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Abstract. Given a surface Σg , how many loops (distinct up to homotopy) can

be placed on it such that no two loops intersect more than once? Benson Farb
proposed this question in 2006 and while it is not obvious that this number

should even be finite, general upper and lower bounds are known. Though
these bounds are very disparate, the lower bound being quadractic and the

upper bound being exponential, it is very difficult to obtain anything better:

the exact answer is not known for genus more than 1. This paper presents
some of the previous results on this problem, introduces some new proofs and

corrections to the proofs of these results, and discusses some of the difficulties

in generalizing these results to higher genus surfaces.
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1. Introduction

In this paper, we study the question of how many essential free homotopy classes
of simple closed curves can one place on the genus-g surface Σg such that any two
curves have intersection number at most one. To clarify the statement of the
problem, we recall some definitions:

Definitions 1.1. For a topological space X, a curve or path on X is a continuous
map f : I → X where I = [0, 1] ∈ R. If f(0) = f(1), then we say that f is a closed
curve or loop; we often write loops as maps f : S1 → X. If f is injective, then we
say that f is simple.

For most spaces X, there are many of these loops, though often some of these
will be topologically similar, in the sense that we can continuously deform one loop
into another. We then define an equivalence relation on loops.
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Definition 1.2. For two loops a and b on a space X, we say that a and b are freely
homotopic if there is a continuous map H : I × S1 → X such that H(0, t) = a(t)
and H(1, t) = b(t). We then write a ' b, or H : a ' b and say that H is a homotopy
between a and b.

Homotopy then forms an equivalence relation and captures the idea of continu-
ously deforming one loop into another via a continuous path of loops. If we consider
homotopies which preserve base points (i.e. H(s, 0) = H(0, 0) for all s ∈ I), then
the set of homotopy classes of loops starting at a given base point x0 ∈ X forms
a group under concatenation of loops. This group is called the fundamental group
and is denoted π1(X,x0).

Theorem 1.3 ([5]). The fundamental group of the genus-g surface with base point
x0 is π1(Σg, x0) = 〈α1, β1, · · · , αg, βg | α1β1α

−1
1 β−1

1 · · ·αgβgα−1
g β−1

g = 1〉 where
αi is the canonical loop based at x0 going through the ith hole and βi is the canonical
loop based at x0 going around the ith hole.

If a space X is path connected, π1(X,x0) ∼= π1(X, y0) for any x0, y0 ∈ X. Since
we are dealing only with path connected spaces, we will often write the fundamental
group as π1(X) for simplicity.

While the fundamental group is often useful and seems to relate to our question,
there are loops which are distinct in π1 which are identical under free homotopy.

Example 1.4. Consider Σ2 and α1β2α
−1
1 ∈ π1(Σ2). In the fundamental group,

this is not equal to β2, yet once we can move the base point via free homotopy,
then these two are equivalent, as can be seen in Figure 1.

Figure 1. Loops that are distinct in the fundamental group but
identical under free homotopy

Proposition 1.5. The set of free homotopy classes of loops on the genus-g surface
Σg is equal to the set of conjugacy classes of elements of the fundamental group
π1(Σg).



CURVES ON SURFACES 3

Proof. First we show that an element of the fundamental group is freely homotopic
to any conjugate of itself. If γ ∈ π1(Σg) is a homotopy class of loops then we can
express γ as a product of the canonical loops on Σg, so γ = x1 · · ·xn, where each
xk is a canonical loop. Then for any 1 < k < n,

x1 · · ·xn ' xk · · ·xnx1 · · ·xk−1

up to free homotopy via shifting the base point of the loop. Thus for any α and
β ∈ π1(Σg), α ' βαβ−1 up to free homotopy.

Now we show that any two loops which are freely homotopic are conjugate in
the fundamental group, or at least have representatives of their free homotopy
classes which are so. Suppose that a and b are freely homotopic loops on Σg, that
is a, b : S1 → Σg and a ' b via some homotopy H : I × S1 → Σg. Consider
then a basepoint t0 ∈ S1 and a(t0), b(t0) ∈ Σg and let a(t0) = x0. Then, since
Σg is path connected, there is a path p : I → Σg such that p(0) = a(t0) and
p(1) = b(t0). So a and p−1bp are loops with a shared base point. But p−1bp ' b, so
we can assume that a and b are representatives of basepoint preserving homotopy
classes α, β ∈ π1(Σg, x0) with a ∈ α and b ∈ β. Consider then the loop f based
at x0 defined by f(t) = H(t, ∗) for t ∈ I and where ∗ is the basepoint of S1 [3].
Then a and f−1bf are homotopic via a basepoint preserving homotopy, and so
are representatives of the same class in π(Σg). Thus a and b are conjugate in the
fundamental group. �

Definition 1.6. A loop is essential if it is not homotopicaly trivial, that is it is not
homotopic to a constant map.

Remark 1.7. For the purpose of our question, we will not consider a loop and its
inverse (that is the same loop traveled backwards) to be distinct. While a loop and
its inverse are distinct under homotopy (both base point preserving and free), we
will only count one such loop.

Now we need only define the intersection number of two classes of loops.

Definition 1.8. The geometric intersection number of two homotopy classes of
loops α and β is i(α, β) = min|a ∩ b| across all representatives a ∈ α and b ∈ β.

Definition 1.9. We say that two loops a and b are in minimal position if |a∩ b| =
i(α, β) where α, β ∈ π1(Σg) with a ∈ α and b ∈ β. This is to say that a and b
actually realize the intersection number of their homotopy classes.

For the torus, we know that π1(Σ1) ∼= Z2, so any homotopy class of loops on Σ1

is anbm for n,m ∈ Z and where a is the loop through the hole and b is the loop
around the hole. Then we can represent any homotopy class of loops as some point
(n,m) ∈ Z2, making it easy to compute the intersection number of two homotopy
classes of loops.

Theorem 1.10 ([4]). For the torus T 2 = Σ1, the intersection number of two
homotopy classes of loops (p, q) and (p′, q′) is i((p, q), (p′, q′)) = |pq′ − qp′|.
Notation 1.11. For simplicity, for a surface Σg, let C(g) be the maximum size of
a set of homotopy classes of essential simple loops on Σg such that any two loops
in that set have intersection number at most one. We say that a set A of loops
on Σg is a best or maximal collection of loops if |A| = C(g) and A satisfies the
appropriate properties of loops and intersections. Thus what we are interested in
is finding more information on C(g).
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2. Upper and Lower Bounds

Finding a closed solution to this problem seems to be very difficult, so much of
what has been accomplished towards a solution has been in the form of bounds on
the answer. As for these bounds, proving a lower bound is as simple as constructing
a large number of loops which satisfy the appropriate properties; proving an upper
bound is generally more difficult.

The initial lower bound on C(g) was presented by Farb.

Proposition 2.1. There is a quadratic lower bound on C(g), namely

C(g) ≥ (g − 1)(g − 2)
2

.

Proof. For g even, divide Σg evenly into two submanifolds with boundary of genus
g/2 connected by a small annulus. Then any curve on Σg is a pair of arcs on this
partition, one arc on each submanifold with boundary. On each submanifold, we
can construct (g/2 − 1) arcs from the boundary to itself by traveling along the
top of the surface, going around a hole, then returning to the boundary; another
(g/2 − 1) using the same process but on the bottom of the surface; and one that
goes to the end of the submanifold, goes around the end hole, then returns. These
can intersect only on the boundary, and so if we pair any arc from one submanifold
with any arc from the other which is “interior” to it, we mantain the intersection
property. This gives (g−1)(g−2)

2 loops. For g odd, the argument is similar, but we
divide our surface into two submanifolds where one has genus g−1

2 and the other
has genus g+1

2 . �

A better lower bound was latter shown by Constantin in her 2006 paper using
the (4g + 2)-gon representation of Σg

Proposition 2.2. [1] For g > 1, C(g) ≥ 2g2 + 2g.

Proof. Consider the (4g+2)-gon representation of Σg, where one identifies all oppo-
site sides in an orientation preserving manner. This presentation, after the identifi-
cations, leaves two distinct vertices, which we can view as the even vertex and the
odd one based on which vertices were identified in our process. Then connecting
the odd vertices into a (2g + 1)-gon gives 2g + 1 curves; we have another 2g − 2
diagonals emanating from a fixed odd vertex; one curve which encircles the entire
polygon; finally there are 2g(g − 1) loops which Constantin calls “bounces.” These
she describes as starting at an odd vertex, following the perimeter of the polygon
for at least three sides, reaching an even vertex, then returning to the initial odd
vertex. All together, this gives 2g2 + 2g loops. �

Note that this formula does not apply to the torus. The torus has a hexagon
as its (4g + 2)-gon representation, so when we create the initial three loops by
drawing lines between odd vertices, we get get a triangle, which does not allow for
the diagonals or bounces.

In general, there is an exponential upper bound on C(g).

Proposition 2.3 ([1]). C(g) ≤ O(23g)
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3. Dehn Twists and the Torus

Before discussing the value of C(1), we would like to introduce a particular type
of homeomorphism of surfaces known as a Dehn twist, which we will make heavy
use of.

Definition 3.1. For the annulus A = S1 × I, the function T : A → A given by
T (θ, t) = (θ+2πt, t) is an orientation preserving homeomorphism that fixes ∂A, the
boundary of A, pointwise. For some simple loop α on Σg, we can find some small
regular neighborhood N of α together with an orientation preserving embedding
φ : A → Σg such that φ(A) = N . We then use this neighborhood to define the
Dehn twist about α to be the homeomorphism Tα : Σg → Σg given by

Tα(x) =

{
x if x ∈ S \N
φ ◦ T ◦ φ−1(x) if x ∈ N.

.

The Dehn twist about α then can be viewed as cutting the surface along α, then
twisting one side of this cut once around, then gluing the two side back together.
These homeomorphisms are very useful, particularly in how they interact with loops
on a surface. To see this, we review some basic properties about Dehn twists and
intersection numbers of loops.

Proposition 3.2 ([2]). If a and b are homotopy classes of essential simple loops
and k ∈ Z, then

i(T ka (b), b) = |k|i(a, b)2.

For the interaction of twists around different loops, we have the following formula.

Proposition 3.3 ([2]). Let a1, · · · , an be pairwise disjoint classes of simple loops
on Σg, and let e1, · · · , en ∈ Z be either all positive or all negative. Define M =∏n
j=1 T

ej
aj , and let b and c be arbitrary classes of simple loops on Σg. Then∣∣∣∣∣∣i(M(c), b)−

n∑
j=1

|ej |i(aj , b)i(aj , c)

∣∣∣∣∣∣ ≤ i(c, b).
Remark 3.4. One might be tempted to think the intersection formula should be
one such as

i(Tn
′

α Tm
′

β (a), a) ≥ i(TnαTmβ (a), a)

for n′ ≥ n and m′ ≥ m, but this is false. Consider two disjoint loops α and β in
Σg; for example, let α be the loop though one hole in Σg and β be the loop through
the other hole, and let a be the loop around both holes. Then i(T 2

α(a), a) = 2 but
i(T 2

αT
1
β (a), a) = 1.

Lastly, we cover a few basic facts about Dehn twists and intersections.

Proposition 3.5 ([2]). For any two loops a and b on a surface, Ta = Tb if and
only if a = b.
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Proposition 3.6 ([2]). For any two loops a and b on a surface, the following are
equivalent:

1) i(a, b) = 0

2) Ta(b) = b

3) TaTb = TbTa.

Proposition 3.7. For any simple loops a, b, c, we have the interesection property
that i(a, b) = i(Tc(a), Tc(b)).

Proof. Consider the points of intersection of a and b. If any of these occur on c,
we can homotope these away from c via a point pushing map. Thus at any point
at which a and b cross c, we can assume that a and b are parallel in some small
neighborhood of c. So, when we twist about c, we do not affect the intersection on
a and b. �

For now we will recall the following theorem.

Theorem 3.8 (Dehn [2]). For g ≥ 0, the mapping class group Mod(Σg) is generated
by finitely many Dehn twists about nonseparating simple loops.

This then allows allows us to send any nonseparating loop on Σg to any other
nonseparating loop via Dehn twists. We then have the following result.

Proposition 3.9. For the torus T 2 = Σ1, we have C(g) = 3.

Proof. Let γ be any loop on T 2, so in the fundamental group γ = αnβm where α
is the canonical curve going through the center of the torus and β is the canonical
curve going around the torus. The using Dehn twists about β, we can send γ to
αn via the homeomorphism T−mβ . Likewise, via T 1−n

α , we can send this to α, so
we can assume that our first loop is just α. Then cut along this curve, so that we
now have a cylinder with boundary (the ends along which we cut). Now take any
simple curve δ from one boundary component to the other. This corresponds to
any second simple loop on T 2 which intersects α at most once. Again using Dehn
twists, we can assume that this second curve is just β, the straight line from the
base point of α on one end of the cylinder to the base point on the other end. Cut
along this curve, so that we now have a square where one pair of opposite sides is
defined by α and the other pair is defined by β. To make a third simple loop which
intersects α and β at most once, we again cannot cross the boundary of the square
except at vertices. Then we must draw a line across a diagonal of this square, since
going between vertices of the same edge would be homotopic to α or β. Thus we
can obtain three curves but cannot obtain any more. �

4. Subtleties in the genus-2 case

In general, the exact values of C(g) for higher genus is not known, though Con-
stantin’s paper presented a proof for an exact value for C(2). Unfortunately, this
paper contained many difficulties which we will discuss. For now, we will walk
through the idea of the proof to get a better sense of the difficulties involved in it.

Proposition 4.1 ([1]). C(2) = 12.

This statement was shown using several lemmas, many of which are very useful in
finding solutions to this problem, though there are reasons to doubt the validity of
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some of these. For now we will summarize the lemmas, leaving detailed discussions
of them for later in the paper.

Proposition 4.2 ([1]). In any collection of simple loops on Σg such that any two
loops have intersection number at most one, we can replace any separating curve
with two nonseparating curves while preserving this intersection property. Therefore
any best collection A of loops on Σg has no separating curves.

Conjecture 4.3 ([1]). If A is a collection of loops on Σg such that all loops in A
have pairwise intersection exactly one, then |A| ≤ 2g.

When this is combined with the quadratic lower bound, we get the following
Corollary.

Corollary 4.4 ([1]). For g > 1, any best collection of loops has at least two disjoint
loops.

Conjecture 4.5 ([1]). For g = 2, if there are two disjoint loops in a best collection,
then there is a third disjoint loop in that collection.

These then allow for a pants decomposition of Σ2 via curves in our collection,
which allows us a proof of Proposition 4.1. To clarify the matter, we present a
reduction of Proposition 4.1 to the above conjectures.

Theorem 4.6. If there are three disjoint loops in some best collection of loops on
Σ2, then that collection has at most 12 loops in it.

Proof. Let A be a best collection of loops on Σ2 that has three disjoint loops. Let
α, β, and γ be three disjoint loops on Σ2. Since these are disjoint, we can assume
that α is the basic loop through the left hole, γ is the basic loop through the right
hole, and β is the basic loop through both holes.

We first show that any other loop on Σ2 intersects exactly two of α, β, and γ.
Suppose δ is some other loop, and consider the pants decomposition of Σ2 obtained
by cutting along α, β, and γ. Then on this decomposition, δ is composed of arcs
between boundary components on a pair of pants and loops within a pair of pants.
But any simple loop on the interior of a pair of pants is homotopic to one of the
boundary components, so there is at least one arc between boundary components in
this decomposition of δ. This arc then forces δ to intersect two of α, β, and γ. Then
on this pants decomposition, δ is a collection of arcs on each pair of pants, where
δ starts on a boundary component of one pair of pants, move to another boundary
component on that pair of pants, then goes from the corresponding boundary com-
ponent on the second pair of pants to another boundary component on that pair
of pants, and so on. So to intersect all three of α, β, and γ, δ must have at least
two arcs on some pair of pants. But this forces δ to intersect one of α, β, and γ
twice, contradicting our assumption about intersection number. Thus δ intersects
at most two of α, β, and γ..

So consider the subcollection Aα,β ⊆ A of loops which intersect α and β. Then
any loop in Aα,β can be written as TnαT

m
β (a) for some n,m ∈ Z, where a is the

basic loop going around the left hole. Since there are only finitely many of these,
we can apply Dehn twists until each loop in Aα,β is made by positive Dehn twists
around α and β applied to a. Pick some TnαT

m
β (a) and consider any other loop
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Tn
′

α Tm
′

β (a) ∈ Aα,β . Then by Proposition 3.3,

i(TnαT
m
β (a), Tn

′

α Tm
′

β (a)) ≥
∣∣∣∣i(Tn′−n

α Tm
′−m

β TnαT
m
β (a), Tn

′

α Tm
′

β (a))

− |n′ − n|i(α, TnαTmβ (a))i(α, Tn
′

α Tm
′

β (a))

− |m′ −m|i(β, TnαTmβ (a))i(β, Tn
′

α Tm
′

β (a))
∣∣∣∣

=
∣∣∣∣i(Tn′

α Tm
′

β (a), Tn
′

α Tm
′

β (a))

− |n′ − n|i(α, TnαTmβ (a))i(α, Tn
′

α Tm
′

β (a))

− |m′ −m|i(β, TnαTmβ (a))i(β, Tn
′

α Tm
′

β (a))
∣∣∣∣

= |n′ − n|+ |m′ −m|

since we know that

i(α, TnαT
m
β (a)) = 1 = i(β, Tn

′

α Tm
′

β (a))

by our hypotheses on A and

i(Tn
′

α Tm
′

β (a), Tn
′

α Tm
′

β (a)) = 0

by definition. Then any other loop in Aα,β can be at most one Dehn twist differ-
ent from TnαT

m
β (a). But i(Tn+1

α Tmβ (a), Tn−1
α Tmβ (a)) = 2, so we cannot have both

Tn+1
α Tmβ (a), Tn−1

α Tmβ (a) ∈ Aα,β . Likewise, only one of TnαT
m+1
β (a) and TnαT

m−1
β (a)

can be in Aα,β . So there can only be three loops in Aα,β , and similarly for Aα,γ
and Aβ,γ . Thus there are at most 12 loops in A. �

Notice that this proof relies on being able to find three disjoint loops in some
best collection of loops on Σ2, and as we will see, this is not assured.

For the intersection of two loops, Constantin’s paper says that we can decompose
Σg into g punctured tori and consider the intersection of two loops on each of these
punctured tori to find the intersection of those two loops on Σg. The claim is that
one can then use the simple formula i((p, q), (p′, q′)) = |pq′−qp′| for intersection on a
torus, and sum over all punctured tori in our decomposition to find the intersection
of the two loops. From her discussion, it seems that this should be formulated as
such:

Conjecture 4.7. For two loops (a1, b1, · · · , ag, bg) , (a′1, b′1, · · · , a′g, b′g) ∈ H1(Σg),
their intersection number is

i((a1, b1, · · · , ag, bg), (a′1, b′1, · · · , a′g, b′g)) =
g∑
j=1

i((aj , bj), (a′j , b
′
j)).

While this formula is very powerful and would be very useful in this problem, the
validity of it is uncertain. In addition to it being based on the homological repre-
sentation, which we will see does not accurately represent free homotopy classes, it
is unclear where this formula is coming from. This author has been unable to find
any other reference to such a formula, including in the sources which Constantin
cites as references. It should be noted that a similar formula does hold for algebraic
intersection, which might be used to prove results like those in discussion. Despite
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this, algebraic intersection only gives us a lower bound on geometric intersection,
as there might be geometric intersections which cancell out due to their sign as
algebraic intersections.

Beyond the difficulties inherent in using homology to solve this problem, the
argument in Constantin’s paper has more immediate problems. To show that
C(2) = 12, one needs to show that one can never get more than twelve loops
on Σ2; Constantin does this by showing first that every best collection of loops
on any surface has two disjoint loops. She then claims that if a best collection
of loops on Σ2 has two disjoint loops, then there is a third disjoint loop in that
collection. This then allows us to show that there are at most twelve loops in any
best collection on Σ2, as we saw earlier. Unfortunately, her proof that any best
collection of loops on Σg has at least two disjoint loops relies on her lemma stating
that there are at most 2g loops on Σg which each have intersection exactly one, but
this statement is false.

Example 4.8. Consider the classes of loops a1, b1b2, a1b1, b1b2a
−1
2 , b1a2 ∈ π1(Σ2)

in the fundamental group. These classes represent distinct homology classes, being
distinct under abelianization, and so represent distinct free homotopy classes. These
loops have pairwise intersection of one, as can be seen from Figure 2.

Figure 2. Five loops on Σ2 intersecting exactly once.

It seems likely that one can find two disjoint loops in any best collection of loops;
intuitively, given a large number of loops in a collection, there should be two disjoint
loops in that collection.

Conjecture 4.9. There is some n ∈ N such that for any g ≥ n and best collection
A of loops on Σg, there are two disjoint loops in A.

It has been suggested that the above conjecture is correct, and that in fact, a
modified version of Conjecture 4.3 holds.
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Conjecture 4.10. If A is a collection of loops on Σg such that all loops in A have
pairwise intersection exactly one, then |A| ≤ 2g + 1.

This conjecture combined with the quadratic lower bound on C(g) would give
Corollary 4.4, and Example 4.8 shows that this upper bound can be realized. Un-
fortunately, this author has yet to see a clear and correct proof of Conjecture 4.10.
Furthermore, even if such a result applied to the genus two case, it is not clear that
it would imply that a best collection of loops on Σ2 contains three disjoint loops,
as Constantin’s proof of Conjecture 4.5 relies on the formula from Conjecture 4.7,
which we are skeptical of.

Question 4.11. Is there some best collection of loops on Σ2 that has three disjoint
loops?

If this were true, then we would have the result that C(2) = 12, but it is not
intuitive that the answer to this question should be yes.

We now examine some of the techniques these proofs used and how they might
generalize to higher genus surfaces.

5. Methods

There are several existing technologies and tools in mathematics which can, and
have been, applied to this problem. We first consider a more geometric approach
to this problem, that of covering spaces.

Definition 5.1. For a space X, a covering space of X is a space X̃ together with
a map p : X̃ → X satisfying the property that there is an open cover {Uα} of X
such that for any α, p−1(Uα) = ∪Vj where the Vj are disjoint open sets in X̃ and
the restriction p|Vj

: Vj → Uα is a homeomorphism.

These covering spaces are useful in studying loops, since any loop (or homotopy
between loops) in the base space lifts to a path (or homotopy between paths) in
the covering space, and the covering map p induces an injective homomorphism
from the fundamental group of the covering space into that of the base space. In
general, there are a lot of covering spaces of any given space, though here we are
mainly concerned with the universal cover.

Definition 5.2. A covering space p : X̃ → X is the universal cover of X if
π1(X̃) = 1, that is, the fundamental group of the covering space is trivial. The
universal cover of a space is unique up to homeomorphism.

Consider then the genus 1 case. The universal cover of T 2 is R2 and any loop
on T 2 lifts to a path in R2 starting and ending on the integer lattice Z2 ⊂ R2.
Furthermore we can homotope any such path to a straight line between vertices on
the integer lattice. Different lifts of any given map result from a different selection
of base point in the cover, so we can consider all homotopy classes of lifts of a loop
on T 2 by considering all translations of a given straight line lift. Then two loops
on T 2 intersect if and only if two such straight line lifts intersect. This allows us to
consider only lines between vertices on the integer lattice, checking for intersection
between all integer translations of any given lifts of two loops. From this it can
be shown that the intersection of two loops on T 2 is given by the earlier formula
i((p, q), (p′, q′)) = |pq′ − qp′|. Furthermore, a loop (p, q) is simple if and only if
gcd(p, q) = 1.
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Here we constructed the universal cover by tessellating a square, the fundamental
polygon of the torus, which clearly defines how to map R2 onto T 2 as well as
indicating how to lift loops to the plane. We can use a similar process in general,
taking the fundamental polygon of Σg, which is a 4g-gon, and tessellating it on a
hyperbolic plane. Then we have the universal cover H2 → Σg. Again one must
have some criterion to determine the intersection number of two loops, and so we
have the following.

Theorem 5.3 (Bi-gon Criterion [2]). Two loops a and b on Σg are in minimal
position if and only if a and b create no bigons, that is if one cuts along each
loop, the resulting space (which is a disjoint union of manifolds) has no component
homeomorphic to D1.

Corollary 5.4 ([2]). When considered as lifts of loops under the covering H2 → Σg,
distinct geodesics on the hyperbolic plane represent loops in minimal position on Σg.

Of course, lacking the coordinate system of R2, it is more difficult to determine
whether such a lift represents a simple loop, or even to construct collections of loops
which satisfy our desired properties. Due to these difficulties we turn to a more
algebraic representation of the problem: homology.

The definition of the homology groups is very long and complicated, though any
reader wishing to see such a definition should refer to [5]. Despite the complexity of
the definition, it can be said that the kth homology group measures the number of
k dimensional holes in X. Fortunately, for the sake of this problem, we are mainly
interested in the first homology group, which is easier for us to find.

Proposition 5.5 ([5]). If X is a path connected space then the first homology group
of X is the abelianization of the fundamental group of X, that is

H1(X) ∼= π1(X)/[π1(X), π1(X)].

The first homology group is then much easier to work with than the fundamental
group and is easy to find for common, well behaved spaces. Unfortunately, the first
homology group does not exactly represent the objects we are interested in.

Example 5.6. Consider Σ2 and the elements of the fundamental group b1a1b
−1
1 a2

and a1a2 in π1(Σg). These elements are not conjugate, and so are not freely homo-
topic, but they both are sent to (1, 0, 1, 0) ∈ H1(Σ2) under abelianization.

While for any homology class, there is a homotopy class which is sent to that
homology class under abelianization, this map from homotopy classes to homology
classes is not injective. Any homology class has representatives which are distinct
under homotopy. It is also unclear whether every homology class has a simple loop
representative.

Question 5.7. If there is some homology class in H1(Σg) which does not have a
simple loop representative, which homology classes do have such a representative?

Despite this, we can translate much of what we are interested in into the language
of abelian groups via homology.

Proposition 5.8. A homotopy class of loops α on Σg is separating if and only if
α = 0 ∈ H1(Σg).

Thus we need only consider non-trivial elements of H1.
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