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Abstract. Expository piece on M. Laczkovich’s ”Equidecomposability and

discrepancy; a solution of Tarski’s circle-squaring problem.” A criterion for

translation equidecomposability of two Jordan domains is given with an ap-
plication.
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After the discovery of the Banach-Tarski paradox, Alfred Tarski asked, as an
open problem in the 1925 issue of Fundamenta Mathematicae, whether a circle and
a square are equidecomposable. 1 Although similar in spirit to the circle-squaring
problem of the ancient geometers, Tarski disregarded issues concerning rulers and
compasses and instead asked whether a disc in R2 could be broken into a finite
number of pieces and then reassembled into a square of equal area.

Motivated by questions like Tarski’s, this paper develops a criterion for transla-
tion equidecomposability of two Jordan domains in R2. In section one, we prove
Poincare’s formula and apply it to get a bound on the measure of a neighborhood
of a Jordan curve. In section two, we use the notion of discrepancy to prove certain
Jordan domains are ”uniformly spread.” Finally, we prove in section three that such
evenly spread Jordan domains are translation equidecomposable. We conclude with
a sketch of the solution to Tarski’s circle-squaring problem.

This paper offers no original material, but aims to explicate the theorems on equide-
composability discovered by M. Laczkovich in 1990 in ”Equidecomposability and
discrepancy; a solution of Tarski’s circle-squaring problem.” However, developing a
criterion for equidecomposability requires an interesting mix of mathematics, rang-
ing from group theory, graph theory, integral geometry, and analysis.

1Tarski: ”Un carré et un cercle dont les aires sont égales peuvent-ils être décomposés en un
nombre fini de sous-ensembles disjoints respectivement congruents?”
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1. Poincare’s Formula

Definition 1.1. Let (O, x, y) be a fixed frame and let (O1, X, Y ) be a moving
frame. Also, let a, b be the coordinates of O1 and φ to be the angle between Ox
and O1X. The kinematic density is denoted by dK1 = da ∧ db ∧ dφ.

Definition 1.2. We call a continuous function J : [p, q] → R2 a closed simple
Jordan curve if J is injective on (p, q) and J(p) = J(q). The domain enclosed by
J is called a Jordan domain, denoted by J̃ .

Lemma 1.3. Let (O, x, y) be a fixed frame and let (O1, X, Y ) be a moving frame.
Let J0 and J1 be simple Jordan curves such that

(1) J0, J1 are twice differentiable and composed of a finite number of arcs.
(2) x = x(s0), y = y(s0) are the equations of J0 referred to the arc length s0

and to the coordinate system (O, x, y)
(3) X = X(s1), Y = Y (s1) are the equations of J1 where s1 denotes the arc

length of J1.
Letting θ be the angle between the tangent of J0 and the tangent of J1 at the

point P ∈ J0 ∩ J1, then dK1 = da ∧ db ∧ dφ = |sinθ|ds0 ∧ ds1 ∧ dθ

Proof. Letting a, b be the coordinates of O1 and φ to be the angle between Ox and
O1X, with respect to the coordinate system (O, x, y), the equations of J1 become

x = a+Xcosφ− Y sinφ, y = b+Xsinφ+ Y cosφ

From this, we can see that the points of intersection between J0 and J1 are given
by the system

x(s0) = a+X(s1)cosφ− Y (s1)sinφ
y(s0) = b+X(s1)sinφ+ Y (s1)cosφ

with s0, s1 unknowns.
Deriving, we get

da = x′ds0 − (X ′cosφ− Y ′sinφ)ds1 + (Xsinφ+ Y cosφ)dφ

db = y′ds0 − (X ′sinφ+ Y ′cosφ)ds1 − (Xcosφ− Y sinφ)dφ
And further, by multiplying we see that

da ∧ db ∧ dφ = [(X ′y′ − x′Y ′)cosφ− (Y ′y′ +X ′x′)sinφ]ds0 ∧ ds1 ∧ dφ
If α0 denotes the angle between the tangent to J0 at the point P ∈ J0 ∩ J1 and

the x axis, and α1 denotes the angle between the tangent to J1 at the same point
and the X axis, we have

x′ = cosα0, y
′ = sinα0

X ′ = cosα1, Y
′ = sinα1

and the kinematic density, given by the equation dK1 = da ∧ db ∧ dφ can be
reformulated as follows:

dK1 = da ∧ db ∧ dφ = sin(α0 − α1 − φ)ds0 ∧ ds1 ∧ dφ
If θ is the angle between J0 and J1 at P , then |θ| = |α0 − α1 − φ| and since α0

and α1 are functions only of s0 and s1, we conclude that

dK1 = |sinθ|ds0 ∧ ds1 ∧ dθ
�
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Lemma 1.4. Given (O, x, y), (O1, X, Y ), J0, J1, let L0 and L1 be the lengths of J0

and J1 respectively. Then, letting n be the number of intersection points of J0 and
J1, we have ∫

J0∩J1 6=∅
ndK1 = 4L0L1

Proof. From Lemma 1.3, we have

dK1 = |sinθ|ds0 ∧ ds1 ∧ dθ
And we know that ∫ L0

0

ds0 = L0∫ L1

0

ds1 = L1∫ π

−π
|sinθ|dθ = 4.

Furthermore, because each position of J1 gets counted for each of its intersection
points with J0, integrating both sides of the formula from Lemma 1.3 gives us,∫

J0∩J1 6=∅
ndK1 =

∫ L0

0

ds0

∫ L1

0

ds1

∫ π

−π
|sinθ|dθ = 4L0L1

which is what we want. This formula is known within integral geometry as Poincare’s
Formula. �

Remark 1.5. We are most concerned here with a special case of Poincare’s formula,
where J1 is a circle of radius r and midpoint M = (a, b). Then dK1 = da∧db∧dφ =
dM ∧ dφ. Furthermore, as φ varies between 0 and 2π, n clearly does not change
because rotating the circle would not alter the number of intersection points. This
gives us

(1.6)
∫

R2
ndM = 4rL0

Definition 1.7. Given a Jordan curve J and some constant δ, U(J, δ) = {y : ∃x 3
|x− y| ≤ δ. We say that U(J, δ) is the closed δ-neighborhood of J.

Theorem 1.8. Let A be a Jordan domain with boundary J. Then ∀δ such that
0 < δ < 1

2diam(J), we have λ2(U(J, δ)) ≤ 2δλ1(J). Note: We use λ1 to denote
the one-dimensional Hausdorff measure λ2 for the Lebesgue measure in R2 .

Proof. Let
n = n(x) =

∣∣{y ∈ J : |y − x| = δ}
∣∣

.
Then, by Remark 1.5, we have∫

R2
ndx = 4δλ1(J).

Furthermore, we can eliminate the possibility that n(x) = 0 because It is clear that
if n(x) = 0, J must be contained within the circle with midpoint x and radius δ,
so diam(J) ≤ 2δ which contradicts our assumption. And J is a closed polygon, so
for almost ever x either n(x) = 0 or n(x) ≥ 2. Consequently, n(x) ≥ 2 for almost
every x ∈ U(J, δ) so λ2(U(J, δ)) ≤ 2δλ1(J). �
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2. Discrepancy and Uniform Spread

Definition 2.1. If S ⊂ R2 is discrete, i.e. a set where every bounded subset of S is
finite, and H ⊂ R2 is bounded and measurable, then the discrepancy∆ of S with
respect to H is given by

∆(S,H) =
∣∣|S ∩H| − λ2(H)

∣∣
Note: We add the ∆ subscript to differentiate between a different kind of discrep-
ancy to be introduced in section 4.

Definition 2.2. We call a square of the form [a, a+ 1)× [b, b+ 1) with a, b ∈ Z a
unit square. Further, given c, d ∈ Z we say Q(x) = [c, c+ 1)× [d, d+ 1). If H is a
union of unit squares, then we denote the boundary of H by ∂H. Likewise, we say
p(H) = λ1(∂H)

Definition 2.3. A discrete set S ⊂ R2 is uniformly spread if there exist constants
C, a > 0 so that for every Jordan domain A with p(A) ≥ a, enclosed by Jordan
curve J,

∆(S,A) ≤ Cp(A),
with p(A) = λ1(J), i.e. the one-dimensional Hausdorff measure of J.

Definition 2.4. A point in Z2 is called a lattice point. Also, polygons with
lattice point vertices and edges parallel to the coordinate axes are called lattice
polygons. Accordingly, if a lattice polygon is a square, then we call it a lattice
square. Given a lattice polygon P, we say P̃ is the domain bounded by P and P̂
is the union of lattice squares in P̃ . Given a lattice square Q, we denote the side
length of Q by s(Q).

Lemma 2.5. Let H be the family of all non-empty sets which are unions of finitely
many unit squares. For every H ∈ H one of more of the following are true:

(1) There is a lattice polygon so that H = P̂
(2) There are sets H1, H2 ∈ H such that H1 ∩ H2 = ∅, H1 ∪ H2 = H, and

p(H) = p(H1) + p(H2)
(3) There are sets H1, H2 ∈ H such that H1 ⊂ H2, H = H2 \H1 and p(H) =

p(H1) + p(H2)

Proof. Given H ∈ H, let V denote the set of lattice points contained in ∂H. We
can turn this into a graph theory problem by considering V as a set of vertices.
We join two vertices p, q ∈ V by an edge if |p − q| = 1 and if [p, q] belongs to ∂H
creating a set of edges E. This gives us a graph G = (V,E) in which all vertices
have degree 2 or 4 - visually, each vertex is either a corner of the lattice of squares
or a common point between 4 squares. Consequently, every edge in G is contained
in at least one circuit and, clearly, each circuit of G is lattice polygon.

Let P be a circuit in G and let H1 = H ∩ P̂ ,H2 = H \ P̂ , splitting H into two
sets. This gives us three cases: either H1 and H2 are nonempty, H is contained in
P̂ , or H and P̂ have empty intersection.

In the first case, if H1 6= ∅, H2 6= ∅ then H1, H2 ∈ H, H1 ∪ H2 = H and
p(H) = p(H1) + p(H2). In the first case, condition (2) is satisfied.

To consider the second and third cases, we may assume that whenever P is a
circuit in G then either H ⊂ P̂ or H ∩ P̂ = ∅. Let p be a vertex of G with minimal
y-coordinate, and let P0 be a circuit containing p. It is easy to see that in this case
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H ∩ P̂0 = ∅ is impossible and hence H ⊂ P̂0. If H = P̂0 then (1) is satisfied. If
H 6= P̂0 then P̂0 \H 6= ∅. Let q = (a, b) be a lattice point in P̂0 \H with minimal
y-coordinate. Let

Q = [a, a+ 1)× [b, b+ 1), Q′ = [a, a+ 1)× [b− 1, b),

then Q ⊂ P̂0 \H and Q′ ∩ (P̂0 \H) = ∅ by the minimality of b. If Q′ ∩H = ∅ then
Q′∩ P̂0 = ∅ and, as Q ⊂ P̂0, the common side of Q and Q’ belongs to P0. However,
this is impossible, since P0 ⊂ ∂H and (Q ∪ Q′) ∩ H = ∅. Therefore Q′ ⊂ H and
consequently, the common side of Q and Q′, the segment l = [a, a+1]×{b}, belongs
to ∂H.

Since Q′ ⊂ H ⊂ P̂0 and Q ⊂ P̂0, l cannot belong to P0. Let P1 be a circuit
of G containing l; then P1 6= P0. If H ⊂ P̂1 then P0 ⊂ ∂H ⊂ P̂1 ∪ P1 and
P1 ⊂ ∂H ⊂ P̂0 ∪ P0 and hence P0 = P1 which is impossible. Therefore we have
H ∩ P̂1 = ∅.

Now we take H1 = P̂1 and H2 = H ∪ P̂1. Then H1, H2 ∈ H, H1 ⊂ H2,
and H = H2 \ H1. Since P1 ⊂ ∂H and H ∩ P̂1 = ∅, it is easy to check that
p(H) = p(H1) + p(H2). Hence (3) holds, and this completes the proof.

�

Lemma 2.6. Let C =
∑∞
n=0

Ψ(2n)
2n <∞. For every Jordan domain A with bound-

ary J there are non-overlapping lattice squares Q1, Q2, . . . , Qm so that

(2.7) A \ U(J,
√

2) ⊂
m⋃
j=1

Qj ⊂ A

and

(2.8)
m∑
j=1

Ψ(s(Qj)) < 7Cp(A)

Proof. Let L be the set of lattice squares which are in A and are of the form
[a2k, (a+ 1)2k]× [b2k, (b+ 1)2k], for some a, b ∈ Z, and k = 0, 1, 2, . . . . However, we
want a set of non-overlapping squares. Fortunately, if two squares in L overlap, i.e.
have nonempty intersection, it is clear that one of them must be contained in the
other, because for given a and b, a lattice square [a2k, (a+ 1)2k]× [b2k, (b+ 1)2k]
is in [a2k

′
, (a+ 1)2k

′
]× [b2k

′
, (b+ 1)2k

′
] for all k, k′ such that 0 ≤ k ≤ k′. This tells

us that for every Q ∈ L we can choose a Q′ ∈ L so that Q ⊂ Q′. In this way, Q′

is maximal, with respect to containment. Now, let L′ = {Q′|Q ∈ L}, so then the
elements of L′ are non-overlapping with

⋃
L′ =

⋃
L.

Let L′ = {Q1, Q2, . . . , Qm}. If x ∈ A \ U(J,
√

2) then there is a unit square Q
such that x ∈ Q ⊂ A. Thus Q ∈ L and hence x ∈

⋃
L =

⋃
L′ =

⋃m
j=1Qj .

Let Lk = {Q ∈ L′|s(Q) = 2k} and nk = |Lk|, with k = 0, 1, . . . if Q ∈ Lk
then, as Q is a maximal element of L, there is a lattice square Q∗ such that
Q ⊂ Q∗, s(Q∗) = 2k+1 and Q∗ 6⊂ A. This implies dist(Q, J) ≤

√
2 · 2k and

Q ⊂ A ∩ U(J, 2
√

2 · 2k). Therefore,

(2.9)
⋃
Lk ⊂ A ∩ U(J, 2

√
2 · 2k).
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Here we must deal with two cases: either 2
√

2 · 2k < 1
2diam(J) or 2

√
2 · 2k ≥

1
2diam(J).

In the first case, if 2
√

2 · 2k < 1
2diam(J) then by Theorem 1.8,

λ2(U(J, 2
√

2 · 2k)) ≤ 4
√

2 · 2kλ1(J) = 4
√

2 · 2kp(A)

For the second case, we know that measuring the left hand side of (2.9) gives us
λ2(
⋃
Lk) = nk · 22k. Putting this together with the above equation, (2.9) gives us

nk ≤ 4
√

2 · p(A) · 2−k. If 2
√

2 · 2k ≥ 1
2diam(J) then, because we know that circles

are area maximizing,

nk22k = λ(
⋃
Lk) ≤ λ2(A) ≤ π

4
(diam(J))2 ≤ π

4
(4
√

4 · 2k)2 = 8π · 22k

and so nk ≤ 8π. But nk is an integer, so we can do even better and say nk ≤ 25.
If Q ∈ Lk, then 4 · 2k = p(Q) ≤ p(A) and we get

nk ≤ 25 ≤ 25
4
p(A)2−k < 7p(A)2−k.

Consequently, from both cases we can conclude that whenever Lk 6= ∅ then nk <
7p(A) · 2−k. This gives us

m∑
j=1

Ψ(s(Qj)) =
∞∑
k=0

nkΨ(2k) < 7p(A)
∞∑
k=0

Ψ(2k)
2k

= 7Cp(A)

�

Lemma 2.10. Let H be a set such that either H ∈ H or R2 \H ∈ H. If, for every
C > 0, we say N(C) is the smallest N ∈ N such that

(2.11)
(

1 +
1

4C

)N
> 16(N + 1)2,

then for every C > 0, there exists an n ∈ Z such that 1 ≤ n ≤ N(C) and

λ2(Hn \H) ≥ Cp(Hn)

with Hn defined as in Lemma 2.5.

Proof. We put sn = p(Hn) with n = 1, 2, . . .. Our assumption on H implies that
sn is finite for every n. Obviously, ∂Hn is the union of sn segments of unit length.
Each of these segments belongs to the boundary of one of the unit squares contained
in Hn+1 \Hn. On the other hand, each unit square in Hn+1 \Hn contains at most
four of these segments, and hence

(2.12) λ2(Hn+1 \Hn) ≥ sn
4
.

We’ll prove the lemma from here by contradiction. Suppose the lemma is false,
then

λ2(Hn\H) < Cp(Hn) = Csn ≤ 4Cλ2(Hn+1\Hn) = 4Cλ2(Hn+1\H)−4Cλ2(Hn\H)

for all n such that 1 ≤ n ≤ N(C). Consequently, for such n,

λ2(Hn+1 \H) >
(

1 +
1

4C

)N(C)

λ2(H1 \H).

and so
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(2.13) λ2(HN(C)+1 \H) >
(

1 +
1

4C

)N(C)

λ2(H1 \H).

We want to show

(2.14) λ2(HN(C)+1 \H) ≤ 4(N(C) + 1)2s0

because λ2(H1 \H) ≥ s0
4 by (2.12), (2.14) contradicts (2.13) and (2.11), and so

the contradiction would prove the Lemma.
To this end, let Q be a unit square with Q ⊂ HN(C)+1 \ H. Then there is a

sequence of unit squares Q0, Q1, . . . , Qn. such that, for n ≤ N(C) + 1, Q0 ⊂ H,
Qi and Qi−1 are adjacent for every i = 1, . . . , n, and Qn = Q. Since Q 6⊂ H, there
is an i ≥ 1 such that ∂Qi ∩ ∂H 6= ∅. If p is a lattice point in ∂Qi ∩ ∂H and T is
a lattice square with center p and with s(T ) = 2(N(C) + 1), then Q ⊂ T . As ∂H
contains at most s0 lattice points, this argument shows that HN(C)+1 \H can be
covered by s0 squares of area 4(N(C) + 1)2. This proves (2.14) which completes
the proof. �

Lemma 2.15. For every H ∈ H and C > 0, there exists a K ∈ H such that
H ⊂ K ⊂ HN(C) and

(2.16) λ2(HN(C)) ≥ λ2(K) + Cp(K).

Proof. Applying Lemma 2.10 to the set A = R2 \HN(C) we get

(2.17) λ2(An \A) ≥ Cp(An)

for 1 ≤ n ≤ N(C)
We put K = R2 \ An. Then K ⊂ R2 \ A = HN(C). We show H ⊂ K. Let Q

be a unit square in H and suppose that Q 6⊂ K. Then Q ⊂ An and hence there
are unit squares Q0, . . . , Qn such that Q0 ⊂ A, Qi and Qi−1 are adjacent for every
i = 1, . . . , n and Qn = Q. Since Q ⊂ H, this implies Q0 ⊂ Hn ⊂ HN(C) = R2 \ A
which is impossible. Hence we have H ⊂ K ⊂ HN(C). Since An \ A = HN(C) \K
and p(K) = p(An), (2.16) follows from (2.17).

�

Lemma 2.18. Let S be a discrete subset of R2 and suppose that

(2.19) ∆(S, P̂ ) ≤ Cλ1(P )

holds for every lattice polygon with a constant C > 0. Then there is a bijection
φ : S → Z2 such that

|φ(x)− x| ≤M
holds for every x ∈ S, where M = N(C) +

√
2.

Proof. We do this proof in two parts. First, we do an induction proof, preparing us
for the second part where we repeat the previous trick of turning the problem into
a graph theory problem. For this to work, however, we’ll need to use a theorem of
graph theory, which we’ll dub the Rado theorem since it was proven by R. Rado:

Given any system of k vertices in S (or Z2) that is adjacent to at least k vertices
in Z2 (or S, respectively), Γ contains a one-factor.

For the first part, we show that

(2.20) ∆(S,H) ≤ Cp(H),∀H ∈ H
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by induction over p(H). Let H ∈ H be given and suppose that the statement is
true for every H ′ ∈ H with p(H ′) < p(H). By Lemma 2.5, atleast one of (1), (2),
and (3) holds. In case of (1), (2.20) follows from (2.19). If (2), then p(Hi) ≤ p(H)
for i = 1, 2, and this implies that (2.20) holds for H1 and H2, by the induction
hypothesis. This gives us

∆(S,H) ≤
2∑
i=1

∆(S,Hi) ≤ C(p(H1) + p(H2)) = Cp(H)

If (3) holds, then we have p(Hi) < p(H) for i = 1, 2 once more and so

∆(S,H) = |(|S∩H2|−λ2(H2))−(|S∩H1|−λ2(H1))| ≤
2∑
i=1

∆(S,Hi) ≤ C(p(H1)+p(H2)) = Cp(H)

So (2.20) regardless of which case we have.
Now for the second part, we restate the lemma in terms of graph theory. The

lemma is equivalent to the claim that the bipartite graph

Γ = {(x, y) : x ∈ S, y ∈ Z2, |x− y| ≤M}
contains a one-factor, i.e. there is a set of edges such that each vertex in Γ is
incident to exactly one edge in the set. The degree of each vertex of Γ is finite
since both S and Z2 are discrete. Therefore, by the Rado theorem the existence of
a one-factor in Γ follows from the following condition:

Any system of k vertices in S is adjacent to at least k vertices in S.
Let A ⊂ Z2 be given with |A| = k. Let H be the union of all unit squares meeting

A, then H ∈ H and λ2(H) = k. By Lemma 2.10, there is an integer 1 ≤ n ≤ N(C)
such that

λ2(Hn)− Cp(Hn) ≥ λ2(H) = k

Then, by (2.20),
|S ∩Hn| ≥ λ2(Hn)− Cp(Hn) ≥ k

Obviously,

Hn ⊂ U(H,n) ⊂ U(A,n+
√

2) ⊂ U(A,N(C) +
√

2) = U(A,M)

and hence |S∩U(A,M)| ≥ k. This shows that A is adjacent with at least k vertices
in S.

Next, let B ⊂ S be given with |B| = k. Let H be the union of all unit squares
meeting B. Then H ∈ H and hence, by Lemma 2.15, there exists a K ∈ H such
that H ⊂ K ⊂ HN(C) and

(2.21) λ2(HN(C)) ≥ λ2(K) + Cp(K)

From (2.20) and (2.21), we have

k ≤ |S ∩H| ≤ |S ∩K| ≤ λ2(K) + Cp(K) ≤ λ2(HN(C))

and so
|Z2 ∩HN(C)| = λ2(HN(C)) ≥ k.

Since
HN(C) ⊂ U(H,N(C)) ⊂ U(B,N(C) +

√
2) = U(B,M),

we have |Z2 ∩U(B,M)| ≥ k. Therefore, B is adjacent with at least k points in Z2.
Thus the condition of the Rado theorem is fulfilled, proving the lemma.
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�

Theorem 2.22. Let Ψ : [0,∞) → R be a nonnegative, increasing and continuous
function so that

C =
∞∑
n=0

Ψ(2n)
2n

<∞

If S ⊂ R2 is discrete and

∆(S, Q̃) ≤ Ψ(s(Q))

for every square Q with s(Q) ≥ 1, then S is uniformly spread.

Proof. Let Q be a lattice square. It is then clear that

|S ∩ Q̂| ≤ |S ∩ Q̃| ≤ λ2(Q̃) + Ψ(s(Q)).

However, if s(Q) ≥ 2, then we take a square Iε so that Iε ⊂ intQ (?) and s(Iε) =
s(Q)− ε, 0 < ε < 1. This gives us

|S ∩ Q̂| ≥ |S ∩ Iε| ≥ λ2(Iε)−Ψ(s(Iε))

Then, letting ε tend to 0, we get |S ∩ Q̂| ≥ λ2(Q̃)−Ψ(s(Q)) and

(2.23)
∣∣∣|S ∩ Q̂| − λ2(Q̃)

∣∣∣ ≤ Ψ(s(Q)).

Also, if s(Q) = 1, then

|S ∩ Q̂| ≥ 0 = λ2(Q̃)− 1.

Then, if we replace Ψ by max{1,Ψ}, (2.23) will be satisfied by every lattice square
Q. Let P be a lattice polygon. Furthermore, Lemma 2.6 makes clear that if J is
a lattice polygon, then it is equal to the union of non-overlapping lattice squares.
By Lemma 2.6, then there are lattice squares Q1, Q2, . . . , Qm such that (2.8) holds.
Then P̂ is the disjoint union of the sets Q̂j , j = 1, . . . ,m and hence

∆(S, P̂ ) ≤
m∑
j=1

∣∣∣|S ∩ Q̂j | − λ2(Q̃j)
∣∣∣ ≤ m∑

j=1

Ψ(s(Qj)) ≤ 7C · λ1(P ).

So the theorem follows from Lemma 2.18. �

3. Translation Equidecomposability

As alluded to briefly in the introduction, we are primarily concerned with the
development of a criterion for determining when two Jordan domains are equide-
composable. More generally, we say two sets A,B ⊆ R2 are equidecomposable
when, letting A =

⋃n
i=1Ai and B =

⋃n
i=1Bi with Ai ∩ Aj = Bi ∩ Bj = ∅ for

i 6= j, there is a group of bijections G such that for each i there is a γi ∈ G with
γi(Ai) = Bi. Put simply, A and B are equidecomposable if they can each be de-
composed into the same number of pieces congruent by G. If A and B can be shown
to be equidecomposable with only translations in G, then we say that A and B are
translation equidecomposable which we denote by A ∼tr B.

As mentioned before, we’ll now define a different kind of discrepancy.
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Definition 3.1. Let I = [0, 1), and suppose S ⊂ In, |S| = N , and H ⊂ In is
measurable, then the discrepancyD of S with respect to H is

Dn(S,H) =
∣∣∣ 1
N
|S ∩H| − λn(H)

∣∣∣.
Furthermore, the discrepancy of the finite set S ⊂ In is

Dn(S) = supDn(S, J),

where the sup is taken over all subintervals J = ×ni=1[ai, bi) ⊂ In

Theorem 3.2. Let Ψ be a nonnegative function on N so that

C =
∞∑
k=0

Ψ(2k)
2k

<∞.

Now let H1, H2 ⊂ I2 be measurable with λ2(H1) = λ2(H2) > 0. Suppose that there
are x, y ∈ R2 so that

(1) the vectors x, y, i = (0, 1), j = (0, 1) are linearly independent over Q, and
(2) N2 ·D2(SN (u, x, y), Hr) ≤ Ψ(N),∀u ∈ R2, N ∈ N, r ∈ {1, 2}

Then H1 and H2 are translation-equidecomposable.

Proof. Let λ2(H1) = λ2(H2) = α2, α > 0. Also let

Sr(u) = {(n, k)|(u+ nx+ ky) ∈ Hr}

with u ∈ R2, r = 1, 2. First, we want to show that there is a bijection φu : S1(u)→
S2(u) so that |φu(z)− z| is uniformly bounded. This first requires proving that the
sets αSr(u) are uniformly spread for all u and for all r ∈ {1, 2}.

If Q is a lattice square then, for r = 1, 2

(3.3)
∣∣∣|Sr(u) ∩ Q̂| − α2λ2(Q)

∣∣∣ ≤ Ψ(s(Q))

Now, let Q = [a, a+N ]× [b, b+N ], which gives us

|Sr(u) ∩ Q̂| = |{(n, k) : a ≤ n < a+N, b ≤ k < b+N, (u+ nx+ ky) ∈ Hr}|

= |{(n′, k′); 0 ≤ n′, k′ < N, (u+ ax+ by + n′x+ k′y) ∈ Hr}|

= |sN (u+ ax+ by, x, y) ∩Hr|
Which gives us∣∣∣ 1

N2
|Sr(u) ∩ Q̂| − α2

∣∣∣ = D2(sN (u+ ax+ by, x, y);Hr)

So the equation (3.3) follows from the second condition above.

Let P be a lattice polygon, and let J = α−1P and A = α−1P̃ . By Lemma 2.6,
there are lattice squares Q1, Q2, . . . , Qm such that (2.7) and (2.8)) hold. It is easy
to see that (2.7) implies

⋃m
j=1 Q̂j ⊃ A \U(J,

√
2) and, as the sides of P are parallel

to the coordinate axes,
⋃m
j=1 Q̂j ⊂ α−1P̂ . Therefore,

(3.4)
m⋃
j=1

Q̂j ⊂ α−1P̂ ⊂ U(J,
√

2) ∪
m⋃
j=1

Q̂j .
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Let U = α2
∑m
j=1 λ2(Qj), V =

∑m
j=1 Ψ(s(Qj)) and W = |Sr(u) ∩ U(J,

√
2)|. Then

(3.3) and (3.4) imply

(3.5) U − V ≤ |Sr(u) ∩ α−1P̂ | ≤ U + V +W.

Suppose that diam(J) > 4
√

2. Then (3.4) and Theorem 1.8 imply

|U − λ2(P̂ ) ≤ λ2(αU(J,
√

2) ≤ λ2(U(J,
√

2)) ≤ 2
√

2 · λ1(J) = 2
√

2α−1λ1(P ).

Since Sr(u) ⊂ Z2, we have

W ≤
∣∣∣Z2 ∩ U(J,

√
2
∣∣∣ ≤ λ2(U(J, 2

√
2)) ≤ 4

√
2α−1λ1(P ).

Furthermore, (2.8) gives us V ≤ 7Cα−1λ1(P ). Substituting these estimates of
U, V, and W into (3.5), we get

(3.6)
∣∣∣|Sr(u) ∩ α−1P̂ | − λ2(P̂ )

∣∣∣ ≤ (6
√

2 + 7C)α−1λ1(P )

supposing that diam(J) > 4
√

2. If diam(J) ≤ 4
√

2 then α−1P̂ can be covered by
a square Q with s(Q) ≤ 7 and hence
(3.7)∣∣∣|Sr(u)∩α−1P̂ |−λ2(P̂ )

∣∣∣ ≤ ∣∣∣Sr(u)∩Q̂
∣∣∣+49 ≤ 49α2 +Ψ(7)+49 ≤ (25+

Ψ(7)
4

)λ1(P ).

as λ1(P ) ≥ 4.

It is also clear that |Sr(u) ∩ α−1P̂ | = |αSr(u) ∩ P̂ |, so (3.6) and (3.7) give us

(3.8) D2(αSr(u), P̂ ) ≤ C1λ1(P )

with C1 = max{(6
√

2 + 7C)α−1, 25 + Ψ(7)
4 }. Since (3.8) holds for every lattice

polygon P, u ∈ R2 and r = 1, 2, we may apply Lemma 2.18 and obtain the bijection
φu,r : αSr(u) → Z2 such that |φu,r(z) − z| ≤ N(C1) +

√
2,∀z ∈ αSr(u). We put

φu = α−1φ−1
u,2(φu,1(αz)) so φu : S1(u)→ S1(u) is a bijection such that

(3.9) |φu(z)− z| ≤ 2α−1(N(C1) +
√

2) = C2,∀z ∈ S1(u)

This theorem will be completed by dealing with some group theory. Let G de-
note the group generated by the operator + and x, y, i, j with i = (0, 1), j = (1, 0).
We define an equivalence relation, denoted by ∼, where for z1, z2 ∈ R2,

z1 ∼ z2 ⇐⇒ (z1 − z2) ∈ G
Let E be an equivalence class and pick some u ∈ E. Then we can pick n, k, l,m ∈ Z
so that every z ∈ E can be described uniquely by

z = u+ nx+ ky + li+mj.

If z ∈ H1, then (u + nx + ky) ∈ H1 and so (n, k) ∈ S1(u). Let the function
φu((n, k)) = (n′, k′). As (n′, k′) ∈ S2(u), we have (u+n′x+k′y) ∈ H2 and so there
exist l′,m′ ∈ Z so that

u+ n′x+ k′y + l′i+m′j ∈ H2.

Now, let χu(z) = u + n′x + k′y + l′i + m′j. Then χu is a well-definted map from
H1∩E to H2∩E. At this point, it is worth noting that n’ and k’ uniquely determine
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the integers l’, m’. Furthermore, because φu is a bijection from S1(u) to S2(u), we
know χu is a bijection from H1 ∩ E onto H2 ∩ E.

By (3.9), |n′ − n| ≤ C2 and |k′ − k| ≤ C2. Since z, χu(z) ∈ I2, we have
|χu(z)− z| ≤

√
2 and so

|(l′ − l)i+ (m′ −m)j| ≤
√

2 + |n′ − n| · |x|+ |k′ − k| · |y|).

Hence, ∀z ∈ H1 ∩ E,∃a, b, c, d so that

χu(z) = z + ax+ by + ci+ dj

and

(3.10) |a|, |b| ≤ C2, |c|, |d| ≤ C3

Now, let {dt}Kt=1 be an enumeration of the vectors ax+ by+ ci+ dj, where a, b, c, d
satisfy (3.10). Then K ≤ (2C2 +1)2(2C3 +1)2 and C2, C3 only depend on α and Ψ.
We have now proved that ∀z ∈ H1 ∩ E, there is 1 ≤ t ≤ K so that χu(z) = z + dt.
Since the equivalence class E was selected arbitrarily and ∀t, dt ∈ G, this implies
that there is a bijection χ : H1 → H2 so that for all z there is a t such that
χ(z) = z + dt. Let

At = {z ∈ H1 : χ(z) = z + dt}
with t = 1, . . . ,K.

Then
⋃K
t=1At and

⋃K
t=1(At + dt) are disjoint decompositions of H1 and H2 re-

spectively, which is what we want.
�

4. Circle-Squaring

Now that we have developed a criterion for translation equidecomposability, we
can put it to use in an interesting application to Tarski’s circle squaring problem.
The problem was posed in 1925 and was not solved until 1990. Accordingly, the
complete solution, although not conceptually difficult, is quite complicated and
lengthy. Reproducing it completely would have easily added 20 pages to the paper,
so instead we will merely sketch a solution by assuming the following three theorems.

Theorem 4.1. If P1 and P2 are polygons of the same area, then P1 ∼tr P2.

Theorem 4.2. For almost every pair of vectors x, y ∈ R2 and for every ε > 0 there
is a constant C such that

(4.3) D2(sN (u, x, y)) ≤ C l
6+ε(N)
N2

for every u ∈ R2 and N ∈ N.

Theorem 4.4. Let f be twice differentiable on [0, 1], let f(0) = 0, f(1) = 1, and
suppose that there are positive constants a, b, c, d such that

(4.5) a ≤ f ′(x) ≤ b, c ≤ |f ′′(x)| ≤ d,∀x ∈ [0, 1]
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Then for almost every pair of vectors x, y ∈ R2 and for every ε > 0 there is a
constant C such that

(4.6) D2(sN (u, x, y);Hf ) ≤ CN−4/3l6+ε(N)

for every u ∈ R2 and N ∈ N.

Theorem 4.7. Let J be a simple closed Jordan curve and let O,A,B ∈ J ad
suppose that the subarcs OA,AB,BO have the following properties:

(1) OA and AB are line segments
(2) BO is a twice differentiable curve
(3) If P denotes the parallelogram having O,A and B as vertices then the arc

BO is contained in P and neither of the sides of P is a tangent of BO.
(4) There are positive constants δ and K such that the curvature of BO lies

between δ and K at each point of BO.

If Q is a square with λ2(Q) = λ2(J̃) then J̃ ∼tr Q.

Proof. Let U be a linear transformation of R2 such that U(O) = (0, 0), U(A) = (1, 0)
and U(B) = (1, 1). Then the image F = U(BO) of the arc BO is contained in [0, 1]2.
The conditions (2) and (4) easily imply that the curve BO is convex or concave and
hence F is the graph of an increasing function f : [0, 1] → [0, 1]. Then it follows
from (2) and (3) that there are positive constants a, b such that a ≤ f ′(x) ≤ b,
∀x ∈ [0, 1].

Since the curvature of F at the point (x, f(x)) equals f ′′(x)

(1+[f ′(x)]2)
3
2

. it follows

from (4) that there are positive constants c, d such that c ≤ |f ′′(x)| ≤ d, ∀x ∈ [0, 1],
so f satisfies (4.5).

Therefore, by Theorem 4.4, for almost every pair of vectors x, y ∈ R2 there is a
constant C such that

(4.8) D2(sN (u, x, y);Hf ) ≤ CN
−4
3 l7(N)

for every u ∈ R and N ∈ N. Let Q1 ⊂ [0, 1)2 be a square with λ2(Q1) = λ2(Hf ).
Then, by Theorem 4.2, for almost every pair of vectors x, y ∈ R2 there is a constant
C’ such that

(4.9) D2(sN (u, x, y);Q1) ≤ C ′ l
7(N)
N2

for every u ∈ R and N ∈ N.
Therefore, we can fix a pair of vectors x, y ∈ R2 and constants C,C ′ such that

(4.8) and (4.9) hold for every u ∈ R andN ∈ N. Let Ψ(N) = max(C,C ′)N2/3l7(N),
giving us

∞∑
k=0

Ψ(2k)
2k

<∞

Also, N2 ·D2(sN (u, x, y);Hf ) ≤ Ψ(N) and N2 ·D2(sN (u, x, y);Q1) ≤ Ψ(N) hold
for every u ∈ R and N ∈ N. Thus, by Theorem 3.1, Hf ∼tr Q1. This easily implies
that
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U−1(Hf ) ∼tr U−1(Q1) =def P1.

Now we have U(J̃) = Hf ∪ ({1} × [0, 1]) and hence J̃ differs from U−1(Hf ) in
the line segment AB. Since P1 is a parallelogram, this implies that J̃ ∼tr P1. Also,
λ2(P1) = λ2(J̃) = λ2(Q) and hence, by Theorem 4.1, P1 ∼tr Q. Therefore, we have
J̃ ∼tr Q, completing the proof. �

Theorem 4.10. Let J be a simple closed Jordan curve such that J can be decom-
posed into finitely many subarcs J1, J2, . . . , Jn with the following properties:

(1) Ji is a twice differentiable curve for every i = 1, 2, . . . , n.
(2) For every i = 1, 2, . . . , n, either Ji is a line segment, or there are positive

constants δ, k such that the curvature of Ji lies between δ and K at each
point of Ji.

(3) J has no cusps, i.e. at the common end-point of Ji and Jj with i 6= j the
half tangents of Ji, Jj do not coincide.

If Q is a square with λ2(Q) = λ2(J̃), then J̃ ∼tr Q.

Proof. Let Φ = {A0, . . . , Am−1, Am = A0 be a subdivision of J containing the end-
points of the arcs Ji. It is easy to see that if Φ is fine enough, then we can find
points P0, . . . , Pm−1, Pm = P0 ∈ J̃ such that

(1) The line segments pi = PiAi−1 and qi = PiAi are in J̃ and hence pi, qi,
and the subarc Ai−1Ai of J constitute a simple closed Jordan curve Ti for
every i = 1, 2, . . . ,m.

(2) T̃1, . . . , T̃m are non-overlapping.
(3) Either Ti is a triangle or it satisfies the conditions of theorem 4.7, ∀i.

Consequently, there are non-overlapping squares Q1, . . . , Qm such that Ti ∼ Qi,∀i.
Since S = J̃ \

⋃m
i=1 T̃i is a polygon, there is a square Q0 such that S ∼ Q0 by

Theorem 4.1. We may assume that Q0 ∩ Qi for every i = 1, . . . ,m. Then J̃ ∼⋃m
i=0Qi and hence applying Theorem 4.1 again, we obtain J̃ ∼ Q, which is what

we want. �

Remark 4.11. Clearly, if J is a circle, then it fulfills the conditions of Theorem 4.10,
so the enclosed disc is translation equidecomposable with a square of equal volume.
This provides an affirmative answer to Tarski’s circle-squaring problem.

Acknowledgments. It is a pleasure to thank my mentors Hyomin Choi and Ian
Biringer for all of their help and (considerable) patience.

References

[1] E. Hertel and C. Richter Squaring the Circle by Dissection Contributions to Algebra and

Geometry, v44, p. 47-55, 2003.

[2] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, New York 1974.

[3] M. Laczkovich, Equidecomposability and discrepancy; a solution of Tarski’s circle-squaring
problem, Journal für die reine und angewandte Mathematik, v404, p77-117, 1990

[4] R. Rado, Factorization of Even Graphs, Quarterly Journal of Mathematics, v20, p. 95-104,
1949.



TRANSLATION EQUIDECOMPOSABILITY 15

[5] L.A. Santalo, Integral geometry and geometric probability, Reading 1976

[6] A. Tarski, Probleme 38, Fundamenta Mathematicae 7, p. 381, 1925.


