TRANSLATION EQUIDECOMPOSABILITY

NICK RAMSEY

Abstract

Expository piece on M. Laczkovich's "Equidecomposability and discrepancy; a solution of Tarski's circle-squaring problem." A criterion for translation equidecomposability of two Jordan domains is given with an application.

Contents

1. Poincare's Formula 2
2. Discrepancy and Uniform Spread 4
3. Translation Equidecomposability 9
4. Circle-Squaring 12
Acknowledgments 14
References 14

After the discovery of the Banach-Tarski paradox, Alfred Tarski asked, as an open problem in the 1925 issue of Fundamenta Mathematicae, whether a circle and a square are equidecomposable. ${ }^{1}$ Although similar in spirit to the circle-squaring problem of the ancient geometers, Tarski disregarded issues concerning rulers and compasses and instead asked whether a disc in \mathbb{R}^{2} could be broken into a finite number of pieces and then reassembled into a square of equal area.

Motivated by questions like Tarski's, this paper develops a criterion for translation equidecomposability of two Jordan domains in \mathbb{R}^{2}. In section one, we prove Poincare's formula and apply it to get a bound on the measure of a neighborhood of a Jordan curve. In section two, we use the notion of discrepancy to prove certain Jordan domains are "uniformly spread." Finally, we prove in section three that such evenly spread Jordan domains are translation equidecomposable. We conclude with a sketch of the solution to Tarski's circle-squaring problem.

This paper offers no original material, but aims to explicate the theorems on equidecomposability discovered by M. Laczkovich in 1990 in "Equidecomposability and discrepancy; a solution of Tarski's circle-squaring problem." However, developing a criterion for equidecomposability requires an interesting mix of mathematics, ranging from group theory, graph theory, integral geometry, and analysis.

[^0]
1. Poincare's Formula

Definition 1.1. Let (O, x, y) be a fixed frame and let $\left(O_{1}, X, Y\right)$ be a moving frame. Also, let a, b be the coordinates of O_{1} and ϕ to be the angle between $O x$ and $O_{1} X$. The kinematic density is denoted by $d K_{1}=d a \wedge d b \wedge d \phi$.

Definition 1.2. We call a continuous function $J:[p, q] \rightarrow \mathbb{R}^{2}$ a closed simple Jordan curve if J is injective on (p, q) and $J(p)=J(q)$. The domain enclosed by J is called a Jordan domain, denoted by \tilde{J}.

Lemma 1.3. Let (O, x, y) be a fixed frame and let $\left(O_{1}, X, Y\right)$ be a moving frame. Let J_{0} and J_{1} be simple Jordan curves such that
(1) J_{0}, J_{1} are twice differentiable and composed of a finite number of arcs.
(2) $x=x\left(s_{0}\right), y=y\left(s_{0}\right)$ are the equations of J_{0} referred to the arc length s_{0} and to the coordinate system (O, x, y)
(3) $X=X\left(s_{1}\right), Y=Y\left(s_{1}\right)$ are the equations of J_{1} where s_{1} denotes the arc length of J_{1}.
Letting θ be the angle between the tangent of J_{0} and the tangent of J_{1} at the point $P \in J_{0} \cap J_{1}$, then $d K_{1}=d a \wedge d b \wedge d \phi=|\sin \theta| d s_{0} \wedge d s_{1} \wedge d \theta$

Proof. Letting a, b be the coordinates of O_{1} and ϕ to be the angle between $O x$ and $O_{1} X$, with respect to the coordinate system (O, x, y), the equations of J_{1} become

$$
x=a+X \cos \phi-Y \sin \phi, y=b+X \sin \phi+Y \cos \phi
$$

From this, we can see that the points of intersection between J_{0} and J_{1} are given by the system

$$
\begin{aligned}
& x\left(s_{0}\right)=a+X\left(s_{1}\right) \cos \phi-Y\left(s_{1}\right) \sin \phi \\
& y\left(s_{0}\right)=b+X\left(s_{1}\right) \sin \phi+Y\left(s_{1}\right) \cos \phi
\end{aligned}
$$

with s_{0}, s_{1} unknowns.
Deriving, we get

$$
\begin{aligned}
d a & =x^{\prime} d s_{0}-\left(X^{\prime} \cos \phi-Y^{\prime} \sin \phi\right) d s_{1}+(X \sin \phi+Y \cos \phi) d \phi \\
d b & =y^{\prime} d s_{0}-\left(X^{\prime} \sin \phi+Y^{\prime} \cos \phi\right) d s_{1}-(X \cos \phi-Y \sin \phi) d \phi
\end{aligned}
$$

And further, by multiplying we see that

$$
d a \wedge d b \wedge d \phi=\left[\left(X^{\prime} y^{\prime}-x^{\prime} Y^{\prime}\right) \cos \phi-\left(Y^{\prime} y^{\prime}+X^{\prime} x^{\prime}\right) \sin \phi\right] d s_{0} \wedge d s_{1} \wedge d \phi
$$

If α_{0} denotes the angle between the tangent to J_{0} at the point $P \in J_{0} \cap J_{1}$ and the x axis, and α_{1} denotes the angle between the tangent to J_{1} at the same point and the X axis, we have

$$
\begin{aligned}
x^{\prime} & =\cos \alpha_{0}, y^{\prime}=\sin \alpha_{0} \\
X^{\prime} & =\cos \alpha_{1}, Y^{\prime}=\sin \alpha_{1}
\end{aligned}
$$

and the kinematic density, given by the equation $d K_{1}=d a \wedge d b \wedge d \phi$ can be reformulated as follows:

$$
d K_{1}=d a \wedge d b \wedge d \phi=\sin \left(\alpha_{0}-\alpha_{1}-\phi\right) d s_{0} \wedge d s_{1} \wedge d \phi
$$

If θ is the angle between J_{0} and J_{1} at P, then $|\theta|=\left|\alpha_{0}-\alpha_{1}-\phi\right|$ and since α_{0} and α_{1} are functions only of s_{0} and s_{1}, we conclude that

$$
d K_{1}=|\sin \theta| d s_{0} \wedge d s_{1} \wedge d \theta
$$

Lemma 1.4. Given $(O, x, y),\left(O_{1}, X, Y\right), J_{0}, J_{1}$, let L_{0} and L_{1} be the lengths of J_{0} and J_{1} respectively. Then, letting n be the number of intersection points of J_{0} and J_{1}, we have

$$
\int_{J_{0} \cap J_{1} \neq \emptyset} n d K_{1}=4 L_{0} L_{1}
$$

Proof. From Lemma 1.3, we have

$$
d K_{1}=|\sin \theta| d s_{0} \wedge d s_{1} \wedge d \theta
$$

And we know that

$$
\begin{gathered}
\int_{0}^{L_{0}} d s_{0}=L_{0} \\
\int_{0}^{L_{1}} d s_{1}=L_{1} \\
\int_{-\pi}^{\pi}|\sin \theta| d \theta=4
\end{gathered}
$$

Furthermore, because each position of J_{1} gets counted for each of its intersection points with J_{0}, integrating both sides of the formula from Lemma 1.3 gives us,

$$
\int_{J_{0} \cap J_{1} \neq \emptyset} n d K_{1}=\int_{0}^{L_{0}} d s_{0} \int_{0}^{L_{1}} d s_{1} \int_{-\pi}^{\pi}|\sin \theta| d \theta=4 L_{0} L_{1}
$$

which is what we want. This formula is known within integral geometry as Poincare's Formula.

Remark 1.5. We are most concerned here with a special case of Poincare's formula, where J_{1} is a circle of radius r and midpoint $M=(a, b)$. Then $d K_{1}=d a \wedge d b \wedge d \phi=$ $d M \wedge d \phi$. Furthermore, as ϕ varies between 0 and 2π, n clearly does not change because rotating the circle would not alter the number of intersection points. This gives us

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} n d M=4 r L_{0} \tag{1.6}
\end{equation*}
$$

Definition 1.7. Given a Jordan curve J and some constant $\delta, U(J, \delta)=\{y: \exists x \ni$ $|x-y| \leq \delta$. We say that $U(J, \delta)$ is the closed δ-neighborhood of J.

Theorem 1.8. Let A be a Jordan domain with boundary J. Then $\forall \delta$ such that $0<\delta<\frac{1}{2} \operatorname{diam}(J)$, we have $\lambda_{2}(U(J, \delta)) \leq 2 \delta \lambda_{1}(J)$. Note: We use λ_{1} to denote the one-dimensional Hausdorff measure λ_{2} for the Lebesgue measure in \mathbb{R}^{2}.
Proof. Let

$$
n=n(x)=|\{y \in J:|y-x|=\delta\}|
$$

Then, by Remark 1.5, we have

$$
\int_{\mathbb{R}^{2}} n d x=4 \delta \lambda_{1}(J)
$$

Furthermore, we can eliminate the possibility that $n(x)=0$ because It is clear that if $n(x)=0$, J must be contained within the circle with midpoint x and radius δ, so $\operatorname{diam}(J) \leq 2 \delta$ which contradicts our assumption. And J is a closed polygon, so for almost ever x either $n(x)=0$ or $n(x) \geq 2$. Consequently, $n(x) \geq 2$ for almost every $x \in U(J, \delta)$ so $\lambda_{2}(U(J, \delta)) \leq 2 \delta \lambda_{1}(J)$.

2. Discrepancy and Uniform Spread

Definition 2.1. If $S \subset \mathbb{R}^{2}$ is discrete, i.e. a set where every bounded subset of S is finite, and $H \subset \mathbb{R}^{2}$ is bounded and measurable, then the discrepancy ${ }_{\Delta}$ of S with respect to H is given by

$$
\Delta(S, H)=\left||S \cap H|-\lambda_{2}(H)\right|
$$

Note: We add the Δ subscript to differentiate between a different kind of discrepancy to be introduced in section 4.

Definition 2.2. We call a square of the form $[a, a+1) \times[b, b+1)$ with $a, b \in \mathbb{Z}$ a unit square. Further, given $c, d \in \mathbb{Z}$ we say $Q(x)=[c, c+1) \times[d, d+1)$. If H is a union of unit squares, then we denote the boundary of H by ∂H. Likewise, we say $p(H)=\lambda_{1}(\partial H)$
Definition 2.3. A discrete set $S \subset \mathbb{R}^{2}$ is uniformly spread if there exist constants $C, a>0$ so that for every Jordan domain A with $p(A) \geq a$, enclosed by Jordan curve J,

$$
\Delta(S, A) \leq C p(A)
$$

with $p(A)=\lambda_{1}(J)$, i.e. the one-dimensional Hausdorff measure of J .
Definition 2.4. A point in \mathbb{Z}^{2} is called a lattice point. Also, polygons with lattice point vertices and edges parallel to the coordinate axes are called lattice polygons. Accordingly, if a lattice polygon is a square, then we call it a lattice square. Given a lattice polygon P , we say \tilde{P} is the domain bounded by P and \hat{P} is the union of lattice squares in \tilde{P}. Given a lattice square Q , we denote the side length of Q by $s(Q)$.

Lemma 2.5. Let \mathcal{H} be the family of all non-empty sets which are unions of finitely many unit squares. For every $H \in \mathcal{H}$ one of more of the following are true:
(1) There is a lattice polygon so that $H=\hat{P}$
(2) There are sets $H_{1}, H_{2} \in \mathcal{H}$ such that $H_{1} \cap H_{2}=\emptyset, H_{1} \cup H_{2}=H$, and $p(H)=p\left(H_{1}\right)+p\left(H_{2}\right)$
(3) There are sets $H_{1}, H_{2} \in \mathcal{H}$ such that $H_{1} \subset H_{2}, H=H_{2} \backslash H_{1}$ and $p(H)=$ $p\left(H_{1}\right)+p\left(H_{2}\right)$
Proof. Given $H \in \mathcal{H}$, let V denote the set of lattice points contained in ∂H. We can turn this into a graph theory problem by considering V as a set of vertices. We join two vertices $p, q \in V$ by an edge if $|p-q|=1$ and if $[p, q]$ belongs to ∂H creating a set of edges E . This gives us a graph $G=(V, E)$ in which all vertices have degree 2 or 4 - visually, each vertex is either a corner of the lattice of squares or a common point between 4 squares. Consequently, every edge in G is contained in at least one circuit and, clearly, each circuit of G is lattice polygon.

Let P be a circuit in G and let $H_{1}=H \cap \hat{P}, H_{2}=H \backslash \hat{P}$, splitting H into two sets. This gives us three cases: either H_{1} and H_{2} are nonempty, H is contained in \hat{P}, or H and \hat{P} have empty intersection.

In the first case, if $H_{1} \neq \emptyset, H_{2} \neq \emptyset$ then $H_{1}, H_{2} \in \mathcal{H}, H_{1} \cup H_{2}=H$ and $p(H)=p\left(H_{1}\right)+p\left(H_{2}\right)$. In the first case, condition (2) is satisfied.

To consider the second and third cases, we may assume that whenever P is a circuit in G then either $H \subset \hat{P}$ or $H \cap \hat{P}=\emptyset$. Let p be a vertex of G with minimal y-coordinate, and let P_{0} be a circuit containing p. It is easy to see that in this case
$H \cap \hat{P}_{0}=\emptyset$ is impossible and hence $H \subset \hat{P}_{0}$. If $H=\hat{P}_{0}$ then (1) is satisfied. If $H \neq \hat{P}_{0}$ then $\hat{P}_{0} \backslash H \neq \emptyset$. Let $q=(a, b)$ be a lattice point in $\hat{P}_{0} \backslash H$ with minimal y-coordinate. Let

$$
Q=[a, a+1) \times[b, b+1), Q^{\prime}=[a, a+1) \times[b-1, b)
$$

then $Q \subset \hat{P}_{0} \backslash H$ and $Q^{\prime} \cap\left(\hat{P}_{0} \backslash H\right)=\emptyset$ by the minimality of b. If $Q^{\prime} \cap H=\emptyset$ then $Q^{\prime} \cap \hat{P}_{0}=\emptyset$ and, as $Q \subset \hat{P}_{0}$, the common side of Q and Q^{\prime} belongs to P_{0}. However, this is impossible, since $P_{0} \subset \partial H$ and $\left(Q \cup Q^{\prime}\right) \cap H=\emptyset$. Therefore $Q^{\prime} \subset H$ and consequently, the common side of Q and Q^{\prime}, the segment $l=[a, a+1] \times\{b\}$, belongs to ∂H.

Since $Q^{\prime} \subset H \subset \hat{P}_{0}$ and $Q \subset \hat{P}_{0}, l$ cannot belong to P_{0}. Let P_{1} be a circuit of G containing l; then $P_{1} \neq P_{0}$. If $H \subset \hat{P}_{1}$ then $P_{0} \subset \partial H \subset \hat{P}_{1} \cup P_{1}$ and $P_{1} \subset \partial H \subset \hat{P}_{0} \cup P_{0}$ and hence $P_{0}=P_{1}$ which is impossible. Therefore we have $H \cap \hat{P}_{1}=\emptyset$.

Now we take $H_{1}=\hat{P}_{1}$ and $H_{2}=H \cup \hat{P}_{1}$. Then $H_{1}, H_{2} \in \mathcal{H}, H_{1} \subset H_{2}$, and $H=H_{2} \backslash H_{1}$. Since $P_{1} \subset \partial H$ and $H \cap \hat{P}_{1}=\emptyset$, it is easy to check that $p(H)=p\left(H_{1}\right)+p\left(H_{2}\right)$. Hence (3) holds, and this completes the proof.

Lemma 2.6. Let $C=\sum_{n=0}^{\infty} \frac{\Psi\left(2^{n}\right)}{2^{n}}<\infty$. For every Jordan domain A with boundary J there are non-overlapping lattice squares $Q_{1}, Q_{2}, \ldots, Q_{m}$ so that

$$
\begin{equation*}
A \backslash U(J, \sqrt{2}) \subset \bigcup_{j=1}^{m} Q_{j} \subset A \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{m} \Psi\left(s\left(Q_{j}\right)\right)<7 C p(A) \tag{2.8}
\end{equation*}
$$

Proof. Let \mathcal{L} be the set of lattice squares which are in A and are of the form $\left[a 2^{k},(a+1) 2^{k}\right] \times\left[b 2^{k},(b+1) 2^{k}\right]$, for some $a, b \in \mathbb{Z}$, and $k=0,1,2, \ldots$ However, we want a set of non-overlapping squares. Fortunately, if two squares in \mathcal{L} overlap, i.e. have nonempty intersection, it is clear that one of them must be contained in the other, because for given a and b, a lattice square $\left[a 2^{k},(a+1) 2^{k}\right] \times\left[b 2^{k},(b+1) 2^{k}\right]$ is in $\left[a 2^{k^{\prime}},(a+1) 2^{k^{\prime}}\right] \times\left[b 2^{k^{\prime}},(b+1) 2^{k^{\prime}}\right]$ for all k, k^{\prime} such that $0 \leq k \leq k^{\prime}$. This tells us that for every $Q \in \mathcal{L}$ we can choose a $Q^{\prime} \in \mathcal{L}$ so that $Q \subset Q^{\prime}$. In this way, Q^{\prime} is maximal, with respect to containment. Now, let $\mathcal{L}^{\prime}=\left\{Q^{\prime} \mid Q \in \mathcal{L}\right\}$, so then the elements of \mathcal{L}^{\prime} are non-overlapping with $\bigcup \mathcal{L}^{\prime}=\bigcup \mathcal{L}$.

Let $\mathcal{L}^{\prime}=\left\{Q_{1}, Q_{2}, \ldots, Q_{m}\right\}$. If $x \in A \backslash U(J, \sqrt{2})$ then there is a unit square Q such that $x \in Q \subset A$. Thus $Q \in \mathcal{L}$ and hence $x \in \bigcup \mathcal{L}=\bigcup \mathcal{L}^{\prime}=\bigcup_{j=1}^{m} Q_{j}$.

Let $\mathcal{L}_{k}=\left\{Q \in \mathcal{L}^{\prime} \mid s(Q)=2^{k}\right\}$ and $n_{k}=\left|\mathcal{L}_{k}\right|$, with $k=0,1, \ldots$ if $Q \in \mathcal{L}_{k}$ then, as Q is a maximal element of \mathcal{L}, there is a lattice square Q^{*} such that $Q \subset Q^{*}, s\left(Q^{*}\right)=2^{k+1}$ and $Q^{*} \not \subset A$. This implies $\operatorname{dist}(Q, J) \leq \sqrt{2} \cdot 2^{k}$ and $Q \subset A \cap U\left(J, 2 \sqrt{2} \cdot 2^{k}\right)$. Therefore,

$$
\begin{equation*}
\bigcup \mathcal{L}_{k} \subset A \cap U\left(J, 2 \sqrt{2} \cdot 2^{k}\right) . \tag{2.9}
\end{equation*}
$$

Here we must deal with two cases: either $2 \sqrt{2} \cdot 2^{k}<\frac{1}{2} \operatorname{diam}(J)$ or $2 \sqrt{2} \cdot 2^{k} \geq$ $\frac{1}{2} \operatorname{diam}(J)$.

In the first case, if $2 \sqrt{2} \cdot 2^{k}<\frac{1}{2} \operatorname{diam}(J)$ then by Theorem 1.8,

$$
\lambda_{2}\left(U\left(J, 2 \sqrt{2} \cdot 2^{k}\right)\right) \leq 4 \sqrt{2} \cdot 2^{k} \lambda_{1}(J)=4 \sqrt{2} \cdot 2^{k} p(A)
$$

For the second case, we know that measuring the left hand side of (2.9) gives us $\lambda_{2}\left(\bigcup \mathcal{L}_{k}\right)=n_{k} \cdot 2^{2 k}$. Putting this together with the above equation, (2.9) gives us $n_{k} \leq 4 \sqrt{2} \cdot p(A) \cdot 2^{-k}$. If $2 \sqrt{2} \cdot 2^{k} \geq \frac{1}{2} \operatorname{diam}(J)$ then, because we know that circles are area maximizing,

$$
n_{k} 2^{2 k}=\lambda\left(\bigcup \mathcal{L}_{k}\right) \leq \lambda_{2}(A) \leq \frac{\pi}{4}(\operatorname{diam}(J))^{2} \leq \frac{\pi}{4}\left(4 \sqrt{4} \cdot 2^{k}\right)^{2}=8 \pi \cdot 2^{2 k}
$$

and so $n_{k} \leq 8 \pi$. But n_{k} is an integer, so we can do even better and say $n_{k} \leq 25$.
If $Q \in \mathcal{L}_{k}$, then $4 \cdot 2^{k}=p(Q) \leq p(A)$ and we get

$$
n_{k} \leq 25 \leq \frac{25}{4} p(A) 2^{-k}<7 p(A) 2^{-k}
$$

Consequently, from both cases we can conclude that whenever $\mathcal{L}_{k} \neq \emptyset$ then $n_{k}<$ $7 p(A) \cdot 2^{-k}$. This gives us

$$
\sum_{j=1}^{m} \Psi\left(s\left(Q_{j}\right)\right)=\sum_{k=0}^{\infty} n_{k} \Psi\left(2^{k}\right)<7 p(A) \sum_{k=0}^{\infty} \frac{\Psi\left(2^{k}\right)}{2^{k}}=7 C p(A)
$$

Lemma 2.10. Let H be a set such that either $H \in \mathcal{H}$ or $\mathbb{R}^{2} \backslash H \in \mathcal{H}$. If, for every $C>0$, we say $N(C)$ is the smallest $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\left(1+\frac{1}{4 C}\right)^{N}>16(N+1)^{2} \tag{2.11}
\end{equation*}
$$

then for every $C>0$, there exists an $n \in \mathbb{Z}$ such that $1 \leq n \leq N(C)$ and

$$
\lambda_{2}\left(H_{n} \backslash H\right) \geq C p\left(H_{n}\right)
$$

with H_{n} defined as in Lemma 2.5.
Proof. We put $s_{n}=p\left(H_{n}\right)$ with $n=1,2, \ldots$. Our assumption on H implies that s_{n} is finite for every n. Obviously, ∂H_{n} is the union of s_{n} segments of unit length. Each of these segments belongs to the boundary of one of the unit squares contained in $H_{n+1} \backslash H_{n}$. On the other hand, each unit square in $H_{n+1} \backslash H_{n}$ contains at most four of these segments, and hence

$$
\begin{equation*}
\lambda_{2}\left(H_{n+1} \backslash H_{n}\right) \geq \frac{s_{n}}{4} \tag{2.12}
\end{equation*}
$$

We'll prove the lemma from here by contradiction. Suppose the lemma is false, then
$\lambda_{2}\left(H_{n} \backslash H\right)<C p\left(H_{n}\right)=C s_{n} \leq 4 C \lambda_{2}\left(H_{n+1} \backslash H_{n}\right)=4 C \lambda_{2}\left(H_{n+1} \backslash H\right)-4 C \lambda_{2}\left(H_{n} \backslash H\right)$ for all n such that $1 \leq n \leq N(C)$. Consequently, for such n,

$$
\lambda_{2}\left(H_{n+1} \backslash H\right)>\left(1+\frac{1}{4 C}\right)^{N(C)} \lambda_{2}\left(H_{1} \backslash H\right)
$$

and so

$$
\begin{equation*}
\lambda_{2}\left(H_{N(C)+1} \backslash H\right)>\left(1+\frac{1}{4 C}\right)^{N(C)} \lambda_{2}\left(H_{1} \backslash H\right) \tag{2.13}
\end{equation*}
$$

We want to show

$$
\begin{equation*}
\lambda_{2}\left(H_{N(C)+1} \backslash H\right) \leq 4(N(C)+1)^{2} s_{0} \tag{2.14}
\end{equation*}
$$

because $\lambda_{2}\left(H_{1} \backslash H\right) \geq \frac{s_{0}}{4}$ by (2.12), (2.14) contradicts (2.13) and (2.11), and so the contradiction would prove the Lemma.

To this end, let Q be a unit square with $Q \subset H_{N(C)+1} \backslash H$. Then there is a sequence of unit squares $Q_{0}, Q_{1}, \ldots, Q_{n}$. such that, for $n \leq N(C)+1, Q_{0} \subset H$, Q_{i} and Q_{i-1} are adjacent for every $i=1, \ldots, n$, and $Q_{n}=\bar{Q}$. Since $Q \not \subset H$, there is an $i \geq 1$ such that $\partial Q_{i} \cap \partial H \neq \emptyset$. If p is a lattice point in $\partial Q_{i} \cap \partial H$ and T is a lattice square with center p and with $s(T)=2(N(C)+1)$, then $Q \subset T$. As ∂H contains at most s_{0} lattice points, this argument shows that $H_{N(C)+1} \backslash H$ can be covered by s_{0} squares of area $4(N(C)+1)^{2}$. This proves (2.14) which completes the proof.

Lemma 2.15. For every $H \in \mathcal{H}$ and $C>0$, there exists a $K \in \mathcal{H}$ such that $H \subset K \subset H_{N(C)}$ and

$$
\begin{equation*}
\lambda_{2}\left(H_{N(C)}\right) \geq \lambda_{2}(K)+C p(K) \tag{2.16}
\end{equation*}
$$

Proof. Applying Lemma 2.10 to the set $A=\mathbb{R}^{2} \backslash H_{N(C)}$ we get

$$
\begin{equation*}
\lambda_{2}\left(A_{n} \backslash A\right) \geq C p\left(A_{n}\right) \tag{2.17}
\end{equation*}
$$

for $1 \leq n \leq N(C)$
We put $K=\mathbb{R}^{2} \backslash A_{n}$. Then $K \subset \mathbb{R}^{2} \backslash A=H_{N(C)}$. We show $H \subset K$. Let Q be a unit square in H and suppose that $Q \not \subset K$. Then $Q \subset A_{n}$ and hence there are unit squares Q_{0}, \ldots, Q_{n} such that $Q_{0} \subset A, Q_{i}$ and Q_{i-1} are adjacent for every $i=1, \ldots, n$ and $Q_{n}=Q$. Since $Q \subset H$, this implies $Q_{0} \subset H_{n} \subset H_{N(C)}=\mathbb{R}^{2} \backslash A$ which is impossible. Hence we have $H \subset K \subset H_{N(C)}$. Since $A_{n} \backslash A=H_{N(C)} \backslash K$ and $p(K)=p\left(A_{n}\right),(2.16)$ follows from (2.17).

Lemma 2.18. Let S be a discrete subset of \mathbb{R}^{2} and suppose that

$$
\begin{equation*}
\Delta(S, \hat{P}) \leq C \lambda_{1}(P) \tag{2.19}
\end{equation*}
$$

holds for every lattice polygon with a constant $C>0$. Then there is a bijection $\phi: S \rightarrow \mathbb{Z}^{2}$ such that

$$
|\phi(x)-x| \leq M
$$

holds for every $x \in S$, where $M=N(C)+\sqrt{2}$.
Proof. We do this proof in two parts. First, we do an induction proof, preparing us for the second part where we repeat the previous trick of turning the problem into a graph theory problem. For this to work, however, we'll need to use a theorem of graph theory, which we'll dub the Rado theorem since it was proven by R. Rado:

Given any system of k vertices in $S\left(\right.$ or $\left.\mathbb{Z}^{2}\right)$ that is adjacent to at least k vertices in \mathbb{Z}^{2} (or S , respectively), Γ contains a one-factor.

For the first part, we show that

$$
\begin{equation*}
\Delta(S, H) \leq C p(H), \forall H \in \mathcal{H} \tag{2.20}
\end{equation*}
$$

by induction over $p(H)$. Let $H \in \mathcal{H}$ be given and suppose that the statement is true for every $H^{\prime} \in \mathcal{H}$ with $p\left(H^{\prime}\right)<p(H)$. By Lemma 2.5, atleast one of (1), (2), and (3) holds. In case of (1), (2.20) follows from (2.19). If (2), then $p\left(H_{i}\right) \leq p(H)$ for $i=1,2$, and this implies that (2.20) holds for H_{1} and H_{2}, by the induction hypothesis. This gives us

$$
\Delta(S, H) \leq \sum_{i=1}^{2} \Delta\left(S, H_{i}\right) \leq C\left(p\left(H_{1}\right)+p\left(H_{2}\right)\right)=C p(H)
$$

If (3) holds, then we have $p\left(H_{i}\right)<p(H)$ for $i=1,2$ once more and so
$\Delta(S, H)=\left|\left(\left|S \cap H_{2}\right|-\lambda_{2}\left(H_{2}\right)\right)-\left(\left|S \cap H_{1}\right|-\lambda_{2}\left(H_{1}\right)\right)\right| \leq \sum_{i=1}^{2} \Delta\left(S, H_{i}\right) \leq C\left(p\left(H_{1}\right)+p\left(H_{2}\right)\right)=C p(H)$
So (2.20) regardless of which case we have.
Now for the second part, we restate the lemma in terms of graph theory. The lemma is equivalent to the claim that the bipartite graph

$$
\Gamma=\left\{(x, y): x \in S, y \in \mathbb{Z}^{2},|x-y| \leq M\right\}
$$

contains a one-factor, i.e. there is a set of edges such that each vertex in Γ is incident to exactly one edge in the set. The degree of each vertex of Γ is finite since both S and \mathbb{Z}^{2} are discrete. Therefore, by the Rado theorem the existence of a one-factor in Γ follows from the following condition:

Any system of k vertices in S is adjacent to at least k vertices in S .
Let $A \subset \mathbb{Z}^{2}$ be given with $|A|=k$. Let H be the union of all unit squares meeting A, then $H \in \mathcal{H}$ and $\lambda_{2}(H)=k$. By Lemma 2.10, there is an integer $1 \leq n \leq N(C)$ such that

$$
\lambda_{2}\left(H_{n}\right)-C p\left(H_{n}\right) \geq \lambda_{2}(H)=k
$$

Then, by (2.20),

$$
\left|S \cap H_{n}\right| \geq \lambda_{2}\left(H_{n}\right)-C p\left(H_{n}\right) \geq k
$$

Obviously,

$$
H_{n} \subset U(H, n) \subset U(A, n+\sqrt{2}) \subset U(A, N(C)+\sqrt{2})=U(A, M)
$$

and hence $|S \cap U(A, M)| \geq k$. This shows that A is adjacent with at least k vertices in S .

Next, let $B \subset S$ be given with $|B|=k$. Let H be the union of all unit squares meeting B. Then $H \in \mathcal{H}$ and hence, by Lemma 2.15, there exists a $K \in \mathcal{H}$ such that $H \subset K \subset H_{N(C)}$ and

$$
\begin{equation*}
\lambda_{2}\left(H_{N(C)}\right) \geq \lambda_{2}(K)+C p(K) \tag{2.21}
\end{equation*}
$$

From (2.20) and (2.21), we have

$$
k \leq|S \cap H| \leq|S \cap K| \leq \lambda_{2}(K)+C p(K) \leq \lambda_{2}\left(H_{N(C)}\right)
$$

and so

$$
\left|\mathbb{Z}^{2} \cap H_{N(C)}\right|=\lambda_{2}\left(H_{N(C)}\right) \geq k
$$

Since

$$
H_{N(C)} \subset U(H, N(C)) \subset U(B, N(C)+\sqrt{2})=U(B, M)
$$

we have $\left|\mathbb{Z}^{2} \cap U(B, M)\right| \geq k$. Therefore, B is adjacent with at least k points in \mathbb{Z}^{2}. Thus the condition of the Rado theorem is fulfilled, proving the lemma.

Theorem 2.22. Let $\Psi:[0, \infty) \rightarrow \mathbb{R}$ be a nonnegative, increasing and continuous function so that

$$
C=\sum_{n=0}^{\infty} \frac{\Psi\left(2^{n}\right)}{2^{n}}<\infty
$$

If $S \subset \mathbb{R}^{2}$ is discrete and

$$
\Delta(S, \tilde{Q}) \leq \Psi(s(Q))
$$

for every square Q with $s(Q) \geq 1$, then S is uniformly spread.
Proof. Let Q be a lattice square. It is then clear that

$$
|S \cap \hat{Q}| \leq|S \cap \tilde{Q}| \leq \lambda_{2}(\tilde{Q})+\Psi(s(Q))
$$

However, if $s(Q) \geq 2$, then we take a square I_{ϵ} so that $I_{\epsilon} \subset \operatorname{int} Q(?)$ and $s\left(I_{\varepsilon}\right)=$ $s(Q)-\varepsilon, 0<\varepsilon<1$. This gives us

$$
|S \cap \hat{Q}| \geq\left|S \cap I_{\varepsilon}\right| \geq \lambda_{2}\left(I_{\varepsilon}\right)-\Psi\left(s\left(I_{\varepsilon}\right)\right)
$$

Then, letting ε tend to 0 , we get $|S \cap \hat{Q}| \geq \lambda_{2}(\tilde{Q})-\Psi(s(Q))$ and

$$
\begin{equation*}
\left||S \cap \hat{Q}|-\lambda_{2}(\tilde{Q})\right| \leq \Psi(s(Q)) \tag{2.23}
\end{equation*}
$$

Also, if $s(Q)=1$, then

$$
|S \cap \hat{Q}| \geq 0=\lambda_{2}(\tilde{Q})-1
$$

Then, if we replace Ψ by $\max \{1, \Psi\},(2.23)$ will be satisfied by every lattice square Q. Let P be a lattice polygon. Furthermore, Lemma 2.6 makes clear that if J is a lattice polygon, then it is equal to the union of non-overlapping lattice squares. By Lemma 2.6, then there are lattice squares $Q_{1}, Q_{2}, \ldots, Q_{m}$ such that (2.8) holds. Then \hat{P} is the disjoint union of the sets $\hat{Q}_{j}, j=1, \ldots, m$ and hence

$$
\Delta(S, \hat{P}) \leq \sum_{j=1}^{m}| | S \cap \hat{Q}_{j}\left|-\lambda_{2}\left(\tilde{Q}_{j}\right)\right| \leq \sum_{j=1}^{m} \Psi\left(s\left(Q_{j}\right)\right) \leq 7 C \cdot \lambda_{1}(P)
$$

So the theorem follows from Lemma 2.18.

3. Translation Equidecomposability

As alluded to briefly in the introduction, we are primarily concerned with the development of a criterion for determining when two Jordan domains are equidecomposable. More generally, we say two sets $A, B \subseteq \mathbb{R}^{2}$ are equidecomposable when, letting $A=\bigcup_{i=1}^{n} A_{i}$ and $B=\bigcup_{i=1}^{n} B_{i}$ with $A_{i} \cap A_{j}=B_{i} \cap B_{j}=\emptyset$ for $i \neq j$, there is a group of bijections G such that for each i there is a $\gamma_{i} \in G$ with $\gamma_{i}\left(A_{i}\right)=B_{i}$. Put simply, A and B are equidecomposable if they can each be decomposed into the same number of pieces congruent by G. If A and B can be shown to be equidecomposable with only translations in G, then we say that A and B are translation equidecomposable which we denote by $A \sim^{t r} B$.

As mentioned before, we'll now define a different kind of discrepancy.

Definition 3.1. Let $I=[0,1)$, and suppose $S \subset I^{n},|S|=N$, and $H \subset I^{n}$ is measurable, then the discrepancy ${ }_{D}$ of S with respect to H is

$$
D_{n}(S, H)=\left|\frac{1}{N}\right| S \cap H\left|-\lambda_{n}(H)\right|
$$

Furthermore, the discrepancy of the finite set $S \subset I^{n}$ is

$$
D_{n}(S)=\sup D_{n}(S, J)
$$

where the sup is taken over all subintervals $J=\times_{i=1}^{n}\left[a_{i}, b_{i}\right) \subset I^{n}$
Theorem 3.2. Let Ψ be a nonnegative function on \mathbb{N} so that

$$
C=\sum_{k=0}^{\infty} \frac{\Psi\left(2^{k}\right)}{2^{k}}<\infty
$$

Now let $H_{1}, H_{2} \subset I^{2}$ be measurable with $\lambda_{2}\left(H_{1}\right)=\lambda_{2}\left(H_{2}\right)>0$. Suppose that there are $x, y \in \mathbb{R}^{2}$ so that
(1) the vectors $x, y, i=(0,1), j=(0,1)$ are linearly independent over \mathbb{Q}, and
(2) $N^{2} \cdot D_{2}\left(S_{N}(u, x, y), H_{r}\right) \leq \Psi(N), \forall u \in \mathbb{R}^{2}, N \in \mathbb{N}, r \in\{1,2\}$

Then H_{1} and H_{2} are translation-equidecomposable.
Proof. Let $\lambda_{2}\left(H_{1}\right)=\lambda_{2}\left(H_{2}\right)=\alpha^{2}, \alpha>0$. Also let

$$
S_{r}(u)=\left\{(n, k) \mid(u+n x+k y) \in H_{r}\right\}
$$

with $u \in \mathbb{R}^{2}, r=1,2$. First, we want to show that there is a bijection $\phi_{u}: S_{1}(u) \rightarrow$ $S_{2}(u)$ so that $\left|\phi_{u}(z)-z\right|$ is uniformly bounded. This first requires proving that the sets $\alpha S_{r}(u)$ are uniformly spread for all u and for all $r \in\{1,2\}$.

If Q is a lattice square then, for $r=1,2$

$$
\begin{equation*}
\left|\left|S_{r}(u) \cap \hat{Q}\right|-\alpha^{2} \lambda_{2}(Q)\right| \leq \Psi(s(Q)) \tag{3.3}
\end{equation*}
$$

Now, let $Q=[a, a+N] \times[b, b+N]$, which gives us

$$
\begin{gathered}
\left|S_{r}(u) \cap \hat{Q}\right|=\left|\left\{(n, k): a \leq n<a+N, b \leq k<b+N,(u+n x+k y) \in H_{r}\right\}\right| \\
=\left|\left\{\left(n^{\prime}, k^{\prime}\right) ; 0 \leq n^{\prime}, k^{\prime}<N,\left(u+a x+b y+n^{\prime} x+k^{\prime} y\right) \in H_{r}\right\}\right| \\
=\left|s_{N}(u+a x+b y, x, y) \cap H_{r}\right|
\end{gathered}
$$

Which gives us

$$
\left|\frac{1}{N^{2}}\right| S_{r}(u) \cap \hat{Q}\left|-\alpha^{2}\right|=D_{2}\left(s_{N}(u+a x+b y, x, y) ; H_{r}\right)
$$

So the equation (3.3) follows from the second condition above.
Let P be a lattice polygon, and let $J=\alpha^{-1} P$ and $A=\alpha^{-1} \tilde{P}$. By Lemma 2.6, there are lattice squares $Q_{1}, Q_{2}, \ldots, Q_{m}$ such that (2.7) and (2.8)) hold. It is easy to see that (2.7) implies $\bigcup_{j=1}^{m} \hat{Q}_{j} \supset A \backslash U(J, \sqrt{2})$ and, as the sides of P are parallel to the coordinate axes, $\bigcup_{j=1}^{m} \hat{Q}_{j} \subset \alpha^{-1} \hat{P}$. Therefore,

$$
\begin{equation*}
\bigcup_{j=1}^{m} \hat{Q}_{j} \subset \alpha^{-1} \hat{P} \subset U(J, \sqrt{2}) \cup \bigcup_{j=1}^{m} \hat{Q}_{j} \tag{3.4}
\end{equation*}
$$

Let $U=\alpha^{2} \sum_{j=1}^{m} \lambda_{2}\left(Q_{j}\right), V=\sum_{j=1}^{m} \Psi\left(s\left(Q_{j}\right)\right)$ and $W=\left|S_{r}(u) \cap U(J, \sqrt{2})\right|$. Then (3.3) and (3.4) imply

$$
\begin{equation*}
U-V \leq\left|S_{r}(u) \cap \alpha^{-1} \hat{P}\right| \leq U+V+W \tag{3.5}
\end{equation*}
$$

Suppose that $\operatorname{diam}(J)>4 \sqrt{2}$. Then (3.4) and Theorem 1.8 imply
$\mid U-\lambda_{2}(\hat{P}) \leq \lambda_{2}\left(\alpha U(J, \sqrt{2}) \leq \lambda_{2}(U(J, \sqrt{2})) \leq 2 \sqrt{2} \cdot \lambda_{1}(J)=2 \sqrt{2} \alpha^{-1} \lambda_{1}(P)\right.$.
Since $S_{r}(u) \subset \mathbb{Z}^{2}$, we have

$$
W \leq \mid \mathbb{Z}^{2} \cap U\left(J, \sqrt{2} \mid \leq \lambda_{2}(U(J, 2 \sqrt{2})) \leq 4 \sqrt{2} \alpha^{-1} \lambda_{1}(P)\right.
$$

Furthermore, (2.8) gives us $V \leq 7 C \alpha^{-1} \lambda_{1}(P)$. Substituting these estimates of U, V, and W into (3.5), we get

$$
\begin{equation*}
\left|\left|S_{r}(u) \cap \alpha^{-1} \hat{P}\right|-\lambda_{2}(\hat{P})\right| \leq(6 \sqrt{2}+7 C) \alpha^{-1} \lambda_{1}(P) \tag{3.6}
\end{equation*}
$$

supposing that $\operatorname{diam}(J)>4 \sqrt{2}$. If $\operatorname{diam}(J) \leq 4 \sqrt{2}$ then $\alpha^{-1} \hat{P}$ can be covered by a square Q with $s(Q) \leq 7$ and hence
$\left|\left|S_{r}(u) \cap \alpha^{-1} \hat{P}\right|-\lambda_{2}(\hat{P})\right| \leq\left|S_{r}(u) \cap \hat{Q}\right|+49 \leq 49 \alpha^{2}+\Psi(7)+49 \leq\left(25+\frac{\Psi(7)}{4}\right) \lambda_{1}(P)$.
as $\lambda_{1}(P) \geq 4$.
It is also clear that $\left|S_{r}(u) \cap \alpha^{-1} \hat{P}\right|=\left|\alpha S_{r}(u) \cap \hat{P}\right|$, so (3.6) and (3.7) give us

$$
\begin{equation*}
D_{2}\left(\alpha S_{r}(u), \hat{P}\right) \leq C_{1} \lambda_{1}(P) \tag{3.8}
\end{equation*}
$$

with $C_{1}=\max \left\{(6 \sqrt{2}+7 C) \alpha^{-1}, 25+\frac{\Psi(7)}{4}\right\}$. Since (3.8) holds for every lattice polygon $P, u \in \mathbb{R}^{2}$ and $r=1,2$, we may apply Lemma 2.18 and obtain the bijection $\phi_{u, r}: \alpha S_{r}(u) \rightarrow \mathbb{Z}^{2}$ such that $\left|\phi_{u, r}(z)-z\right| \leq N\left(C_{1}\right)+\sqrt{2}, \forall z \in \alpha S_{r}(u)$. We put $\phi_{u}=\alpha^{-1} \phi_{u, 2}^{-1}\left(\phi_{u, 1}(\alpha z)\right)$ so $\phi_{u}: S_{1}(u) \rightarrow S_{1}(u)$ is a bijection such that

$$
\begin{equation*}
\left|\phi_{u}(z)-z\right| \leq 2 \alpha^{-1}\left(N\left(C_{1}\right)+\sqrt{2}\right)=C_{2}, \forall z \in S_{1}(u) \tag{3.9}
\end{equation*}
$$

This theorem will be completed by dealing with some group theory. Let G denote the group generated by the operator + and x, y, i, j with $i=(0,1), j=(1,0)$. We define an equivalence relation, denoted by \sim, where for $z_{1}, z_{2} \in \mathbb{R}^{2}$,

$$
z_{1} \sim z_{2} \Longleftrightarrow\left(z_{1}-z_{2}\right) \in G
$$

Let E be an equivalence class and pick some $u \in E$. Then we can pick $n, k, l, m \in \mathbb{Z}$ so that every $z \in E$ can be described uniquely by

$$
z=u+n x+k y+l i+m j
$$

If $z \in H_{1}$, then $(u+n x+k y) \in H_{1}$ and so $(n, k) \in S_{1}(u)$. Let the function $\phi_{u}((n, k))=\left(n^{\prime}, k^{\prime}\right)$. As $\left(n^{\prime}, k^{\prime}\right) \in S_{2}(u)$, we have $\left(u+n^{\prime} x+k^{\prime} y\right) \in H_{2}$ and so there exist $l^{\prime}, m^{\prime} \in \mathbb{Z}$ so that

$$
u+n^{\prime} x+k^{\prime} y+l^{\prime} i+m^{\prime} j \in H_{2}
$$

Now, let $\chi_{u}(z)=u+n^{\prime} x+k^{\prime} y+l^{\prime} i+m^{\prime} j$. Then χ_{u} is a well-definted map from $H_{1} \cap E$ to $H_{2} \cap E$. At this point, it is worth noting that n' and k' uniquely determine
the integers l', m'. Furthermore, because ϕ_{u} is a bijection from $S_{1}(u)$ to $S_{2}(u)$, we know χ_{u} is a bijection from $H_{1} \cap E$ onto $H_{2} \cap E$.

By (3.9), $\left|n^{\prime}-n\right| \leq C_{2}$ and $\left|k^{\prime}-k\right| \leq C_{2}$. Since z, $\chi_{u}(z) \in I^{2}$, we have $\left|\chi_{u}(z)-z\right| \leq \sqrt{2}$ and so

$$
\left.\left|\left(l^{\prime}-l\right) i+\left(m^{\prime}-m\right) j\right| \leq \sqrt{2}+\left|n^{\prime}-n\right| \cdot|x|+\left|k^{\prime}-k\right| \cdot|y|\right)
$$

Hence, $\forall z \in H_{1} \cap E, \exists a, b, c, d$ so that

$$
\chi_{u}(z)=z+a x+b y+c i+d j
$$

and

$$
\begin{equation*}
|a|,|b| \leq C_{2},|c|,|d| \leq C_{3} \tag{3.10}
\end{equation*}
$$

Now, let $\left\{d_{t}\right\}_{t=1}^{K}$ be an enumeration of the vectors $a x+b y+c i+d j$, where a, b, c, d satisfy (3.10). Then $K \leq\left(2 C_{2}+1\right)^{2}\left(2 C_{3}+1\right)^{2}$ and C_{2}, C_{3} only depend on α and Ψ. We have now proved that $\forall z \in H_{1} \cap E$, there is $1 \leq t \leq K$ so that $\chi_{u}(z)=z+d_{t}$. Since the equivalence class E was selected arbitrarily and $\forall t, d_{t} \in G$, this implies that there is a bijection $\chi: H_{1} \rightarrow H_{2}$ so that for all z there is a t such that $\chi(z)=z+d_{t}$. Let

$$
A_{t}=\left\{z \in H_{1}: \chi(z)=z+d_{t}\right\}
$$

with $t=1, \ldots, K$.
Then $\bigcup_{t=1}^{K} A_{t}$ and $\bigcup_{t=1}^{K}\left(A_{t}+d_{t}\right)$ are disjoint decompositions of H_{1} and H_{2} respectively, which is what we want.

4. Circle-Squaring

Now that we have developed a criterion for translation equidecomposability, we can put it to use in an interesting application to Tarski's circle squaring problem. The problem was posed in 1925 and was not solved until 1990. Accordingly, the complete solution, although not conceptually difficult, is quite complicated and lengthy. Reproducing it completely would have easily added 20 pages to the paper, so instead we will merely sketch a solution by assuming the following three theorems.
Theorem 4.1. If P_{1} and P_{2} are polygons of the same area, then $P_{1} \sim^{t r} P_{2}$.
Theorem 4.2. For almost every pair of vectors $x, y \in \mathbb{R}^{2}$ and for every $\varepsilon>0$ there is a constant C such that

$$
\begin{equation*}
D_{2}\left(s_{N}(u, x, y)\right) \leq C \frac{l^{6+\varepsilon}(N)}{N^{2}} \tag{4.3}
\end{equation*}
$$

for every $u \in \mathbb{R}^{2}$ and $N \in \mathbb{N}$.
Theorem 4.4. Let f be twice differentiable on $[0,1]$, let $f(0)=0, f(1)=1$, and suppose that there are positive constants a, b, c, d such that

$$
\begin{equation*}
a \leq f^{\prime}(x) \leq b, c \leq\left|f^{\prime \prime}(x)\right| \leq d, \forall x \in[0,1] \tag{4.5}
\end{equation*}
$$

Then for almost every pair of vectors $x, y \in \mathbb{R}^{2}$ and for every $\varepsilon>0$ there is a constant C such that

$$
\begin{equation*}
D_{2}\left(s_{N}(u, x, y) ; H_{f}\right) \leq C N^{-4 / 3} l^{6+\varepsilon}(N) \tag{4.6}
\end{equation*}
$$

for every $u \in \mathbb{R}^{2}$ and $N \in \mathbb{N}$.
Theorem 4.7. Let J be a simple closed Jordan curve and let $O, A, B \in J$ ad suppose that the subarcs $O A, A B, B O$ have the following properties:
(1) $O A$ and $A B$ are line segments
(2) $B O$ is a twice differentiable curve
(3) If P denotes the parallelogram having O, A and B as vertices then the arc $B O$ is contained in P and neither of the sides of P is a tangent of $B O$.
(4) There are positive constants δ and K such that the curvature of $B O$ lies between δ and K at each point of $B O$.
If Q is a square with $\lambda_{2}(Q)=\lambda_{2}(\tilde{J})$ then $\tilde{J} \sim^{t r} Q$.
Proof. Let U be a linear transformation of \mathbb{R}^{2} such that $U(O)=(0,0), U(A)=(1,0)$ and $U(B)=(1,1)$. Then the image $F=U(B O)$ of the arc BO is contained in $[0,1]^{2}$. The conditions (2) and (4) easily imply that the curve BO is convex or concave and hence F is the graph of an increasing function $f:[0,1] \rightarrow[0,1]$. Then it follows from (2) and (3) that there are positive constants a, b such that $a \leq f^{\prime}(x) \leq b$, $\forall x \in[0,1]$.

Since the curvature of F at the point $(x, f(x))$ equals $\frac{f^{\prime \prime}(x)}{\left(1+\left[f^{\prime}(x)\right]^{2}\right)^{\frac{3}{2}}}$. it follows from (4) that there are positive constants c, d such that $c \leq\left|f^{\prime \prime}(x)\right| \leq d, \forall x \in[0,1]$, so f satisfies (4.5).

Therefore, by Theorem 4.4, for almost every pair of vectors $x, y \in \mathbb{R}^{2}$ there is a constant C such that

$$
\begin{equation*}
D_{2}\left(s_{N}(u, x, y) ; H_{f}\right) \leq C N^{\frac{-4}{3}} l^{7}(N) \tag{4.8}
\end{equation*}
$$

for every $u \in \mathbb{R}$ and $N \in \mathbb{N}$. Let $Q_{1} \subset[0,1)^{2}$ be a square with $\lambda_{2}\left(Q_{1}\right)=\lambda_{2}\left(H_{f}\right)$. Then, by Theorem 4.2, for almost every pair of vectors $x, y \in \mathbb{R}^{2}$ there is a constant C' such that

$$
\begin{equation*}
D_{2}\left(s_{N}(u, x, y) ; Q_{1}\right) \leq C^{\prime} \frac{l^{7}(N)}{N^{2}} \tag{4.9}
\end{equation*}
$$

for every $u \in \mathbb{R}$ and $N \in \mathbb{N}$.
Therefore, we can fix a pair of vectors $x, y \in \mathbb{R}^{2}$ and constants C, C^{\prime} such that (4.8) and (4.9) hold for every $u \in \mathbb{R}$ and $N \in \mathbb{N}$. Let $\Psi(N)=\max \left(C, C^{\prime}\right) N^{2 / 3} l^{7}(N)$, giving us

$$
\sum_{k=0}^{\infty} \frac{\Psi\left(2^{k}\right)}{2^{k}}<\infty
$$

Also, $N^{2} \cdot D_{2}\left(s_{N}(u, x, y) ; H_{f}\right) \leq \Psi(N)$ and $N^{2} \cdot D_{2}\left(s_{N}(u, x, y) ; Q_{1}\right) \leq \Psi(N)$ hold for every $u \in \mathbb{R}$ and $N \in \mathbb{N}$. Thus, by Theorem 3.1, $H_{f} \sim^{t r} Q_{1}$. This easily implies that

$$
U^{-1}\left(H_{f}\right) \sim^{t r} U^{-1}\left(Q_{1}\right)=^{\text {def }} P_{1}
$$

Now we have $U(\tilde{J})=H_{f} \cup(\{1\} \times[0,1])$ and hence \tilde{J} differs from $U^{-1}\left(H_{f}\right)$ in the line segment AB . Since P_{1} is a parallelogram, this implies that $\tilde{J} \sim^{t r} P_{1}$. Also, $\lambda_{2}\left(P_{1}\right)=\lambda_{2}(\tilde{J})=\lambda_{2}(Q)$ and hence, by Theorem 4.1, $P_{1} \sim^{t r} Q$. Therefore, we have $\tilde{J} \sim \sim^{t r} Q$, completing the proof.

Theorem 4.10. Let J be a simple closed Jordan curve such that J can be decomposed into finitely many subarcs $J_{1}, J_{2}, \ldots, J_{n}$ with the following properties:
(1) J_{i} is a twice differentiable curve for every $i=1,2, \ldots, n$.
(2) For every $i=1,2, \ldots, n$, either J_{i} is a line segment, or there are positive constants δ, k such that the curvature of J_{i} lies between δ and K at each point of J_{i}.
(3) J has no cusps, i.e. at the common end-point of J_{i} and J_{j} with $i \neq j$ the half tangents of J_{i}, J_{j} do not coincide.
If Q is a square with $\lambda_{2}(Q)=\lambda_{2}(\tilde{J})$, then $\tilde{J} \sim^{t r} Q$.
Proof. Let $\Phi=\left\{A_{0}, \ldots, A_{m-1}, A_{m}=A_{0}\right.$ be a subdivision of J containing the endpoints of the arcs J_{i}. It is easy to see that if Φ is fine enough, then we can find points $P_{0}, \ldots, P_{m-1}, P_{m}=P_{0} \in \tilde{J}$ such that
(1) The line segments $p_{i}=P_{i} A_{i-1}$ and $q_{i}=P_{i} A_{i}$ are in \tilde{J} and hence p_{i}, q_{i}, and the subarc $A_{i-1} A_{i}$ of J constitute a simple closed Jordan curve T_{i} for every $i=1,2, \ldots, m$.
(2) $\tilde{T}_{1}, \ldots, \tilde{T}_{m}$ are non-overlapping.
(3) Either T_{i} is a triangle or it satisfies the conditions of theorem 4.7, $\forall i$.

Consequently, there are non-overlapping squares Q_{1}, \ldots, Q_{m} such that $T_{i} \sim Q_{i}, \forall i$. Since $S=\tilde{J} \backslash \bigcup_{i=1}^{m} \tilde{T}_{i}$ is a polygon, there is a square Q_{0} such that $S \sim Q_{0}$ by Theorem 4.1. We may assume that $Q_{0} \cap Q_{i}$ for every $i=1, \ldots, m$. Then $\tilde{J} \sim$ $\bigcup_{i=0}^{m} Q_{i}$ and hence applying Theorem 4.1 again, we obtain $\tilde{J} \sim Q$, which is what we want.

Remark 4.11. Clearly, if J is a circle, then it fulfills the conditions of Theorem 4.10, so the enclosed disc is translation equidecomposable with a square of equal volume. This provides an affirmative answer to Tarski's circle-squaring problem.

Acknowledgments. It is a pleasure to thank my mentors Hyomin Choi and Ian Biringer for all of their help and (considerable) patience.

References

[1] E. Hertel and C. Richter Squaring the Circle by Dissection Contributions to Algebra and Geometry, v44, p. 47-55, 2003.
[2] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, New York 1974.
[3] M. Laczkovich, Equidecomposability and discrepancy; a solution of Tarski's circle-squaring problem, Journal für die reine und angewandte Mathematik, v404, p77-117, 1990
[4] R. Rado, Factorization of Even Graphs, Quarterly Journal of Mathematics, v20, p. 95-104, 1949.
[5] L.A. Santalo, Integral geometry and geometric probability, Reading 1976
[6] A. Tarski, Probleme 38, Fundamenta Mathematicae 7, p. 381, 1925.

[^0]: ${ }^{1}$ Tarski: "Un carré et un cercle dont les aires sont égales peuvent-ils être décomposés en un nombre fini de sous-ensembles disjoints respectivement congruents?"

