
THE BANACH CONTRACTION PRINCIPLE
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Abstract. This paper will study contractions of metric spaces. To do this,
we will mainly use tools from topology. We will give some examples of contrac-
tions, and discuss what happens when we compose contraction functions. The
paper will lead up to The Banach Contraction Principle, which states every
contraction in a complete metric space has a unique fixed point.
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1. Contractions: Definition and Examples

Definition 1 (Contraction). Let (X, d) be a complete metric space. A function
f : X → X is called a contraction if there exists k < 1 such that for any x, y ∈ X,
kd(x, y) ≥ d(f(x), f(y)).

Example 1. Consider the metric space (R, d) where d is the Euclidean distance
metric, i.e. d(x, y) = |x− y|. The function f : R → R where f(x) = x

a + b is a
contraction if a > 1. In this specific case we can find a fixed point. Since a fixed
means that f(x) = x, we want x = x

a + b. Solving for x gives us x = ab
a−1 .

Example 2. We can create a similar contraction in the metric space (R2, d)
with the Euclidean distance metric. The function f : R2 → R2 where f(x, y) =
(x

a + b, y
c + b) is a contraction if a, c > 1. For a fixed point, we want f(x, y) = (x, y).

Solving just like we did above, we get x = ab
a−1 and y = cb

c−1 .

2. Complete Metric Spaces

The Contraction Theorem will specify that the metric space must be complete.
We will now define a complete metric space and explain its role in the Theorem.

Definition 2. A metric space X is complete if every cauchy sequence of points in
X converges to a point in X.

This specification simply ensures that what would be our fixed point is actually
in X. If we took the function f(x) = x

a + b, as in the above example, but only
considered it on the space R2 − {ab/(a + 1} (which is not complete), our function
would not have a fixed point.
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3. Applying Contractions Multiple Times

From these examples, we have reason to believe that contractions in general
have fixed points. To show that any contraction has a fixed point we will find a
point that should be fixed and prove that that point is indeed a fixed point. Let
f : X → X be any contraction. If, for a moment, we believe that all contractions
have fixed points, then f2(x) should have a fixed point since it’s a contraction:

Claim 1. Suppose f is contraction. Then fn is also a contraction. Furthermore,
if k is the constant for f , kn is the constant for fn.

Proof. First we will show that the theorem is true for n = 2. Since f is a contraction,
we know that for some k < 1, kd(x, y) ≥ d(f(x), f(y)). We can apply f again to
f(x) and f(y) to get kd(f(x), (y)) ≥ d(f2(x), f2(y)). Since kd(x, y) ≥ d(f(x), f(y)),
we know that k2d(x, y) ≥ kd(f(x), f(y)). Thus we have

k2d(x, y) ≥ kd(f(x), f(y)) ≥ d(f2(x), f2(y))

Thus k2d(x, y) ≥ d(f2(x), f2(y)). Note that since k < 1, k2 < 1. Now assume
fn is a contraction. We can similarly show that fn+1 is a contraction. Our in-
duction step is also proving that the constant for fn is kn, so we can assume that
knd(x, y) ≥ d(fn(x), fn(y)). Like in the above proof, we can apply f again to get

kn+1d(x, y) ≥ kn+1d(f(x), f(y)) ≥ d(fn+1(x), fn+1(y))

Thus kn+1d(x, y) ≥ d(fn+1(x), fn+1(y)). By induction, the theorem is true for
all n.

¤
Since each fn is a contraction, each fn has a fixed point. Moreover, we can

show that each fn has the same fixed point. If f(x) = x, then f2(x) = f(f(x)) =
f(x) = x. By induction, fn(x) = x for all n. Also, this proof shows that the
distances between points get very small as we apply the contraction many times.
This means that if the original space X was not infinitely large, the area covered
by the image of fn will get very small. That is, if the distance between any two
points in X had a maximum, let’s say m, then the distance between any two points
in the image of fm would have to be less than knm. In the next section, we will
look at contractions on metric spaces where the all distances are bounded.

4. Contractions on Balls

Definition 3. For c ∈ X and 0 < r ∈ R let

Br(c) = {x ∈ X | d(c, x) < r}
be the ball of radius r centered at c. Also, we define the closure of Br(c), deno-

tated by Br(c), to be the set containing Br(c) and all of its limit points.

Remark. If a subset of a complete metric space contains all of its limit points,
then all cauchy sequences contained in the set converge to a point in the set. Thus
by using closed balls, we ensure that they are complete. Also note that Br(c) =
{x ∈ X | d(c, x) ≤ r}.
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The above definition implies the distance between any two points in a ball Br(x)
has to be less than or equal to 2r. Thus, if we restrict f to some Br(x) we will be
able to specify which points are contained in the image. But we have to make sure
we pick our ball so that the hypothetical fixed point of X is in it. If we pick our ball
so that the image of the ball is a subset of the original ball, then f : Br(x) → Br(x)
would itself be a contraction, so it would have a fixed point. This would also be
the same point that is fixed in X! So we just have to make sure that such a ball
exists:

Claim 2. Suppose that f is a contraction. Let x ∈ X. For large enough values of
r, f(Br(x)) ⊂ Br(x).

Proof. We want to find r such that for any y ∈ Br(x), f(y) ∈ Br(x). Thus we want
to find r such that d(x, f(y)) < r. By the triangle inequality, we know that

d(x, f(y)) ≤ d(x, f(x)) + d(f(x), f(y))

Since f is a contraction, we know that d(f(x), f(y)) ≤ kd(x, y). If Br(x) is any
ball and y ∈ Br(x), we know that d(x, y) ≤ r. Thus d(f(x), f(y)) ≤ kr. Thus

d(x, f(y)) ≤ d(x, f(x)) + kr

.
So if we choose r so that d(x, f(x))+ kr < r, we would know that d(x, f(y)) < r

for any y ∈ Br(x). Thus f(y) ∈ Br(x). Thus we can solve for r to find which r′s
will work for a specific k and x:

d(x, f(x)) + kr < r

d(x, f(x)) < r − kr

d(x, f(x)) < r(1− k)
d(x, f(x))
(1− k)

< r

Thus we know that if d(x,f(x))
(1−k) < r, then f(y) ∈ Br(x) for any y ∈ Br(x).

¤
Remark. In general, we know that if A ⊂ B and p is a limit point of A, then
p is also limit point of B. Thus A ⊂ B. Since f(Br(x)) ⊂ Br(x), we know that
f(Br(x)) ⊂ Br(x).

Now, since we know how large the ball is to begin with, we can specify how small
it gets when we apply f many times:

Claim 3. For any n, fn(Br(x)) ⊂ Br′(fn(x)), where r′ = knr.

Proof. The proof of this Claim is very similar to the proof of Claim 1. First we
will show that it is true for n = 1. We know that r > d(x, y) for any y ∈ Br(x).
This implies that r′ = kr > kd(x, y). Since f is a contraction, we also know that
kd(x, y) ≥ d(f(x), f(y)), which means kr ≥ d(f(x), f(y)). Since every point in
f(Br(x)) equals f(y) for some y ∈ Br(x), we know that every point in f(Br(x)) is
less than kr away from f(x). Thus all points in f(Br(x)) are in a ball around f(x)
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or radius kr.

Now assume the Claim is true for n. Thus we know that fn(Br(x)) ⊂ Br′(fn(x)),
which implies d(fn(x), fn(y)) ≤ knr for any y ∈ Br(x). This implies that kd(fn(x), fn(y)) ≤
kn+1r. Also, since f is a contraction, we know that d(fn+1(x), fn+1(y)) ≤ kd(fn(x), fn(y)).
So d(fn+1(x), fn+1(y)) ≤ kn+1r. This implies that fn+1(Br(x)) ⊂ Br′(fn+1(x)),
as desired. By induction, the Claim is true for all n.

¤
Remark. Again, since fn(Br(x)) ⊂ Br′(fn(x)), we know that fn(Br(x)) ⊂
Br′(fn(x)).

5. The Intersection of Nested Closed Sets

We know that when we apply f many times the image gets very small and we
have a precise way of saying how small the image is. Also, our fixed point should be
in the image of each fn. Since the fixed point should be in all fn(Br(x)), it should
be in the intersection of all fn(Br(x)). We will complete the proof by studying the
intersection. First, we will make sure there is at least one point in the intersection:

Claim 4. The intersection of all fn(Br(x)) is nonempty.

Proof. First we will find a sequence of points that is cauchy, so it must converge to
a limit. We will then show that this limit must be in the intersection.

Take the sequence of points an such that an ∈ fn(Br(x)). We will show that
this sequence is cauchy. We will show that for any ε there exists N such that
if n,m > N , d(an, am) ≤ ε. Let N be such that ε > kNr. We know that
fN (Br(x)) ⊂ Br′(fN (x)), where r′ = kNr, as described in Claim 3. Also, note
that if p > N , then fp(Br(x)) ⊂ fN (Br(x)). Thus if n,m > N , we know that
an, am ∈ fN (Br(x)). Thus an, am ∈ Br′(fN (x)). Thus d(fN (x), an) ≤ r′ and
d(fN (x), am) ≤ r′. Adding these together get d(fN (x), an) + d(fN (x), am) ≤ 2r′.
Since this is a metric space we know that d(am, an) ≤ d(fN (x), an)+d(fN (x), am).
Thus d(am, an) ≤ 2r < ε, as desired.

Since the sequence is cauchy, it must converge to a limit. Now we will show that
this limit is in the intersection. Say that the limit p was not in the intersection.
Then p is not in some fn(Br(x)). Let Bj(p) be a ball around p such that j =
d(f(x), p)− r′, where r′ = knr. Thus no point in fn(Br(x)) is in Bj(p). But there
are an infinite number of points from the sequence an in fn(Br(x)) since we have
am ∈ fm(Br(x)) ⊂ fn(Br(x)) if m > n. Since every ball around p must only
have a finite number of points of an outside of it, this contradicts the fact that an

converges to p. Thus p is in the intersection.
¤

Remark It is true that in a complete metric space, for any sequence of closed sets
A1 ⊃ A2 ⊃ A3 ⊃ . . ., the intersection of the sets Ai is nonempty.

Furthermore, we can show that p is the only point in the intersection.

Claim 5. The intersection of all fn(Br(x)) has only one point.
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Proof. Say the intersection had more then one point. Let a, b be any two points
in the intersection. Let ε = d(a, b). Take n such that ε/2 > knr. We know that
fn(Br(x)) is contained Br′(f(x)), where r′ = knr. Also, no two points in this ball
can have a distance of 2r′ or more. Since d(a, b) = ε = 2r′, both a and b cannot be
in fn(Br(x)). Thus they are not in the intersection of all fn(Br(x)). ¤

6. Two Proofs of the Contraction Theorem

Now we know that the intersection has exactly one point. Since we have guessed
that our fixed point is in all fn(Br(x)), this must be our fixed point. We will now
prove that this is so.

Theorem 1 (The Banach Contraction Principle). Let (X, d) be a complete metric
space, f : X → X a contraction. Then f has a unique fixed point in X.

Proof. By the previous two claims, there exists exactly one point y in the inter-
section of all fn(Br(x)). Say that it was not fixed. Let ε = d(f(y), y). We know
that ε is not 0 since f(y) 6= y. Take n such that ε/2 = knr. Thus we know that
fn(Br(x) ⊂ Bε2(f(x)). Thus no two points in fn(Br(x) can have a distance greater
than ε. y is in fn(Br(x) because it’s in all fn(Br(x) and f(y) is in fn(Br(x) be-
cause each contraction is a subset of the last. But the distance between y and f(y)
is ε. Thus we must have f(y) = y. Thus y is a fixed point.

Note that we cannot have more than one fixed point. If had two, say x, y, we
would have d(f(x), f(y)) = d(x, y). But we know that d(f(x), f(y)) ≤ kd(x, y)
where k < 1 since f is a contraction.

¤
Alternate Proof. We can prove the Theorem an alternate way using similar
concepts and methods developed in this paper. However, this proof is framed
around the idea of creating a cauchy sequence that will ‘lead’ us to our fixed point.

Proof. Take any x ∈ X. Let an be the sequence such that ak = fk(x). Choose r

so that f(Br(x)) ⊂ Br(x), as described in Claim 2. First we will show that this se-
quence is cauchy. For any ε, we will find j such that if m,n > j then d(am, an) < ε.
Take any ε. Take j such that ε/2 > kjr. So we know that the distance between
any two points in f j(Br(x)) is less than ε (see Claim 3). We also know that
ak ∈ fk(Br(x)) and that if m,n > j, then fm(Br(x)), fn(Br(x)) ⊂ f j(Br(x)).
Thus am, an ∈ f j(Br(x)) and so d(am, an) < ε, as desired.

Since the sequence is cauchy, it converges to a limit y. Say that y was not fixed
by f . Take ε = d(f(y), y)/3. Since an converges to y, we can find N such that
for all k > N , ak ∈ Bε(y). Find that N and take any such k. By the triangle
inequality, we know that d(f(y), y) ≤ d(f(y), ak) + d(ak, y). This implies that
d(f(y), y)− d(ak, y) ≤ d(f(y), ak). Since d(ak, y) < d(f(y), y)/3,

d(f(y), y)− d(f(y), y)/3 < d(f(y), y)− d(ak, y) ≤ d(f(y), ak)

Thus 2d(f(y),y)
3 < d(f(y), ak). Since ak+1 = f(ak), ak+1 is in the same ball as ak.

Thus the exact same statement can be made for ak+1, i.e. 2d(f(y),y)
3 < d(f(y), ak+1).

Thus we have
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d(y, ak) <
d(f(y), y)

3
<

2d(f(y), y)
3

< d(f(y), ak+1)

This contradicts the fact that f is a contraction, since a contraction requires
that d(f(y), f(ak)) < d(y, ak). Thus y must be fixed.

¤
Acknowledgments. I would like to thank my mentors Tom Church and Katie
Mann. Tom was very helpful in getting me started on Topology topics and an-
swering some preliminary questions. Katie provided much guidance during our
meetings, and was particularly good at helping me understand the concepts and
ideas behind the math we were working with.

References

[1] Charles C. Pugh. Real Mathematical Analysis. Springer. 2003.


