) for some vector space V .

The degree of a representation is simply the dimension of V .

Definition 2.2. An inner product is a map 〈·, ·〉: V × V → C 3:
(i) 〈v, ·〉 is a linear map if v is fixed.
(ii) 〈v, w〉 = 〈w, v〉
(iii)〈v, v〉 ≥ 0 and 〈v, v〉 = 0 iff v = 0.

Definition 2.3. A unitary representation preserves inner product. In notation,
this means that 〈U(g)v, U(g)w〉 = 〈v, w〉 ∀g ∈ G, v, w ∈ V.

Theorem 2.4. Given U : G → GL(V ), a representation of a finite group G, ∃
inner product 〈·, ·〉 3 each U(g) is unitary.

Proof. Suppose we have inner product 〈 , 〉
′

on our vector space V . Let us con-
struct another inner product 〈v, w〉 = 1

o(G)

∑
g∈G 〈U(g)v, U(g)w〉

′

Using our new inner product on V ,
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〈U(i)v, U(i)w〉 =
1

o(G)

∑
g∈G
〈U(g)U(i)v, U(g)U(i)w〉

′

=
1

o(G)

∑
g∈G
〈U(gi)v, U(gi)w〉

′

=
1

o(G)

∑
g∈G
〈U(g)v, U(g)w〉

′

since {gi|g ∈ G} = G.
And, 1

o(G)

∑
g∈G 〈U(g)v, U(g)w〉

′
= 〈v, w〉 �

Note that we need our group G to be finite.

Definition 2.5. A unitary representation is a homomorphism from a finite group
G to U(V), the group of unitary operators on V .

From here onwards, when we use the term representation, we mean unitary
representation. This is not such a big deal because, by the theorem above, any
representation can be made unitary by the appropriate choice of inner product.

Definition 2.6. Given U : G → U(V), T : G → U(W), where G is finite, U is
unitarily equivalent to T iff ∃ unitary S : V →W 3 T (g) = SU(g)S−1 ∀g ∈ G.

Definition 2.7. Given vector spaces V and W , we define the direct sum
V ⊕W to be the Cartesian product of the two vector spaces with operations carried
out coordinate-wise. (i.e. (v1, w1) + (v2, w2) = (v1 +v2, w1 +w2) and inner product
is defined by 〈(v1, w1), (v2, w2)〉 = 〈v1, v2〉+ 〈w1, w2〉). Given two linear maps A ∈
Hom(V ) and B ∈ Hom(W ), we define A⊕B ∈ Hom(V ⊕W ) by (A⊕B)(v, w) =
(Av,Bw).

Theorem 2.8. Given representations T,U of G on vector spaces V,W , respectively,
U ⊕ T is also a representation of G where (U ⊕ T )(g) = U(g)⊕ T (g).

Proof. First we need to show that if U ∈ U(V) and T ∈ U(W), then U ⊕ T ∈
U(V ⊕W ). This is easily verified by a simple calculation:

(U ⊕ T )((v1, w2) + (v2, w2)) = (U ⊕ T )(v1 + v2, w1 + w2)

= (U(v1 + v2), T (w1 + w2))

= (U(v1) + U(v2), T (w1) + T (w2))

= (U(v1), T (w1)) + (U(v2), T (w2)).

Thus, U⊕T is a linear map. So if U, T are representations ofG on V,W , respectively,
then (U ⊕ T )(g) = U(g)⊕ T (g). �

Definition 2.9. Given a group G, a vector space V , and a representation U of G
on V , we call a subspace W ⊂ V invariant if ∀w ∈W and g ∈ G, U(g)w ⊂W .

The next theorem is an essential one:
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Theorem 2.10. Given an invariant subspaceW ⊂ V , W⊥ = {v ∈ V | 〈v, w〉 = 0 ∀w ∈W}
is also an invariant subspace. If we restrict a representation U to W and W⊥, and
call these restrictions U1 and U2, respectively, then U1 and U2 are representations.
U is equivalent to U1⊕U2. Conversely, ∀ U1⊕U2, defined in the same way as above
for some representation U , {(w, 0)} is an invariant subspace of V .

Proof. Given w ∈ W , w′ ∈ W⊥, and g ∈ G, recall that U(g−1)w ∈ W since W is
invariant. Then 〈U(g)w′, w〉 = 〈w′, U∗(g)w〉 =

〈
w′, U(g−1)w

〉
= 0.

⇒ U(g)w′ ∈ W⊥ ⇒ W⊥ is also invariant. This implies that we can decompose V
into a direct sum of W and W⊥ and write

U(g) =
(
U1(g) 0

0 U2(g)

)
So U ∼= U1 ⊕ U2. The converse is easily proven:
Let (y, 0) ∈ {(w, 0)|w ∈W}, where W is an invariant subspace. Then U1(y) = z ∈
W . (U1 ⊕ U2)(g)(y, 0) = (U1(g) ⊕ U2(g))(y, 0) = (U1(g)(y), U2(g)(0)) = (z, 0), as
required. �

Definition 2.11. Given a representation U of G on V , we call it irreducible iff 0
and V are the only invariant subspaces of V . An irreducible representation is called
an irrep.

Theorem 2.12. U is irreducible iff it is impossible to write it as a direct sum of
nontrivial representations.

Proof. This immediately follows from Theorem 2.10. �

Theorem 2.13. Any representation U can be written as a direct sum of irreps.

Proof. This theorem is proved by induction. Consider a representation with de-
gree 1. Then, the representation is obviously irreducible by merit of being a one-
dimensional representation.
Now suppose this theorem is true for all representations 3 deg(U) < n. Consider
U 3 deg(U) = n. Suppose U is not irreducible; since otherwise we are done. Then,
write U = U1 ⊕ U2, where both U1 and U2 have degree less than n. Thus, both
U1 and U2 are sums of irreps, and hence, we see that so is U . By the principle of
induction, we are done. �

Definition 2.14. The set of equivalence classes of irreps, where each class contains
all unitarily equivalent irreps, is called the dual object. It is denoted by Ĝ.

Definition 2.15. Let G be a finite group. The group algebra is the complex vector
space A(G) of functions on G equipped with a product, called the convolution, and
the conjugate map.
Convolution: a, b ∈ A(G), (a ∗ b)(g) =

∑
h∈G a(gh−1)b(h)

Conjugate: a∗(g) = a(g−1)

The two above definitions will be used throughout the paper.

Definition 2.16. Given a representation U of a finite group G, we define a ∗ −
representation by UA(a) =

∑
g∈G a(g)U(g) ∀a ∈ A(G). It is a representation on
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A(G) that obeys the following properties:
(i) UA(a+ b) = UA(a) + UA(b) ∀a, b ∈ A(G)
(ii) UA(a ∗ b) = UA(a)UA(b) ∀a, b ∈ A(G)
(iii)UA(a∗) = UA(a)∗ ∀a ∈ A(G)
(iv) UA(δe) = I, where δe is the function that takes on value 0 at g 6= e and 1 at

g = e, and I is the indentity.

Theorem 2.17. Given any *-representation, UA, ∃ a unitary representation U of
G 3 UA(a) =

∑
g∈G a(g)U(g).

Proof. Let U(g) = UA(δg). By (i), it is clear that UA(a) =
∑
a(g)U(g). (ii) implies

U(g)U(h) = U(gh) since the convolution of δg and δh is δgh. Since δ∗g = δg−1 , by
(iii), we have that U(g)∗ = U(g−1), which along with (iv) implies I = U(g)U(g)∗ =
U(g)∗U(g). Thus, U is unitary. �

The previous theorem tells us that there exists an injective relation between
representations of G and *-representations of A(G). Let LA(a)b := a ∗ b.
If we equip A(G) with inner product 〈a, b〉 = 1

o(G)

∑
g∈G a(g)b(g), then 〈a, b ∗ c〉 =

〈b∗ ∗ a, c〉.
Note that if (Lga)(h) = a(g−1h) then LA is the induced map on A(G) since (δg ∗
a)(h) =

∑
i δg(hi

−1)a(i) = a(g−1h).
Thus, Lgδh = δg ∗ δh = δgh, which implies that Lg is unitary. This gives us the
following theorem:

Theorem 2.18. Lga(h) ≡ a(g−1h) on A(G), with inner product as defined above,
is a unitary representation of G.

Definition 2.19. The representation described in the previous theorem is called
the left regular representation.

The next theorem, Schur′s Lemma, is an important lemma in the study of group
representations, but will seem similar to previous statements made in the paper.

Theorem 2.20. Let UA be an irrep of A(G) on V . If ∃ T ∈ Hom(V ) 3 TUA(a) =
UA(a)T ∀a ∈ A(G), then T = cI, where c is a constant. (Note that the statement
TUA(a) = UA(a)T is equivalent to TU(g) = U(g)T ∀g ∈ G).

Proof. Let λ be an eigenvalue of T . Consider v 3 (T − λ)v = 0.
Then (T − λ)UA(a)v = UA(a)(T − λ)v = 0 so the subspace {v|(T − λ)v = 0} is
invariant. Since λ is an eigenvalue, the invariant subspace is not {0}. Thus, since
UA is an irrep, the invariant space must be V . i.e. T = λI. �

The second form of Schur’s Lemma is as follows.

Theorem 2.21. Let S,U be irreps of a finite group G on vector spaces V,W ,
respectively. Let T : V → W be a map 3 TU(g) = S(g)T ∀g ∈ G. Then either
T = 0 or U and S are unitarily equivalent and T is unique up to a constant.

Proof. Suppose TU(g) = S(g)T ∀g ∈ G. Replace g with g−1 and take adjoints of
both sides. We get that T ∗S(g) = U(g)T ∗ ∀g ∈ G.
Then (T ∗T )U(g) = U(g)(T ∗T ) and (TT ∗)S(g) = S(g)(TT ∗).
By the first form of Schur’s Lemma, we see that TT ∗ = cT I and T ∗T = cT I.
Note that TT ∗ = T ∗T because both are constant diagonal matrices and have the
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same determinant, and thus, are equivalent.
Then either cT = 0 (which implies that T = 0) or RU(g) = S(g)R where R = c

− 1
2

T T
is unitary, which implies that S and U are unitarily equivalent.
If the second case holds, then given two maps T and Q that obey TU(g) =
S(g)T ∀g ∈ G, then we have that TQ∗ = c1I and thus, T = TQ∗Qc−1

Q = c1c
−1
Q Q.

Thus, T is unique up to a constant. �

Note that if our group is abelian, then every irrep of the group has degree 1, i.e.
our vector space must have dimension 1.

3. Tensor Products

A quick foray into the concept of tensor products is in order before talking about
matrix realizations.

Definition 3.1. A Hilbert space, H, is a vector space that is equipped with an
inner product 3 if we define the norm as |f | =

√
〈f, f〉, then H is a complete metric

space.

Now we can define a tensor product.

Definition 3.2. Given two Hilbert spaces, X and Y , their tensor product is the
vector space of bi-antilinear maps with a certain inner product. The tensor product
is denoted as X ⊗ Y .
This means that if f ∈ X ⊗ Y , then f : X × Y → C is a map 3 :
f(x, αyβw) = αf(x, y) + βf(x,w)

where x ∈ X, w, y ∈ Y , and α, β ∈ C.
f(αxβw, y) = αf(x, y) + βf(w, y)

where x,w ∈ X, y ∈ Y , and α, β ∈ C.

Note that X ⊗ Y is a vector space.
Given x ∈ X and y ∈ Y , we define the map x⊗ y ∈ X ⊗ Y as the following:

(x⊗ y)(r, s) = 〈r, x〉 〈s, y〉.
Thus, we have the map (x, y) 7→ (x⊗ y) as a bilinear map of X × Y to X ⊗ Y and
we see that the set of such maps span the vector space X ⊗Y . Next is a quick fact
with outlined proof about tensor products.

Theorem 3.3. dim(X ⊗ Y ) = dim(X)dim(Y ).

Proof. If {xi}ni=1 is a basis for X and {yj}mj=1 is a basis for Y , then {xi ⊗ yj}n,mi=1,j=1

is a basis for X ⊗ Y . Thus, dim(X ⊗ Y ) = dim(X)dim(Y ). �

Now we can give X ⊗ Y a unique inner product such that, given x ⊗ y and
F ∈ X ⊗ Y , 〈x⊗ y, F 〉 = F (x, y). Under this inner product, we have the following
obvious theorem:

Theorem 3.4. If {xi}ni=1 and {yj}mj=1 are orthonormal bases of X and Y , respec-
tively, then {xi ⊗ yj}n,mi=1,j=1 is an orthonormal basis for X ⊗ Y .

Now, let us consider A ∈ Hom(X) and B ∈ Hom(Y ). Then, A ⊗ B is defined
as follows:
For C ∈ X ⊗ Y, x ∈ X, y ∈ Y , we have (A⊗B)(C)(x, y) = C(A∗x,B∗y).
From this definition, we see that (A⊗B)(x⊗ y) = Ax⊗By. Thus, given represen-
tations U, V of a group G on vector spaces X,Y , define U ⊗ V as a representation
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of G on X ⊗ Y by the following:
(U ⊗ V )(g) = U(g)⊗ V (g). This leads to the following definition:

Definition 3.5. The tensor product representation is the product of representa-
tions U, V and is defined by (U ⊗ V )(g) = U(g)⊗ V (g).

Now, the important concept that stems from tensor product representations is
the fact that if U (α), V (β) are irreducible representations, then U (α) ⊗ V (β) is not
irreducible. However, it is a direct sum of irreducibles. Given α, β ∈ Ĝ,
U (α) ⊗ V (β) ∼= ⊕

γ∈Ĝn
γ
αβU

(γ).
The nγαβ are integers that signify the number of times the specific irrep occurs in
the direct sum. These integers are called Clebsch−Gordan integers. Also, recall
that U (α) is a member of the equivalence class of α ∈ Ĝ.
Taking matrix realizations of our irreducible representations and using the facts
explored previously, we have the following theorem. (Given an irrep α ∈ Ĝ, we
represent α by D(α)(g). D(α)(g) is a dα × dα function matrix, where dα is the
degree of the irrep. The entries of the matrix are D(α)

ij (g). This will be restated
and explained in the next section.)

Theorem 3.6. D(α)
ij (g)D(β)

kl (g) =
∑
m,p,q c

αβm
ij;kl;pqD

(γm)
pq (g), where cαβmij;kl;pq are con-

stants. The sum occurs over m = 1, ...,M where given any m, ∃ a γm ∈ Ĝ associ-
ated with that value of m; and p, q = 1, ..., dγm .

This theorem essentially states that the set of linear combinations of matrix
realizations of irreps is an algebra, i.e. closed under the product map.

4. Matrix Realizations of Representations

It is necessary to introduce the concept of functions and representations as ma-
trices. To do this, we provide some key theorems regarding the group algebra. Also,
in this section we explore the properties of matrix realizations while developing the
concept of the Fourier transform.

Recall that α ∈ Ĝ is an equivalence class of irreducible representations and that
dα is the degree of the irrep. Given an irrep α ∈ Ĝ, we represent α by D(α)(g),
which is a dα × dα matrix. The entries of the matrix are D(α)

ij (g).

Each D
(α)
ij (g) is an element of A(G). Given a basis {v1, ..., vdα} of the vector

space V for our representation U (α), the element D(α)
ij (g) is determined by

D
(α)
ij (g) =

〈
U (α)(g)vi, vj

〉
Thus, the matrix realization D(α)(g) is a dα × dα matrix. We write D(α)(g) rather
than D(α) to remind the reader that the entries of the matrix are not fixed.

A good definition before reaching our main theorems:

Definition 4.1. Let S be a representation of G on V and let U be a representation
of G on W . We call the two representations S and U intertwined if ∃ T : V →
W 3 TU(g) = S(g)T ∀g ∈ G. T is called their intertwining map.
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Theorem 4.2. The following is true: 1
o(G)

∑
g∈GD

(α)
ij (g)D(β)

kl (g) = 1
dα
δαβδikδjl

where δαβ is unity if α = β and zero otherwise.

Proof. Given Cdα as the representation space for the representation Uα (the rep-
resenation space is the vector space given for the representation), let
A : Cdα → Cdα
and define Ã = 1

o(G)

∑
g∈G U

(β)(g)AU (α)(g)−1. We do this to produce a map that
intertwines U (α) and U (β) as we see below.
Then,

U (β)(h)Ã =
1

o(G)

∑
g∈G

U (β)(h)U (β)(g)AU (α)(g)−1

=
1

o(G)

∑
g∈G

U (β)(hg)AU (α)(g)−1

=
1

o(G)

∑
j∈G

U (β)(j)AU (α)(h−1j)−1

=
1

o(G)

∑
j∈G

U (β)(j)AU (α)(j)−1U (α)(h)

= ÃU (α)(h).

⇒ Ã intertwines U (α) and U (β). Thus, by Schur’s Lemma (Second Form), if α 6= β

then Ã = 0. If α = β, then Ã = cI. Thus, Tr(Ã) = c · dα, so constant c =
1
dα
Tr(Ã) = 1

dα
Tr(A).

This implies that Ã = 1
dα
Tr(A)δαβI. Recall that A is simply a map represented as

a matrix. Since we produce an intertwining map Ã with any choice of A, we can
now specifically choose our A so that the expression 1

o(G)

∑
g∈G U

(β)(g)AU (α)(g)−1

becomes 1
o(G)

∑
g∈GD

(α)
ij (g)D(β)

kl (g). To achieve this, we take our matrix realization
of A to have only a single nonzero element, Ayz = δykδzj . (Thus, when we multiply
A with our representations, we have just one non-zero entry in the resulting matrix.)
So if α = β, then Tr(A) = δkj .
Since Ã = 1

dα
Tr(A)δαβI, then

1
o(G)

∑
g∈GD

(α)
ij (g)D(β)

kl (g) = 1
dα
δαβδikδjl. �

Theorem 4.3. Given a complex vector space of functions, A, on a finite set X 3:
(i) If a, b ∈ A, then ab ∈ A where ab is the pointwise product of the two functions.
(ii)If x, x′ ∈ X, then ∃fxx′ ∈ A 3 fxx′(x) = 1 and fxx′(x′) = 0.

Then we conclude that A is the set of all functions on X.

Proof. Recall the function δx, where δx(x′) = 1 if x = x′ and 0 otherwise. ∀x, x′,
let fxx′ be the function that obeys (ii) for that specific x, x′. So, δx =

∏
x′ 6=x fxx′

which implies that δx ∈ A because by (i), the product of two functions in A also
lies in A. Because the functions δx form a basis for the set of functions on X, A is
all functions on X. �
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The combination of these last two theorems shows that D(α)
ij spans A(G). We

now will find a orthonormal basis for A(G). However, we must first present a
corollary to Theorem(2.18).

Corollary 4.4. The functions D(α)
ij seperate points, i.e. ∀g, h ∈ G,∃ a function f

of the form:
f =

∑m
n=1 CnijD

(αn)
injn

such that f(g) = 1, f(h) = 0.

Proof. Let L be a left regular representation. Let f(g′) = o(G) 〈δg, L(g′)δe〉. Since
L(g′)δe = δg′e = δg′ , we have f(g) = 1 and f(h) = 0. Since L is a representation,
as we have shown earlier in the paper, we can write it as a direct sum of irreducible
representations. This is equivalent to stating:

(L(x))gh =
∑
n;i,jM

(αn)
gi D

(αj)
ij (x)M

(αn)

hj , where the M
(αn)
gi are constants and

each (L(x))gh is an entry of the matrix realization of L. This yields the summation
form of f that we wanted. �

Theorem 4.5.
{√

dαD
α
ij(g)

}
α∈Ĝ;i,j=1,...,dα

is an orthonormal basis of A(G) equipped

with the inner product 〈a, b〉 = 1
o(G)

∑
g a(g)b(g).

An important side note is that
∑
α d

2
α = o(G).

Proof. Set A =
{∑

i,j=1,...,dα
c
(α)
ij D

(α)
ij (g)|c(α)

ij ∈ C
}

.

A is clearly constructed to be a vector space. The elements of
{√

dαD
α
ij(g)

}
are

orthnormal. Now, to show that A = A(G), we need to use the previous Theo-
rem(4.3). A satisfies the two conditions of the hypothesis of Theorem(4.3):
(i) is satisfied by Theorem(3.6).
(ii) follows directly from the above corollary.
Thus, A = A(G) and

{√
dαD

(α)
ij (g)

}
is a basis.

�

Theorem 4.6. Define X(α)
ij (g) = dα

o(G)D
(α)
ij (g). Then, X(α)

ij ∗X
(β)
kl = δαβδjkX

(α)
il .

Proof.

X
(α)
ij ∗X

(β)
kl (g) = dαdβ

1
o(G)2

∑
h∈G

D
(α)
ij (gh−1)D(β)

kl (h)

= dαdβ
1

o(G)2
∑

h∈G;n=1,...dα

D
(α)
in (g)D(α)

nj (h−1)D(β)
kl (h)

= dαdβ
1

o(G)2
∑

h∈G;n=1,...dα

D
(α)
in (g)D(α)

jn (h)D(β)
kl (h)

= δαβdβ
1

o(G)
δjkD

(α)
il (g).

�

Next is an important theorem for this paper. This theorem introduces the con-
cept of the Fourier transform.

Theorem 4.7. A(G) is isomorphic to a direct sum of matrix algebras 3 any inner
product on A(G) is a multiple of the following inner product on matrix algebras:
〈M,N〉 = tr(M∗N), also called the Hilbert-Schmidt inner product. To put it in
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notation and more directly,
A(G) ∼= ⊕

a∈ĜHom(Cdα) through a map from A(G) → ⊕
a∈ĜHom(Cdα).

Given f ∈ A(G) and f̂ ∈ ⊕
a∈ĜHom(Cdα), our map transforms f into

f̂α;i,j =
o(G)
dα

∑
g∈G

X
(α)

ij (g)f(g) =
∑
g∈G

D
(α)
ij (g)f(g).

Proof. f(x) =
∑
α;i,j f̂α;i,jX

(α)
ij (g) by our choice of f̂ .

Given norm of f̂ as
∑
α
o(G)2

dα

∑
i,j

∣∣∣f̂α;i,j

∣∣∣2, we see that ̂ is unitary because{
o(G)√
dα
X

(α)
ij

}
is orthonormal, and hence, since f̂α;i,j = o(G)

dα

∑
g∈GX

(α)

ij (g)f(g), the
norm is preserved.
The next thing to show is that f̂ ∗ g = f̂ ĝ. This is equivalent to showing that
f̂ ∗ gα;i,j =

∑dα
k=1 f̂α;ikĝα;kj , which follows from Theorem (4.6).

By this theorem,
X

(α)
ij ∗X

(β)
kl = δαβδjkX

(α)
il , so given that

f̂ ∗ gα;i,j = o(G)
dα

∑
h∈GX

(α)
ij (h)(f ∗ g(h)), we can break our X(α)

ij into a convolution

of X(α)
ik and X

(α)
kj . From there, it follows that f̂ ∗ gα;i,j =

∑dα
k=1 f̂α;ikĝα;kj .

�

5. Fourier Analysis

Before defining the Fourier transform, the reader should know that Lp(G) is the
set of functions on G with norm ‖f‖pp = 1

o(G)

∑
g∈G |f(g)|p. Pick an irrep D(α) of

G on vector space Xα, where α ∈ Ĝ. Now, let C(Ĝ) to be a function from Ĝ →
Hom(Xα). This means that if T ∈ C(Ĝ), then T is a sequence {Tα}α∈Ĝ 3 Tα ∈
Hom(Xα). Thus, if we equip T ∈ C(Ĝ) with the norm ‖T‖pp =

∑
α∈Ĝ dαTr(|Tα|

p),

then C(Ĝ) is equivalent to Lp(G).

Now for the definition of the Fourier transform:

Definition 5.1. The Fourier transforms are maps ? : A(G) → C(Ĝ) and ‡ :
C(Ĝ)→ A(G), which are defined as follows:

(f?)α = 1
o(G)

∑
g∈G f(g)D(α)(g) and

(T ‡)(g) =
∑
α dαTr(D

(α)(g)∗Tα).

To finish this paper, I will present a theorem that provides observations about
our two transformation maps.

Theorem 5.2. The following are true:
(i) ?,‡ are adjoint maps, i.e. (T ‡, f)L2(G) = (T, f?)

L2(Ĝ)
.

(ii) ?,‡ are inverses.
(iii)‖f?‖L2(G) = ‖f‖

L2(Ĝ)
.
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Proof. (i) The inner product (f, h)L2(G) = 1
o(G)

∑
g∈G f(g)h(g). The inner product

(f, h)
L2(Ĝ)

=
∑
α∈Ĝ dαTr(hαfα).

(T ‡, f)L2(G) =
1

o(G)

∑
g∈G

∑
α∈Ĝ

dαTr(Dα(g)∗Tα)f(g)

=
1

o(G)

∑
g∈G

dα
∑
α∈Ĝ

Tr(T ∗αD
α(g)f(g))

=
∑
α∈Ĝ

dαTr(T ∗αf
?
α)

= (T, f?)
L2(Ĝ)

We prove (iii) before (ii).
(iii) This is essentially Theorem(4.5).
To prove (ii), we realize that (iii) tells us that ? is an isometry ⇒ ? is unitary
because we are dealing with a finite dimensional space. So, since ?,‡ are adjoint
maps and ? is unitary, ‡ is a two-sided inverse. �
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