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ABSTRACT. The aim of this paper is to give a mathematical treatment of the
Ising model, named after its orginal contributor Ernst Ising (1925). The paper
will present a brief history concerning the early formulation and applications
of the model as well as several of its basic qualities and the relevant equations.
We proceed to prove the existence of a critical temperature in two dimensions
that follows from the application of the model onto the square lattice. We
then move on to a discussion of further breakthroughs concerning the model,
providing the mathematical argument that leads to the calculation of the value
of the critical temperature as well as a further discussion on the Ising model’s
continuing significance in an array of scientific fields.

CONTENTS

1. Formulation and Brief History 1
2. Characteristics of the Ising Model 3
3. The Existence of a Critical Temperature on the Two-Dimensional

Lattice 5
4. The Onsager Transfer Matrix Solution of the Two-dimensional Model 8
5. Concluding Remarks 10
Acknowledgments 10
References 10

1. FORMULATION AND BRIEF HISTORY

In 1925 German physicist Ernst Ising formulated what is now called the Ising
model as his doctoral thesis under the guidance of Lenz. His orginal aim was to
provide a mathematical model for empirically observed qualities of ferromagnetism.
Ising initally formulated the model on the points (1,2,...,n) arranged along the Z-line
as shown:

At each site there is a dipole or spin with two possible orientations, “up” or
“down.”

Definition 1.1. A random field is a probability measure placed on the set of all
possible spin configurations on a given lattice.

We place a random field on the model choosing Q = {w = {wg, w1, ...,wn}} as
our sample space where each w; =“+” or “” where + indicates up spin and -
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FIGURE 1. One-Dimensional Ising Model [2]

indicates down. We now consider a function o; : where ;(w) =1 if w; = 4 and
-1 if w; = —.

Definition 1.2. Two indicies ¢ and j are called neighbor pairs if they are exacly 1
unit apart.

Ising assigned a probability measure by assigning to each configuration an energy
function:

(1.3) Ulw) = —JZ oi(w)o;(w) —mH Z oi(w)

We take the sum over all pairs (7, j) such that ¢ and j are neighbor pairs. We call
the first term the interaction energy which arises from the interactions between
neighbor pairs. The second term represents energy due to magnetization where
the sum just represents the difference in the number of up and down spins. It is
important to note the assumption that only the interactions between neighboring
pairs are significant.

In physics this total energy of the system is called the Hamiltonian. Here the
constant J is a property of the material being considered, H describes the magnitude
of the magnetic field with a signature that describes its direction and m > 0 is a
constant that also depends on the material being considered. The situation in which
J > 0 corresponds to the attractive case, where interaction tends to keep neighbors
in the same orientation as opposed to J < 0, the repulsive case, in which opposite
neighbor orientations are favored.

The next step is to assign probabilities proportional to

(1.4) errU @)

where k is a universal constant (i.e. the Boltzmann constant) and T is the temper-
ature. We then complete this to a probability function on 2
1.5 Plw) =
. W) = ——5—o
(15) @)=

where

(1.6) Z=> eV

which acts as a normalizing constant and is called the partition function. In Ising’s
initial employment of the one-dimensional model, he was primarily concerned with
the 0 exterior field case. Even if the spins at each site were intitially random, it
was thought that for sufficiently low temperatures the system would move toward a
state of lower energy e.g. spins would align in mostly up or mostly down orientation.
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This describes the phenomenon of spontaneous magnetization. Thus if we define
total magnetization M as
(L.7) M(w) = {wjlw; = +} = {wilwi = —}|

then M would have an expected distribution as shown in Figure 2. Ising remarked

FIGURE 2. Distribution of Total Magnetization [2]

that this was not the case for the simple one-dimensional model. We give a simple
proof of this fact later. Ising gave an argument for generalizing this result to
the two-dimensional model and thus decided that it failed to successfully model
magnetization. His model went virtually unnoticed for many years until the mid
1930s when Peierls (1936) developed an argument which showed that spontaneous
magnetization does indeed occur in two-dimensions in the Ising model. We shall
follow and flesh-out his argument in detail in section 3.

2. CHARACTERISTICS OF THE ISING MODEL

Probabilities of the form in Equation 1.5 are known as Gibbs measures or Boltz-
mann Distributions. Such a measure demonstrates special probabilistic properties.

Definition 2.1. A probability measure is said to define a Markov random field if
(2.2) P(oj=al|opVk # j) = P(oj; = a| oy Yk > (k, j) is a neighbor pair)

We state here without proof that the Gibbs Measure defined in Equation 1.5
defines a Markov random field— for full details see the result in Kindermann (1980).
Probabilities of the form described in Equation 2.4 are called local characteristics.
In this paper, we concern ourselves primarily with the two-dimensional lattice rep-
resentation of the Ising model. In this scenario we consider finite n X n square
lattices as shown in Figure 3. All the equations for this version of the model are
identical though now when we sum over all neighbor pairs we include all four neigh-
bors of interior points and the two or three for each point in the boundary. There is
a simple way to eliminate the difference between the interior and boundary points
by curling the square into a torus so that every site in the 1st column is associated
with the analagous member in the nth column with the equivalent associations
being made between the 1st and nth rows. Such a construction of the lattice is
deemed to have a periodic boundary. We shall later discuss the implications of
considering a periodic boundary later. However, we shall restrict our attention to
the lattice with fized boundary (Figure 4). We present as a lemma one important
characteristic of the one-dimensional Ising model.
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FIGURE 4. Lattice with Fixed Boundary

Lemma 2.3.

(2.4) nli)ngo P(on, =1]og=1) = P(o, = 1|op = —1)

Proof. Recall from Definition 2.3 that P defines a Markov random field. In this
situation, we may regard the model as a Markov chain i.e. a Markov random field
in which, since the sites lie on a line, we may look at each site as an independent
time. In particular, this is a two-state (corresponding to the possible orientations
at each site) Markov chain. This follows directly from Definition 2.3 in which the
state at the next time depends only on the current state. Suppose that at each site
the probability of the next site staying the same is given by p and the probability of
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changing is (1 — p). We can assume this p as the same for every site by the Markov
property (def. 2.3). We can place this information in a transition matriz defined

1- . .
by p » P > in which the top row and first column represent -, and the

L—p
bottom row and second column represent +. Denote this matrix by P. Suppose
. . 1
oo = —1. We represent the spin at the 0 site by the column vector v = 0

Thus, because of the Markov property, repeated applications of this matrix to this
vector will yield the probability distributions for far away spins. We wish to know

(2.5) lim P"v

n—oo

Since P is a 2 x 2 matrix, we calculate it characteristic polynomial as

(2.6) fe(t)=(t-p® -1 -p)

Thus we find the eigenvalues to be \; = 1 and Ay = 2p — 1 with corresponding
eigenvectors (1/2,1/2) and (1/2,—1/2). P™ has eigenvalues A} and \j. We see
from Equation 1.5 that so long as J > 0, 0 < 2p — 1 < 1 since we are in the
attractive case. Therefore, in the limit, A\j — 0. This shows that the probability
distribution goes to (1/2,1/2) which is identical to the situation in which oy has
no effect on o, for far away n. O

This signifies that the value of spins at one site has no effect on the spins at
faraway sites. The goal is to show that this is not the case in two-dimensions i.e.
that there exists a critical temperature T, s.t. if we choose a point in the interior,
it’s orientation is affected by points in the boundary.

3. THE EXISTENCE OF A CRITICAL TEMPERATURE ON THE TwO-DIMENSIONAL
LATTICE

We now restrict ourselves to the attractive case with zero external field. The
main idea of the proof is as follows. When we try to ascertain whether or not a
system will achieve spontaneous magnetization we are really asking this: assume
we have an exterior field H that aligns spins in the up direction. We want to know
what the tendancy for each site to remain in the up position is after the field is
removed. Thus we consider the fixed boundary model in which fixing the boundary
at + represents the effect of the external field. Recall that we are considering finite
n X n lattices with fixed boundary. Letting n — oo simulates reducing the field to
0%. Thus we wish to know what the probability that o, = —1 as n gets arbitrarily
large is where o is some point near the center of the lattice. If the influence of the
boundary does not carry through to the center, P(o, = —1) = 1/2. We would like
to show that for low enough temperatures P(o,) < 1/2) no matter how far away
the boundary points are. This shows that the effect carries through to the center
as the field goes to zero and that spontaneous magnetization indeed does occur.

Theorem 3.1. For the two-dimensional case, There exists a critical temperature,
denoted by T, s.t. o, Plo, =—-1)<1/2 and VT > T, P(o, = —1)1/2 where o is
an arbitrary point near the center of the lattice.
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Proof. Let Q, C ) be the set of all configurations s.t. o, = —1. Then by Equation
1.5,

1
(3.2) Plo, =—1) = g EeﬁUM

Suppose we place another lattice over our initial lattice whose midpoints are the
sites of the first lattice.

Definition 3.3. A closed curve is a circuit if it is a path constructed from draw-
ing borders on our new lattice between odd pairs (4,j) i.e. pairs with opposite
orientations, where o; # o, (Figure 5)

+ | -]+ |+ |+]-1]+
+ | +l-|~-|-|-1+
+ | +]-|+1-]1+ |+
+ |-+ +]-1+ |4

+ |+ [+ |+ |+

FIGURE 5. Two-Dimensional Lattice with Circuits

This is well-defined since no odd pairs exist on the boundary so that our path
always closes. Furthermore, we see that the circuits define shapes whose interior

consists of all “-”. It is clear that the number of odd bonds is given by the total
length of all circuits in the lattice. Let this number be denoted by n,(w). Since
0i(w)oj(w) = —1 for all odd pairs and 1 for all even pairs, if we let n.(w) denote

the number of even pairs, then
(3.4) Y 0i(w)a (W) = ne(w) = no(w)
‘hj

Let ny equal the total number of pairs in the lattice. Note that n; is constant. We
have [.(w) = n¢ — no(w). Thus we may rewrite Equation 1.5 in this situation as
P() = o exp(A(l — 2o(w) :
= — eX —_ o = 7
W SR T S T 7 exp (<281, (w))

where 3 = kiT and Z has become a new constant Z . For all w € €, o is contained in
a circuit ¢. Let n denote the length of ¢ and Q. € €, be the set of all configuations
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containing the circuit ¢ around o,. We associate with each w € €, an w st we
change the values contained within ¢ from “” to “+.” Then it is clear that

(3.5) lo(w) =lo(w) —n
Let Q be the set of all such w’. We know that
ZwGQ e_QﬁlO(W)

c

T Y e € 2@

Where P(c) is the probability that the circuit ¢ appears around o. Since each term
in the sum is greater than zero, if we limit the number of terms in the denominator,
we can only increase the fraction. Thus

Dwen e 20l _ Dwe e 20()

c c

(3.6) P(c)

3.7 P(c) < =
( ) ( ) = Zw’esz’ e—2Blo(w) Zweﬂc e—2B8(lo(w)—n)

By factoring e=2"% from the bottom sum we attain
(3.8) P(c) < e~

Let ¢(n) = the number of circuits of length n around o. Then by Equation 3.9

(3.9) Plo,=—1) < i c(n)e=2P

Suppose we take a random walk of length n on the the same lattice on which the
circuits were drawn. The only random walks of this type that could close and form
a circuit would be those that originate within a square of diagonal length n and
side lengths "T*/i as shown in Figure 6. We denote the number of such walks by
r(n). We know that c¢(n) < +r(n) since for any generated path, a walk could have

A1 N

FIGURE 6. Possible Walk Starting Points

begun at any of the n points on the path. Additionally, within the square shown
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77,2

in Figure 6, the walk has -
have 4™ possible paths. Thus

possible staring points. From each staring point we

4"1
(3.10) e(n) < ”7
Therefore we have by Equation 3.10
- n4" —2ng 1 S —28\n
(3.11) Plo,=-1) <) ——e =5 > n(4e7)
n=4 n=4

We know that ;7 j 2™ = 12=Vz < 1 and by differentiating we attain } - | naz"~! =
ﬁ. By letting « = 4e~? we see that for large enough 3 we have

B R PPN Lopym 4
(3.12) Plo,=-1)< 3 ;n(éle "< 5;71(46 = PP
Since limg_, % = 0, we know that for 8 large enough, P(o, = —1) <

1/2. It’s clear from the definition of P that it is monotonically increasing. Since
increasing [ is identical to raising T, we have proven the assertion that P(o, =
—1) < 1/2. Now we need only show that as T — oo, P(o, = —1) — 1/2. This
follows easily from the fact that if we take any fixed lattice, letting 7" — co makes
P tend to 1/2. This can be seen from (1.5). Since as T gets arbitrarily large the
differences in each U(w) contribute less and less, we eventually attain a measure
in which each configuration occurs in equal probability. Since exactly 1/2 of the
configurations have ¢,, = 1/2 this proves the assertion. Thus we have proved the
existence of T.

O

The matter of calculating the actual value of 7., even in this simple case of
the two-dimensional square-lattice, is a much more difficult question and was not
discovered until 1944 by Norweigan-American chemical physicist Lars Onsager.
This was only for the case of a two-dimensional lattice with 0 external field. The
three-dimensional and non-zero field results are still unknown. We shall present
Onsager’s solution in full detail, but will provide an outline of the precise problem
he had to solve.

4. THE ONSAGER TRANSFER MATRIX SOLUTION OF THE TWO-DIMENSIONAL
MODEL

Now we consider a slightly weaker form of the periodic boundary defined in
section 1. The n x n lattice is wrapped in a cylinder so that if we denote the spin
at the sth row jth column site by o; ; then o;,41 = 04,1 i.e. we have associated
sites in the first and last columns as neighbor pairs. We can write the Hamiltonian
of the system as

n—1 n

(41) U(w) = —JZ Zai,jJiJrl,j - JZZO’Z'JO'L]‘+1 - HZZO};J

i=1 j=1 i=1 j=1 i=1 j=1
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We denote a column configuration by o; = (01,025, ...,0p,;). Observe that there
are 2™ possible configurations for each column. Next we write

n

(4.2) Uw) =Y [Vi(og) + Valoj, 0541)]
j=1
where
n—1 n
(43) Vl(Uj) = _Jzai7j0i+17j - HZ(TZ'J'
i=1 =1

which gives the total interaction energy within the jth column, and
n n

(4.4) Va(0j,0511) = =J DY 0100541
i=1 j=1

Which gives the interaction energy between the jth and (j+1)th column. We now
have a partition function given by

= Ze—bU(w) _

Z exp[— Z Vi(oj) + Va(oj,0541)] =
j=1

01,02,...,0n,

> H L(oj,0j+1)

01,02,...,0n J=1

(4.5)

where b = 1/kT and
(4.6) L(0i,05) = exp[=b(Vi(o;)] exp[Va(j, 0j11)]

In the last term, we observe a sum that has the form of a matrix product. Note
that we sum over all possible configurations of o1. If we define L™(0, o) as the (o, 0)
component of the 2 x 2" matrix obtained by raising L to the nth power, we have

(4.7) Zn =Y L"(01,01)

Now we see that the trace of L™ is equal to the partition function. Since the trace
of a matrix is equal to the sum of its eigenvalues, we have

gm
(4.8) Zn =Y N

j=1
where A1 > Aa... > Aon are eigenvalues.

Definition 4.9. The free energy per spin v in the thermodynamic limit by

vo_ lim n~2log Z,

(4.10) —4p = Jim_
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We state here without proof that if this function is analytic there is no phase
transition, otherwise a singularity appears at the boundary temperature [?]. In this
situation

n—oo n—oo

2TL
. _ . _ Ajin . _
(4.11) _k;ET = lim n 'log\; +n1LIr;O[n 2log(1 —|—j§_2(/\—i) ] = lim n 'log )\
Thus the problem is reduced to solving for A; Onsager’s result was

1
(4.12) A1 = (2sinh 20)™/? exp[§('yl + 93+ oo + Yan—1]

. The derivation of this result is quite complicated, and even showing that this A\;
leads to a non-analytic v is quite difficult— for full details see Thompson (1979).
The same transfer matrix argument can be applied to higher dimensions but has
never lead to a successful solution except for the two-dimensional case.

5. CONCLUDING REMARKS

There is much to be understood about the Ising model. We’ve discussed already
the Ising model’s original use in modeling ferromagnetism. Forms of the Ising
model have been analyzed and/or applied in many fields. Most notable are certain
combinatoric approaches as well as applications in biological systems. Examples
can be seen in analyzing hemoglobin, allosteric enaymes and DNA. Surely the Ising
model will enjoy continued significance in both the mathematical and scientific
realm for years to come.
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