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Abstract. This paper is an introductory explanation of two algorithms from
cryptography, RSA and the Diffie Hellman Key Exchange. The preliminary
sections discuss necessary background in number theory to understand the
algorithms, while later sections provide explanations of how the algorithms
work mathematically.
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1. Introduction

The science of cryptography seeks to find methods of encoding and decoding
messages so that they can be securely transmitted between parties. Typically, en-
cryption uses a key to read encrypted messages, and the more difficult it is to find
and break this key, the more secure the encryption is. Early methods of cryptogra-
phy involved an initial secure exchange of secret keys known only by the involved
parties. However, several breakthroughs in the 1970’s introduced public-key cryp-
tography, whereby an initial secure exchange is not involved and users are able to
communicate over a public channel without agreeing on a secret key beforehand.
One of these prominent breakthroughs, RSA, is a widely used algorithm for public-
key cryptography that utilizes basic principles of number theory. RSA was first
publicly described in 1978 by Ron Rivest, Adi Shamir, and Leonard Adelman at
MIT, all three of whom the alogrithm is named after.

The theory behind RSA stems from the attempt to create a cryptography scheme
that is easy to encrypt but difficult to decrypt or break by someone not intended to
receive the message. The RSA algorithm is an example of a “trapdoor function,” an
operation that is easy to do but hard to undo without additional information. RSA
utilizes the fact that multiplying very large numbers is much easier than factoring
them. There are few known ways to factor a 2n-digit number other than trying to

Date: July 17, 2009.

1



2 MIRA SCARVALONE

divide it by all 10n numbers of ≤ n digits, and even with a computer, these kinds of
factorizations cannot be done quickly, especially as n gets larger. Thus, the security
of RSA rests on the premise that factorization of large numbers is difficult.

The Diffie Hellman Key Exchange involves simple calculations between two par-
ties to determine secret private keys based on publicly known parameters. The
algorithm utilizes the fact that given two powers of a given number (mod n), it is
difficult to determine those exponents themselves without further information.

Section 2 of this paper will explore the components of number theory that led
to the creation of RSA, Section 3 describes the algorithm itself, Section 4 discusses
digital signatures, and Section 5 explains the Diffie Hellman Key Exchange.

2. Preliminary Number Theory

The theory behind RSA utilizes many important principles of number theory.
Primarily, RSA involves several characteristics of the ring Z/nZ, which we will prove
in this section to provide a background of how RSA works. We begin by discussing
the Euclidean Algorithm, which along with characteristics of prime numbers, promi-
nently influences the theory behind RSA.

As a consequence of the Euclidean Algorithm, for any two integers a and b with
gcd(a, b) = d, there exist integers m and n such that d = ma + nb

Definition 2.1. (Z/nZ)× = {r ∈ Z/nZ | ∃s such that rs = 1}

Definition 2.2. The Euler Function, ϕ(n), assigns to n the number of integers
between 1 and n that are relatively prime to n.

Proposition 2.3. The integers that are relatively prime to n are those that have
inverses in the ring Z/nZ.

Proof. Suppose r and n are relatively prime. Then by the Euclidean Algorithm,
gcd(r, n) = 1 = mr +kn for some integers k and m. Thus, mr = 1(mod n), so m is
an inverse of r(mod n). Now conversely, suppose r has an inverse m(mod n), then
mr = 1(mod n), so mr + kn = 1 for some k. Suppose an integer p divides r and
n, then it also must divide mr + kn = 1, so therefore p = 1, and r and n must be
relatively prime. !

Therefore, it follows that ϕ(n) = |(Z/nZ)×|

Theorem 2.4 (Fermat’s Little Theorem). If p is a prime integer, and p does not
divide a, then ap−1 ≡ 1(mod p).

Proof. |(Z/nZ)×| = p−1 since all integers less than p are relatively prime to p. We
know that a ∈ G because a and n are relatively prime, so a must have an inverse in
Z/nZ. Let n be the smallest integer for which an ≡ 1(mod p). Therefore n is the
order of a, so n = |H| where H is the subgroup generated by a. Therefore n divides
p−1 by Lagrange’s Theorem, since the order of a subgroup must divide the order of
the group, so p−1 = mn for some n. Therefore ap−1 ≡ amn ≡ (an)m ≡ 1m ≡ 1(mod
n). !
Theorem 2.5 (Euler’s Theorem). If a and n are relatively prime integers, then
aϕ(n) ≡ 1(mod n).
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Proof. Suppose a and n are relatively prime integers. Let G = (Z/nZ)×. As shown
above, ϕ(n) = |(Z/nZ)×| = |G|. We know that a ∈ G because a and n are rel-
atively prime, so a must have an inverse in Z/nZ. Let H be the cyclic subgroup
of G generated by a. The order of H equals |H| = h is also the order of a, and
since h is finite, then h is the smallest positive integer such that ah ≡ 1(mod n).
By Lagrange’s Theorem, since the order of a subgroup must divide the order of the
group, h divides |G|, so h divides ϕ(n), and ϕ(n) = hm for some integer m.

Therefore aϕ(n) = ahm = (ah)m ≡ 1(mod n).

!
Theorem 2.6 (Chinese Remainder Theorem). If p and q are relatively prime, then
for any integers a1 and a2 less than pq, there exists a unique integer x such that
x(mod pq) ≡ a1(mod p) ≡ a2(mod q).

Proof. The value of a1(mod p) reflects the remainder when a1 is divided by p. The
remainder as p divides any integer repeats itself every p steps. As we move through
successive integer values of a1, the value of a1(mod p) repeats every p values,
and similarly the value of a2(mod q) repeats every q values. Therefore, no pair of
remainders is repeated until after lcm(p, q) steps. Since p and q are relatively prime,
lcm(p, q) = pq, and hence the first pq pairs of remainders are unique. Furthermore,
all possible pairs of remainders have been included after pq steps because there are
only pq possible pairs and they are unique. !

The Chinese Remainder Theorem also implies that x ≡ y(mod p) ≡ y(mod q)
if and only if x ≡ y(mod pq). This can be shown easily by demonstrating that if
x ≡ y(mod p), then p divides x − y, and if x ≡ y(mod q), then q divides x − y as
well. Since p and q are relatively prime, then pq divides x− y, so x ≡ y(mod pq).

3. RSA Algorithm

Suppose Alice and Bob want to send private messages to each other that they
can easily understand but others cannot. Alice creates a key based on two large
prime numbers, p1 and p2, as follows. First, she computes n = p1p2, which can be
safely revealed to the public without disclosing p1 and p2 themselves. Alice then
computes ϕ(n) = ϕ(p1p2)

Proposition 3.1. If p1 and p2 are prime, ϕ(p1p2) = (p1 − 1)(p2 − 1)

Proof. ϕ(p1p2) represents the number of integers less than p1p2 that are relatively
prime to p1p2. The only integers less than p1p2 that are not relatively prime to p1p2

are the (p2 − 1) multiples of p1 and the (p1 − 1) multiples of p2. These p1 + p2 − 2
numbers are distinct because p1p2 is the smallest integer that is a multiple of both
p1 and p2 since they are each prime. Since ϕ(p1p2) is equivalent to the number of
integers that are not relatively prime to p1p2 subtracted from the total number of
integers less than p1p2, ϕ(p1p2) = p1p2 − 1− (p1 + p2 − 2) = p1p2 − p1 − p2 + 1 =
(p1 − 1)(p2 − 1) !

Next, Alice chooses an encryption exponent e such that e < ϕ(n) and e and
ϕ(n) are relatively prime. She then determines the description exponent d which is
the inverse of e(mod ϕ(n)). The inverse can be easily computed by the Euclidean
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Algorithm using e and ϕ(n). It is important to note that the values e and n are
made public so that anyone can send encrypted messages to Alice. The values of
p1, p2, ϕ(n), and d are kept private.

Suppose Bob wants to send a message to Alice. He must first convert his mes-
sage to an integer m < n using a simple translation of letters into numerals. Bob
then sends the message by raising m to the encryption exponent e and thus sending
me(mod n) to Alice.

Alice then receives the encrypted message and raises it to the power of the de-
cryption exponent d. She obtains (me)d ≡ med(mod n).

Since e and d are inverses, ed = 1(mod ϕ(n)) = 1 + kϕ(n) so

med = (m1+kϕ(n)) = m(mkϕ(n)) = m(mϕ(n))k.

Proposition 3.2. m(mϕ(n))k ≡ m(mod n)

Proof. Suppose m and n are relatively prime. Then mϕ(n) ≡ 1(mod n) by Euler’s
Theorem, and m(mϕ(n))k ≡ m(1)k ≡ m(mod n).

Now suppose m and n are not relatively prime. If m is a multiple of n, then
m(mod n) = 0 = m(mϕ(n))k. If m is not a multiple of n, then either p1 or
p2 must divide m, but not both. We know that ϕ(p1p2) = (p1 − 1)(p2 − 1) by
Proposition 3.1, so m(mϕ(n))k can be rewritten as m(mϕ(n))k = m((mp1−1)p2−1)k.
Suppose p2 divides m, then p1 must not divide m. By Fermat’s Little Theorem,
mp1−1 ≡ 1(mod p1), so m(mϕ(n))k ≡ m((1)p2−1)k ≡ m(mod p1). Since p2 divides
m, then m(mod p2) ≡ 0 ≡ m(mϕ(n))k, and m(mϕ(n))k ≡ m(mod p1) ≡ m(mod
p2). By the Chinese Remainder Theorem, m(mϕ(n))k ≡ m(mod p1p2) ≡ m(mod
n). The same argument holds if p1 divides m and p2 does not. !

Therefore, the message that Alice has decrypted, med(mod n), is equivalent to
m(mϕ(n))k ≡ m(mod n), so the original message that Bob sent is obtained through
this process.

4. Digital Signatures

If a user wants to demonstrate authenticity, he or she can use RSA to sign a
message proving that the user is who he or she claims. This can be done by selecting
a well known message m and sending md(mod n), which a public user can decipher
by raising it to the power e. The public user will obtain (md)e(mod n) = mde(mod
n) = m(mod n) as before, and thus be able to verify the status of the sender. Since
d is not publicly known, and only md(mod n) would produce the original m when
raised to the e-th power, the user is authentic.

5. Diffie Hellman Key Exchange

The Diffie Hellman key exchange is another breakthrough in public-key cryp-
tography of the 1970’s. Invented by Whitfield Diffie and Martin Hellman in their
groundbreaking 1976 paper “New Directions in Cryptography,” this key exchange
utilizes two integer parameters, p and g, which are available to the public. Param-
eter p is prime and g is any integer less than p (although this method will work for
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any finite cyclic group with generator g).

Suppose Alice and Bob want to exchange messages using these parameters. First,
Alice chooses a random private integer value a, and Bob chooses a random private
integer b. Neither a nor b is revealed to the public. Alice sends ga(mod p) to Bob,
and Bob sends gb(mod p) to Alice, and these values are revealed publicly. Pri-
vately, Alice then computes (gb)a(mod p), and Bob computes (ga)b(mod p). Since
(gb)a ≡ gba ≡ gab ≡ (ga)b(mod p), Alice and Bob have a shared secret key, gab,
which they can use to send messages.

The security of the Diffie Hellman key exchange rests on the assumption of the
difficulty of computing gab(mod p) only knowing public values g, ga(mod p), and
gb(mod p), but not a and b themselves. However, both parties are able to derive a
shared secret value from one party’s public key and the other’s private key.
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