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Abstract

The current article studies the relation between the j−invariant function of
elliptic curves with complex multiplication and the Maximal unramified abelian
extensions of imaginary quadratic fields related to these curves. In the second
section we prove that the j−invariant is a modular form of weight 0 and takes
algebraic values at special points in the upper halfplane related to the curves
we study. In the third section we use this function to construct the Hilbert
class field of an imaginary quadratic number field and we prove that the Ga-
lois group of that extension is isomorphic to the Class group of the base field,
giving the particular isomorphism, which is closely related to the j−invariant.
Finally we give an unexpected application of those results to construct a curious
approximation of π.

1 Introduction

We say that an elliptic curve E has complex multiplication by an order O of
a finite imaginary extension K/Q, if there exists an isomorphism between O
and the ring of endomorphisms of E, which we denote by End(E). In such
case E has other endomorphisms beside the ordinary ”multiplication by n” -
[n], n ∈ Z. Although the theory of modular functions, which we will define in the
next section, is related to general elliptic curves over C, throughout the current
paper we will be interested solely in elliptic curves with complex multiplication.
Further, if E is an elliptic curve over an imaginary field K we would usually
assume that E has complex multiplication by the ring of integers in K.

Elliptic curves with complex multiplication are incredibly important in Num-
ber theory. In particular we will see how they allow us to connect the two very
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different concepts of modular functions and Galois extensions of imaginary num-
ber fields. We will be able to apply the results from analytic number theory
to prove an important result in the Class field theory of imaginary quadratic
fields, analogous to the famous Kronecker-Weber Theorem.

Finally we will give a peculiar implication of the results in the first two
sections to provide a strange, but quite accurate approximation of π.

2 The values of the j−function at complex mod-
uli are algebraic numbers

In this section we will consider the j−invariant of elliptic curves with complex
multiplication and in particular consider its properties of a modular form. We
will also prove that at some particular points, which we will call complex moduli,
this function takes algebraic values. We would use this fact in the next section
where we consider the algebraic extensions of particular imaginary quadratic
fields by these algebraic values of the j−invariant. This would present a good
example of the relation between the analytic and algebraic parts of Number
theory.

We begin with some definitions.

Definition 1. Let h be the upper halfplane. A point z ∈ h is called a complex
modulus of discriminant D if it satisfies a quadratic equation with integer co-
efficients and negative discriminant −D. If E = C/Λ is an elliptic curve and
Λ = {(n, mz)|n, m ∈ Z} we say that E corresponds to the complex modulus z.
In particular E has complex multiplication by z.

Definition 2. Let G = PSL2(Z) be the quotient group of SL2(Z) after we

identify I =
(

1 0
0 1

)
and −I =

(
−1 0
0 −1

)
. A modular function of weight

2k on h is a meromorphic function f , such that f(z) = (cz + d)(−2k)f(Mz), for

every M =
(

a b
c d

)
∈ G.

Holomorphic modular functions are called modular forms. A particular ex-
ample is the j−invariant function.

Definition 3. Let E be a non-singular elliptic curve with a Weierstrass form

y2 = 4x3 − g2x− g3 (1)

We define the j-invariant of E as

j(E) =
1728g3

2

g3
2 − 27g2

3

(2)

As we mentioned it is possible to consider j not only as a function on the
space of elliptic curves, but also as a modular form. To do this we would need
to extend our definition of g2 and g3.
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Definition 4. Let k ∈ N. The Eisenstein series of weight 2k are defined as

Gk(z) :=
∑
m,n

(mz + n)−2k, (m,n) 6= (0, 0) (3)

These functions are modular forms of weight 2k. We define g2 := 60G2

and g3 := 140G3. The need of the scalars is to avoid fractional coefficients in
the Weierstrass form of an elliptic curve for which we substitute values in our
modular functions. One can easily check that 4 = g3

2 − 27g2
3 is a modular form

of weight 12 and hence is not identically 0. Therefore, j(z) is well defined by
(2). Since g2 is of weight 4 and g3 is of weight 6 it follows that j(z) is a modular
function of weight 0. Note that if E corresponds to the complex modulus z then
j(E) = j(z), because if E = C/(1, z) then in its Weierstrass form (1) g2 = g2(z)
and g3 = g3(z).

If E is an elliptic curve over a field K and σ is an automorphism of C that
acts trivially on K, we would have from (2) the equality j(Eσ) = j(E)σ. We
would use this property in the next section. Nevertheless, j(z) has several other
important properties that we will shortly utilize.

Lemma 1. Every modular form of weight 0 is a rational function in j(z).

Proof. [Serre].

We will need the following short notation.

Definition 5. For m ∈ N, denote σ1(m) =
∑

d|m d.

In order to prove that j(z0) is an algebraic number when z0 is a complex
modulus, we would construct a particular polynomial with a root j(z0). To do
this we would first need the following more general result.

Theorem 1. For every m ∈ N write Mm for the set of integer-entries matrices
with determinant m. Then there exists a polynomial Φ(x, y) ∈ Z[x, y], symmet-
ric up to a sign in its two variables and of degree σ1(m) =

∑
d|m d in either,

such that Φ(j(Mz), j(z)) = 0 for every M ∈ Mm.

Proof. Let G = PSL2(Z). Note that the set of 2 × 2-matrices with integer

entries M∗
m = {

(
a b
0 d

)
|ad = m,0 ≤ b ≤ d} is a full set of representatives

for G\Mm. Hence |M∗
m| = σ1(m).

Consider the following function

Φm(x, j(z)) :=
∏

M∈M∗
m

(x− j(Mz)), (4)

where x, z ∈ C and Im(z) > 0. The function is well defined since M∗
m is a

finite set and since j(z) is G−invariant. By definition this function is a polyno-
mial in x of degree σ1(m). Further, each coefficient of Φm(x) is a holomorphic
G−invariant function of z. To continue the proof we would need the following
result.

3



Lemma 2. Every holomorphic G−invariant function defined on the upper half-
plane with at most exponential growth at infinity is a polynomial function in
j(z).

Proof. As we have shown, any modular form of weight 0, i.e. every holomorphic
G−invariant function on the upper halfplane, is a rational function in j(z). Since
j(z) =

∑∞
n=−1 cnqn and z → ∞ is equivalent to q = e2πiz → 0, any rational

function in j(z) with at most exponential growth at infinity must be in fact a
polynomial.

Using the result of Lemma 2 and the fact that Φm(x, j(z)) has exponential
growth at infinity, we get Φm(x, y) ∈ C[x, y]. To show that its coefficients are
in Z we would use the Fourier expansion of j(z) as a series in q = e2πiz

j(z) =
∞∑

n=−1

cnqn,

where c−1 = 1 and cn ∈ Z for all n ∈ N. We have

Φm(x, j(z)) =
∏

ad=m

d−1∏
b=0

(x− j(
az + b

d
)) =

∏
ad=m

d−1∏
b=0

(x−
∞∑

n=−1

cnζn
d qan/d), (5)

where ζd is a dth root of unity. Hence, Φm(x) is a polynomial with coefficients in
the ring Z[q−1/d, q1/d][ζd]. Since Galois conjugation ζd 7→ ζk

d simply permutes
the order of the terms in the inner product of the above expression, we can
conclude that this product would have coefficients in Z. Since j(z + 1) = j(z)

d−1∏
b=0

(x−
∞∑

n=−1

cnζn
d qan/d)

is invariant under z 7→ z + 1. Therefore, the fractional powers of q in the
expression disappear and Φm(x, j(z)) belongs to Z[q−1, q][x].

Finally the symmetry of Φm(x, y) (up to a sign) follows, since if w = Mz for

some matrix M =
(

a b
c d

)
∈ Mm, then z = M ′w, where M ′ is the element(

a −b
−c d

)
∈ Mm.

We obtain the following corollary.

Corollary 1. The values of j(z) at complex moduli are algebraic numbers.

Proof. Let z be the complex modulus corresponding to the elliptic curve E.
By definition z satisfies some quadratic equation with integer coefficients and
negative discriminant like Az2 + Bz + C = 0, AC > 0. Then the 2 × 2-

matrix M =
(

B C
−A 0

)
∈ MAC fixes z. Therefore, ΦAC(j(z), j(z)) =
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ΦAC(j(Mz), j(z)) = 0 and j(z) is an algebraic number of degree at most
σ1(AC).

In the end of this section we take a step aside and look again at j(z) as a
function on the set of elliptic curves. If z0 is a complex modulus, K = Q(z0) is an
imaginary quadratic extension of Q with ring of integers RK and E0 = C/RK ,
we saw that j(E0) = j(z0). Hence by Corollary 1 the j−invariant of E0 is an
algebraic number. The following theorem shows that the same holds for all
elliptic curves with complex multiplication by RK .

Theorem 2. Let E be an elliptic curve with complex multiplication. Then j(E)
is an algebraic number.

Proof. Let K = Q(z0) be an imaginary quadratic field, with ring of integers
RK , such that E has complex multiplication by RK .

The statement of the theorem follows immediately from the fact that any
elliptic curve has a Weierstrass form. Let E = C/Λ and let (ω1, ω2) generate
Λ, i.e. Λ = {nω1,mω2|n, m ∈ Z}. Then Ẽ = C/ω−1

1 Λ = C/(1, z1), where
z1 = ω2/ω1 is the elliptic curve isomorphic to E in Weierstrass form. Note that
Ẽ has complex multiplication by RK since if for every a ∈ RK aΛ ⊂ Λ it follows
that aω−1

1 Λ ⊂ ω−1
1 Λ.

Since E1 = C/Λ1 is homeomorphic to E2 = C/Λ2 if Λ1 = αΛ2 for some
α ∈ C and j is holomorphic, j(E) would be algebraic if j(Ẽ) is. As a result we
simply need to show that z1 is a complex modulus.

Since by definition Im(ω2/ω1) > 0 we know that z1 ∈ h. Further, since Ẽ
has complex multiplication by RK = Z(z0) it follows that z0 = n+mz1 for some
n, m ∈ Z. Hence z0 and z1 are linearly related over Z and since z0 is quadratic
so must be z1.

Therefore, j takes algebraic values at all elliptic curves with complex multi-
plication.

3 The Galois group of the Hilbert class field for
imaginary quadratic fields

In this section we will consider a result, analogous to the following classic the-
orem.

Theorem 3. (Kronecker - Weber) Every abelian extension of Q is contained
in a cyclotomic extension.

This theorem helps to understand the Galois groups of abelian extensions
of Q. It is only a simple case of the large problem in Class field theory of
understanding the Galois groups of abelian extensions of number fields, which
is a step towards the understanding of the Absolute Galois groups of these fields.
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We will discuss another interesting case - the Maximal unramified abelian
extension of an imaginary quadratic field and discuss the relation between its
Galois group and the j-invariant that we defined in the previous section. Hence-
forth, K will be an imaginary quadratic field with ring of integers RK , unless
we note otherwise.

Definition 6. The Class group of K is defined as CL(RK) = I(RK)/P (RK),
where I(RK) is the set of non-zero fractional ideals of RK and P (RK) is the
set of principal ideals of RK .

A widely known fact is that the class group of a field is always finite. Its
order is called the class number of the field.

Definition 7. An extension of a field K is abelian, if it is Galois with an
abelian Galois group. It is called unramified if no elements of K ramify in the
extension. The Hilbert class field H/K is by definition the maximal unramified
abelian extension of K.

Now we have enough language to state the main theorem of this section.

Theorem 4. Let H be the Hilbert class field of K. Let E be an elliptic curve
with complex multiplication over RK . Then we have Gal(H/K) ∼= CL(RK) and
H ∼= K(j(E)).

Before we begin the proof of the main theorem we would need to define
several important concepts. The first is the action of the class group CL(RK)
on the space of elliptic curves with complex multiplication by the ring RK . To
ease notation we will denote this space ELL(RK).

Let a ⊂ K ⊂ C be a non-zero fractional ideal. Since K is a quadratic
imaginary field a must be a Z−module of rank 2, which is not contained in R.
Therefore, a is a lattice and hence there exist an elliptic curve Ea, such that

End(Ea) ∼= {α ∈ C|αa ⊂ a} = {α ∈ K|αa ⊂ a} = RK

The last equality follows from the definition of a fractional ideal. Note for a
given fractional ideal a we would denote its class in CL(RK) by ā.

Definition 8. Let Λ be a lattice and a be a fractional ideal. The product of a
and Λ as two lattices is defined as follows:

aΛ := {
r∑

i=1

αiλi|αi ∈ a, λi ∈ Λ, r ∈ N}.

Having defined the product of two lattices we can define the action of
CL(RK).

Definition 9. The action of CL(RK) on ELL(RK) is defined as

ā ∗ EΛ = Ea−1Λ (6)
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To see that the action is correctly defined we need to prove the following two
results.

Lemma 3. Ea−1Λ is an elliptic curve with complex multiplication by RK .

Proof. W.l.g. we would prove the statement for a. Let α be any complex
number. Then we have a−1αa = αRK . Since EΛ has complex multiplication by
RK we have RKΛ = Λ. Therefore,

αaΛ ⊂ aΛ ⇐⇒ a−1αaΛ ⊂ a−1aΛ ⇐⇒ αΛ ⊂ Λ

Hence,

End(EaΛ) = {α ∈ C|αaΛ ⊂ aΛ} = {α ∈ C|αΛ ⊂ Λ} = End(EΛ) = RK .

Lemma 4. Let a and b be two non-zero fractional ideals. Then, for a given
EΛ, EaΛ

∼= EbΛ if and only if ā = b̄.

Proof. We would use the following elementary fact about elliptic curves over C:
EaΛ

∼= EbΛ if and only if there exists c ∈ C×, such that aΛ = cbΛ. Hence,

EaΛ
∼= EbΛ ⇐⇒ Λ = ca−1bΛ.

Similarly we get:
EaΛ

∼= EbΛ ⇐⇒ Λ = c−1ab−1Λ.

If EaΛ
∼= EbΛ, both ca−1b and c−1ab−1 must take Λ to itself and hence both

must lie in RK . However, since they are inverse to one another, they must both
equal RK . As a result a = cb and therefore ā = b̄.

The next concept we would need is the Frobenius homomorphism.

Definition 10. Let K̄ be the algebraic closure of K. Then the Frobenius ho-
momorphism for K is defined as the homomorphism

F : Gal(K̄/K) → CL(RK), (7)

uniquely characterized by the condition

Eσ = F (σ) ∗ E (8)

for all σ ∈ Gal(K̄/K) and E ∈ ELL(RK).

Of course we would need the following lemma.

Lemma 5. F is a well defined homomorphism of groups.
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Proof. Let σ be any element of Gal(K̄/K) and let E be any elliptic curve in
ELL(RK). Then End(Eσ) = End(E) = RK . The proof of this fact is not
central for our work and may be found in [Silverman]. Hence for every σ there
exists a unique ā ∈ CL(RK) with Eσ = ā∗E. Therefore, for a fixed E the above
map (7) is well defined and determined by (8) for every σ ∈ Gal(K̄/K). The
fact that the so defined F is a homomorphism for a fixed E follows, as

F (στ)∗E = Eστ = (Eσ)τ = (F (σ)∗E)τ = F (τ)∗ (F (σ)∗E) = (F (σ)F (τ))∗E

The last equality follows from the fact that for K/Q imaginary quadratic
field CL(RK) is an abelian group. It remains to show that F is independent of
the choice of the elliptic curve E. To do this we would need the following fact,
which proof is rather technical and may be found in [Silverman].

Lemma 6. Let E ∈ ELL(RK), σ ∈ Gal(K̄/K) and a ∈ CL(RK). Then the
following is true

(a ∗ E)σ = āσ ∗ Eσ (9)

This equation might seem quite trivial at first sight, but in fact it gives
us a relation between the action of the Absolute Galois group and that of the
Class group. Assuming the above lemma let E1, E2 ∈ ELL(RK) and let σ ∈
Gal(K̄/K). Write Eσ

1 = ā1 ∗ E1 and Eσ
2 = ā2 ∗ E2. We need to prove that

ā1 = ā2. An easy observation that the action of CL(RK) on ELL(RK) is simply
transitive ([Silverman]), allows us to find b̄ ∈ CL(RK), such that E2 = b̄ ∗ E1.
Then

(b̄ ∗ E1)σ = Eσ
2 = ā2 ∗ E2 = ā2 ∗ (b̄ ∗ E1) = (ā2b̄ā−1

1 ) ∗ Eσ
1 .

Note since b̄ ⊂ K and σ ∈ Gal(K̄/K), b̄σ = b̄. Hence using the result of Lemma
6 we may cancel b̄ from both sides and obtain Eσ

1 = (ā−1
1 ā2) ∗ Eσ

1 . Therefore,
ā1 = ā2 and F is independent of the choice of elliptic curve.

The third concept that we will use is the Artin map and the related conductor
of a field extension L/K. Let L be a finite unramified abelian extension of K
and let RL be the ring of integers in L. Let p be a prime in K and P ∈ L be
a prime lying over p. Then RL/P and RK/p are finite fields and the first is a
Galois extension of the later. We define the decomposition group of the element
P as G(P) = {σ ∈ Gal(L/K)|Pσ = P}. Then using restriction we get a map

G(P) → Gal((RL/P)/(RK/p)). (10)

This Galois group is cyclic and is generated by the usual Frobenius automor-
phism x 7→ x(RK :p). Since p is unramified this automorphism is uniquely ex-
tended to an element σP ∈ G(P). Changing P would change σP by conjuga-
tion, but since Gal(L/K) is abelian σP would be independent of the choice of
P. Therefore, let us denote this Frobenius element σp. Formally this element is
uniquely determined by the condition

‖σp(x)− x(RK :p)‖p < 1, (11)
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where x ∈ L× and ‖ · ‖p is the normalized p−adic valuation. However, it is
easier to think of the Frobenius element as determined from

σp(x) ≡ x(RK :p) mod P, (12)

for x ∈ RL.
Let c be an integral ideal of K. By I(c) we would denote the group of

fractional ideals of K that are relatively prime with c. (Note: the fractional
ideals a and b are relatively prime if and only if a + b = RK .)

Definition 11. Let a ∈ I(c). Since RK is a Dedekind domain we may write
a =

∏
p pnp . Then the Artin Map is defined as

(·, L/K) : I(c) → Gal(L/K),

(a, L/K) =

(∏
p

pnp , L/K

)
:=
∏
p

σ
np
p .

Let P (c) be the set of all principal ideal, which generator is congruent to 1
modulo c. Then the Artin map gives us the following result.

Lemma 7. (Artin map reciprocity) Let L/K be a finite abelian extension. De-
fine the Frobenius element as above for all unramified primes in K. Then there
exists an integral ideal c ∈ RK such that all primes that ramify divide c and
P (c) lies in the kernel of the Artin map (·, L/K).

Proof. [Silverman].

If c1 and c2 are two ideals that satisfy the above lemma the same would
hold for c1 + c2 as the Artin map is linear (a fact that follows easily form
the definition). Therefore, there must exist a maximal ideal that satisfies the
conditions of Lemma 7. We would call this ideal the conductor of L/K and
denote it by cL/K .

We would use the following important theorem from Class Field Theory
about the Artin map and the conductor.

Theorem 5. The Artin map (·, L/K) : I(c) → Gal(L/K) is a surjective homo-
morphism. Further, ker(·, L/K) ⊂ P (cL/K).

We would also need a slightly modified version of Dirichlet’s Theorem on
primes in arithmetic progressions. For the proof of this theorem consult [Serre]
and [Neukirch].

Theorem 6. (Dirichlet) Let K be a number field and c be an integral ideal of
K. Then every ideal class in I(c)/P (c) contains infinitely many degree 1 primes
of K.

Finally we would use the following lemma.
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Lemma 8. There exists a finite set S ⊂ Z of rational primes, such that if p /∈ S
is a prime that splits in K, say as pRK = pp′, then F (σp) = p̄ ∈ CL(RK),
where σp is the Frobenius element corresponding to p and F is the Frobenius
homomorphism, which we have defined in Definition 10.

Proof. [Silverman].

Having defined the Artin map and the other important concepts we now
have the tools to prove the main result of this section (Theorem 4). We restate
the theorem, slightly modifying it, in order to emphasize the connection with
the modular function j(z).

Theorem 7. Let H be the Hilbert class field of K. Let E be an elliptic curve
with complex multiplication over RK . Then we have Gal(H/K) ∼= CL(RK) and
H ∼= K(j(E)). Further, for every non-zero fractional ideal a of K we have

j(E)(a,H/K) = j(ā ∗ E). (13)

Proof. Let L/K be the finite extension of K, such that L is the fixed field of
the kernel of F - the Frobenius homomorphism in Definition 10. Recall that by
K̄ we denote the algebraic closure of K. Then we have,

Gal(K̄/L) = kerF = {σ ∈ Gal(K̄/K)|F (σ) = 1},

since CL(RK) acts simply transitively on ELL(RK). Further, from the definition
of F and the properties of j(E) we obtain

Gal(K̄/L) = {σ ∈ Gal(K̄/K)|Eσ = E} = {σ ∈ Gal(K̄/K)|j(Eσ) = j(E)}
= {σ ∈ Gal(K̄/K)|j(E)σ = j(E)}

= Gal(K̄/K(j(E))).

It follows from basic Galois theory that L = K(j(E)). Further, since F maps
Gal(L/K) injectively into CL(RK), (because kerF fixes L), and since CL(RK)
is an abelian group, L/K must be an abelian extension.

Fix L = K(j(E)) and let S be the finite set described in Lemma 8. Let
a ∈ I(cL/K). Consider the composition of the Artin map and the Frobenius
homomorphism

I(cL/K)
(·,L/K)−−−−−→ Gal(L/K) F−→ CL(RK). (14)

By Dirichlet’s theorem (Theorem 6) there exists a degree one prime p ∈
I(cL/K), which is in the same ideal class as a according to P (cL/K) and does
not lie over some prime in S. Then using Lemma 7 and Lemma 8 we obtain

F (a, L/K) = F (p, L/K) = p̄ = ā. (15)

The above equality implies that for every a ∈ K, with (a) relatively prime with
cL/K , F ◦((a), L/K) = 1. F is injective on Gal(L/K) and hence ((a), L/K) = 1.

10



But by definition the conductor cL/K is the smallest integral ideal c with the
property that

a ≡ 1 mod c ⇒ ((a), L/K) = 1.

As a result cL/K = (1). Since every ramified prime must divide cL/K by definition
we may conclude that L/K is an unramified extension. Therefore, L is contained
by H, which is the maximal such extension. Yet the composition defined in
(14) is surjective using Theorem 5 and I(cL/K) = I((1)). Hence the Frobenius
homomorphism F : Gal(L/K) → CL(RK) is an isomorphism. Note that the
equality (15) gives the exact action of the Artin map on j(E).

It remains to prove that L = H. However, since H is the maximal unramified
abelian extension we have cH/K = (1) and

I(cH/K) = I(RK) = {all non-zero fractional ideals},

P (cH/K) = P (RK) = {all non-zero principal ideals}.

By Theorem 5 the Artin map is a surjective homomorphism and hence it de-
fines an isomorphism from I(cH/K)/ ker(·,H/K) to Gal(H/K). Using that by
Lemma 7 P (cH/K) ⊂ ker(·,H/K) and by Theorem 5 ker(·,H/K) ⊂ P (cH/K)
we see that the Artin map restricts to an isomorphism between the CL(RK) and
Gal(H/K). Therefore, the order of Gal(H/K) equals the class number hK of
K and hence equals also the order of Gal(L/K). But L ⊂ H, hence L = H.

4 Approximating π

As promised here we give a way to approximate π using the values of j(z) at
particular quadratic complex moduli. This approximation may be found in the
lectures of Don Zagier on Complex multiplication and Modular forms, [Zagier].
As the author says this approximation is more interesting, because it uses hard
results in an unexpected way, and is not very practical. In his own words: ”It
is more fun than serious.”

Let D = 163. Then K = Q(−D) is an imaginary quadratic extension of Q
of class number 1. In fact this is the smallest value of D for which K has such
class number. We denote by zD the set of complex moduli of discriminant D
and by G\zD that set modulo G = PSL2(Z). Then the order of G\zD equals
the class number of K and hence we may choose a finite set of representatives
of G\zD, say {zD,i|1 ≤ i ≤ hK}. We define the class polynomial of K (or D) in
a similar way to (4).

Definition 12. (The Class Polynomial) The class polynomial of an imaginary
quadratic field K = Q(−D) is defined as

ΨD(x, j(z)) :=
hK∏
i=1

(x− j(zD,i)). (16)
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As Don Zagier proves ([Zagier], Proposition 25), the above polynomial is
irreducible and of degree the class number hK . Further, ΨD has integer coeffi-
cients. As a result the exact degree of the algebraic values of j(z) at complex
moduli would equal the class number of the underling field.

Therefore, in our case of D = −163, as hK = 1, ΨD must be linear and hence
the values of j(z) should be a rational integer for z ∈ zD. Moreover j(z163) is
very large, since j(z) ≈ q−1 = e−2πiz and the value of q corresponding to z163 is
of order 10−18. However, from the series’ expansion of j(z) = q−1 + 744 + O(q)
we get that q−1 must be a very good approximation of an integer. This in turn
gives us the formula

eπ
√

163 ≈ 262537412640768743.999999999999

At the end of these calculations we find the desired approximation of π

π =
1√
163

ln(262537412640768744)−O(10−31).

Of course, this method of approximation of π is not practical since it would
be much harder to evaluate j(z163). More interesting is the fact that for z163

the inverse of the Fourier variable q is very close to an integer. This would
obviously hold for all cases when hK = 1. This in turn leads to the peculiar
fact that there are only 9 values of D for which the last is true.

5 Conclusion

The results that we proved are a nice example where geometry, analytic and
algebraic number theory come together. We see how geometric objects like
elliptic curves could be used for the constructions of important field extensions,
i.e. the Hilbert class field. Theorem 7 gives also the connection between the
Galois group of this extension and the Ideal class group of the underling field.
This is an important result since the later is usually much easier to be classified.
We defined the action of the Ideal class group CL(RK) on the space of elliptic
curves ELL(RK) and Theorem 7 provides its correspondence to the usual action
of the Galois group, using the analytic properties of the j−function. Finally in
the last section we saw that the relation between the algebraic concept of the
Ideal class group and the geometry of elliptic curves goes even further. Having
constructed the Class polynomial of an imaginary quadratic number field K, we
saw that for an elliptic curve E with complex multiplication by the ring RK the
degree of the algebraic value of j(z) at the complex modulus of E is equal to
the class number of the ring RK .
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