
THE JORDAN-BROUWER SEPARATION THEOREM

WOLFGANG SCHMALTZ

Abstract. The Classical Jordan Curve Theorem says that every simple closed

curve in R2 divides the plane into two pieces, an “inside” and an “outside” of

the curve. This paper will prove an considerable extension of this Theorem;
that, in fact, every compact, connected hypersurface in Rn divides Rn into

two connected open sets; an “inside”, and an “outside”, where the closure of

the inside is also a compact manifold.
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1. Preliminaries

Definition 1.1. Let U ⊂ Rn and V ⊂ Rm be open sets. A mapping f : U → V is
called smooth if all of its partial derivatives exist and are continuous.

Definition 1.2. A map f : X → Y is called a diffeomorphism if f carries X
homeomorphically onto Y and if both f and f−1 are smooth.

Definition 1.3. A subset X ⊂ Rm is called a smooth manifold of dimension
n if each x ∈ X has a neighborhood U ∩X that is diffeomorphic to an open subset
V of Rn.

Definition 1.4. A subset Y ⊂ Rm is called a smooth manifold of dimension n with
boundary if each y ∈ Y has a neighborhood U ∩ Y that is diffeomorphic to an
open subset V of the half-space Hm = {(x1, . . . , xn) ∈ Rn|xn ≥ 0}. The boundary
∂Y is the set of points in Y which correspond to the points of ∂Hm under such a
diffeomorphism.
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Definition 1.5. Suppose that X is a manifold, U∩X is open, and V is an open sub-
set of Rn. Any particular diffeomorphism g : V → U ∩X is called a parametriza-
tion of U ∩X, and the inverse diffeomorphsim h : U ∩X → V is called a system
of coordinates on U ∩X.

Definition 1.6. Suppose V is an open subset of Rn. Let g : V → X ⊂ Rm be a
parametrization for a neighborhood g(V ) of a point x ∈ X, with g(u) = x. Think
of g as a mapping from V to Rm so that the derivative dgu is defined:

dgu : Rn → Rm

We define the tangent plane at x, abbreivated TxX, to be the image dgu(Rn) of
dgu.

Definition 1.7. Consider two manifolds, X ⊂ Rk and Y ⊂ Rl, and let f be a
smooth map f : X → Y , with f(x) = y. Since f is smooth, there exists an open
set U containing x and a smooth map F : U → Rl that coincides with f on U ∩X.
Define dfx(v) to equal dFx(v) for all v ∈ TxX so that dfx is a map from TxX to
TyY .

Proposition 1.8. If X is a manifold of dimension n, then TxX is an n-dimensional
vector space.

2. Immersions

Definition 2.1. Suppose that X and Y are manifolds with dimX < dimY , and
suppose that f : X → Y where f(x) = y. We call f an immersion at x if
dfx : TxX → TyY is injective. If f is an immersion for every point x ∈ X, then f
is simply called an immersion.

Definition 2.2. The inclusion map of Rk into Rl where l ≥ k and where (a1, . . . , ak)
maps to (a1, . . . , ak, 0, . . . , 0) is called the canonical immersion.

Theorem 2.3. (Local Immersion Theorem) If f : X → Y is an immersion at a
point x and f(x) = y, then there exist local coordinates around x and y such that

f(x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0).

In other words, if f is an immersion at x, then f is a locally equivalent to the
canonical immersion at x.

Proof. To begin with, choose any local parametrization for X and Y centered at x
and y. This gives the following commutative diagram, with φ(x) = 0 and ψ(y) = 0:

X
f //

φ

��

Y

ψ

��
U g

// V

Now, dg0 : Rk → Rl is injective, and via a change of basis in Rl we may assume it
has an l × k matrix: (

Ik
0

)
where Ik is the k × k identity matrix. Define a map G : U × Rl−k → Rl by

G(x, z) = g(x) + (0, z).
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Thus G maps open sets of Rl to open sets of Rl and has a matrix for dG0 of Il.
By the Inverse Function Theorem, G is a local diffeomorphism of Rl centered at 0.
Note that g = G◦ (canonical immersion). Since G and ψ are local diffeomorphisms
at 0, so too ψ ◦G must be a local diffeomorphism at 0. We can use this ψ ◦G as a
new parametrization of Y at y; thus, (shrinking U and V as necessary), this leads
to a new commutative diagram:

X
f //

φ

��

Y

ψ◦G
��

U
canonical immersion

// V

�

3. Regular Values

Definition 3.1. For a smooth map of manifolds f : X → Y , a point y ∈ Y is
called a regular value for f if dfx : TxX → TyY is surjective at every point x such
that f(x) = y. Any point y ∈ Y that is not a regular value of f is called a critical
value. (See Figure 1.)

Theorem 3.2. (The Preimage Theorem) If f : X → Y is a smooth map between
manifolds with dimX = m and dimY = n and where m ≥ n, and if y ∈ Y is a
regular value, then the set f−1(y) ⊆ X is a smooth manifold of dimension m − n.
(See Figure 1.)

Proof. Let x ∈ f−1(y). Since y is a regular value, the derivative dfx is surjective,
and therefore must map TxX onto TyY . The null space K ⊂ TxX of dfx will there-
fore be an (m− n)-dimensional vector space.

If X ⊂ Rk, choose a linear map L : Rk → Rm−n that is nonsingular on this
subspace K ⊂ TxX ⊂ Rk. Now define

F : X → Y × Rm−n

by F (ζ) = (f(ζ), L(ζ)). The derivative dFx is therefore given by the formula

dFx(v) = (dfx(v), L(v)).

It is clear that dFx is nonsingular. Hence F maps some neighborhood U of x
diffeomorphically onto a neighborhood V of (y, L(x)). Note that the image of the
f−1(y) ⊂ X under F is the hyperplane y × Rm−n. In fact F maps f−1(y) ∩ U
diffeomorphically onto (y × Rm−n) ∩ V . This proves that f−1(y) is a smooth
manifold of dimension m− n. �
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Figure 1

The height function f from the sphere S2 to [−1, 1]. Here, q is a regular value, while p is a critical

value. Note also f−1(q) is a submanifold of dimension 2− 1 = 1, the circle S1.

Definition 3.3. Suppose that g1, . . . , gl are smooth, real-valued functions on a
manifold X of dimension k ≥ l, we say they are independent at x if the l func-
tionals d(g1)x, . . . , d(gl)x are linearly independent on TxX.

Remark 3.4. Note that if we define a function g = (g1, . . . , gl) : X → Rl, and define
the set Z = g−1(0) ⊂ X, then for any point x ∈ Z we have dgx : TxX → Rl as
surjective if and only if the l functionals d(g1)x, . . . , d(gl)x are linearly independent
on TxX. Therefore, if the l functions, g1, . . . , gl are independent at every point
x ∈ Z then 0 is a regular value of g and thus Z is a submanifold of X.

Proposition 3.5. If the smooth, real-valued functions g1, . . . , gl on X are inde-
pendent at each point where they all vanish, then the set Z of common zeros is a
submanifold of X with dimenstion equal to dimX − l.

Proposition 3.6. If y is a regular value of a smooth map f : X → Y , then the
preimage submanifold f−1(y) can be cut out by independent functions.

Proposition 3.7. Every submanifold of X is locally cut out by independent func-
tions.

Lemma 3.8. Let Z be the preimage of a regular value y ∈ Y under the smooth
map f : X → Y . Then the kernel of the derivative dfx : TxX → TyY at any point
x ∈ Z is precisely the tangent space to Z, TxZ.

Proof. Because f is constant on Z, dfx = 0 on TxZ. But because y is a regular
value, dfx : TxX → TyY must be surjective, so the dimension of the kernel of dfx
is given by:

dimTxX − dimTyY = dimX − dimY = dimZ.

Thus, TxZ is a subspace of the kernel which also has the same dimension as the
kernel. Therefore, TxZ must be the kernel. �

Theorem 3.9. (Stack of Records Theorem) Suppose f : X → Y is a smooth map,
with X compact, dimX = dimY , and let y ∈ Y be a regular value. Then f−1(y) is
a finite set {x1, . . . , xk}, and there are neighborhoods Ui of xi and V of y such that
Ui ∩ Uj = ∅ for i 6= j and f−1(V ) = U1 ∪ . . . ∪ Uk. Furthermore, f maps each Ui
diffeomorphically onto V . (See Figure 2.)
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Proof. Since y is a regular value, f−1(y) must be a manifold of dimension dimX −
dimY = 0. Since X is compact, and thus bounded, f−1(y) must be finite, else
it would contain an accumulation point, and contradict its status as a manifold
of dimension zero. Now, f is a local diffeomorphism at each xi, so there exists
neighborhoods U ′i of x and Vi of y so that f : U ′i → Vi is a diffeomorphism. Now,
we may simply shrink the U ′i ’s so that U ′i ∩U ′j = ∅ for i 6= j. Let V ′ = V1 ∩ . . .∩Vk
and U ′′i = U ′i ∩ f−1(V ′). Clearly, f : U ′′i → V ′ is a diffeomorphism. Lastly,
Z = f(X\ ∪ U ′′i ) is closed in Y and does not contain y. Thus, V = V ′ − Z and
Ui = U ′′i ∩ f−1(V ) fullfil the requirements. �

Figure 2

Proposition 3.10. (Sard’s Theorem) If f : X → Y is any smooth map of mani-
folds, then the image of the set of critical points in X is a set of measure zero..

Proposition 3.11. Any compact, smooth, connected 1-dimensional manifold is
diffeomorphic either to the circle S1 or the closed unit interval [0, 1].

4. Tranversality

Definition 4.1. Suppose that f : X → Y is a map, and that Z is a submanifold
of Y . We say that f is transversal to Z, abbreviated f t Z, if

Image(dfx) + TyZ = TyY.

Theorem 4.2. If the smooth map f : X → Y is transversal to a submanifold Z ⊂
Y , then the preimage f−1(Z) is a submanifold of X. Furthermore, the codimension
of f−1(Z) in X equals the codimension of Z in Y . (See Figure 3.)

Proof. Whether f−1(Z) is a submanifold of X is a local question; that is, it is a
manifold if and only if every point x ∈ f−1(Z) has a neighborhood U such that
U ∩ f−1(Z) is a manifold. Now then, suppose that f(x) = y ⊂ Z. By Proposition
3.7, in a neighborhood of y, we may describe Z as the zero set of a collection of
independent functions, g1, . . . , gl where l is the codimension of Z in Y . Thus, we can
also use these functions in a neighborhood of x to describe f−1(Z) as the zero set of
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the functions g1 ◦ f, . . . , gl ◦ f . Define g = (g1, . . . , gl) defined in a neighborhood of
y. We now will consider the map g ◦ f : W → Rl. By the chain rule, the derivative
of g ◦ f is given by:

d(g ◦ f)x = dgy ◦ dfx
It is here that we invoke the transversality of f with respect to Z ⊂ Y . By
transversality, Image(dfx) + TyZ = TyY . Thus, since dgy : TyY → Rl is surjective
and, by Lemma 3.8 has a kernel equal to TyZ, and since Image(dfx) and TyZ span
TyY , this implies that d(g ◦ f)x is also surjective. Thus, for any x ∈ f−1(Z) =
(g ◦ f)−1(0), we have shown that d(g ◦ f)x is surjective; by definition, 0 is a regular
value for g ◦ f , and thus f−1(Z) = (g ◦ f)−1(0) is a manifold.

Furthermore, we have locally described f−1(Z) as the zero set of a collection of
independent functions g1 ◦ f, . . . , gl ◦ f ; thus the codimension of f−1(Z) is l, equal
to what we specified as the codimension of Z in Y . �

Figure 3

Definition 4.3. By applying the definition of transversality to the case of inclusion
maps, we may extend the language of our new notion. Consider the inclusion map
i of one submanifold X ⊂ Y with another, Z ⊂ Y . When we write x ∈ i−1(Z),
this simply means that x ∈ X ∩Z. Additionally, dix : TxX → TxY is the inclusion
map of TxX into TxY . Thus i t Z if and only if, for every x ∈ X ∩ Z,

TxX + TxZ = TxY.

When such a case is true, we add to our definition of transversality and say that X
is transversal to Z, abbrevieated X t Z. Notice that this relation is symmetric, so
that X t Z is the same as Z t X.

Theorem 4.4. The intersection of two transversal submanifolds of Y is again a
submanifold. Furthermore,

codim(X ∩ Z) = codimX + codimZ.

Proof. Pick a point x ∈ X ∩ Z. Then around x, the submanifold X is cut out of
Y by l = codimX independent functions. Likewise, around x, the submanifold Z
is cut out of Y by k = codimZ independent functions. Taken together, these l + k
functions are independent due to the transversality of X and Z. Thus, l + k =
codimX + codimZ is precisely equal to codim(X ∩ Z). �
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Figure 4

Curves in R2.

Curves and Surfaces in R3.

Surfaces in R3.
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Lemma 4.5. Let f : X → Y be a map transversal to a submanifold Z in Y ,
and let W = f−1(Z) be the resulting submanifold of X. Furthermore, let x ∈ W ,
and let f(x) = y ∈ Z. Then TxW is the preimage of TyZ under the linear map
dfx : TxX → TyY . In other words, the tangent space to the preimage of Z is the
preimage of the tangent space of Z.

Proof. The begining of this proof utilizes the tools used to prove Theorem 4.2.
Again, by Proposition 3.7, in a neighborhood of y, we may describe Z as the zero
set of a collection of independent functions, g1, . . . , gl where l is the codimension of
Z in Y . Define g = (g1, . . . , gl) defined in a neighborhood of y. Now, by Lemma
3.8, because 0 is a regular value for g, the kernel of dgy is equal to Tyg−1(0) = TyZ.
Thus, again, we can also use these functions in a neighborhood of x to describe
f−1(Z) as the zero set of the functions g1 ◦ f, . . . , gl ◦ f . We now will consider
the map g ◦ f : W → Rl. Now, reapply Lemma 3.8; clearly transversality implies
that 0 is a regular value for g ◦ f , and thus the kernel of d(g ◦ f)x is equal to
Tx(g ◦ f)−1(0) = TxW . By the chain rule, the derivative of g ◦ f is given by:

d(g ◦ f)x = dgy ◦ dfx
Thus the kernel of d(g ◦ f)x is also the kernel for dgy ◦ dfx. Now, recall that
the kernel for dgy is TyZ, and therefore, dfx(ker d(g ◦ f)x) = dfx(TxW ) ⊆ TyZ.
Furthermore, we must have dfx(TxX\TxW ) ∩ TyZ = ∅, else we would contradict
that TxW is the kernel of d(g ◦ f)x. Thus, df−1

x (TyZ) = TxW . (Note that this is
not the same as saying that dfx(TxW ) = TyZ; however, it does at least tell us that
dfx(TxW ) ⊆ TyW .) �

Remark 4.6. If we apply this result to the case of transversal submanifolds X and
Z of Y , we immediately obtain that if x ∈ X ∩ Z, then

Tx(X ∩ Z) = TxX ∩ TxZ
In other words, the tangent space to the intersection of two transversal submanifolds
is the intersection of the tangent spaces of two transversal submanifolds.

Lemma 4.7. Let X
f→ Y

g→ Z be a sequence of smooth maps of manifolds, and
assume that g is transversal to the submanifold W of Z. Then f t g−1(W ) if and
only if g ◦ f tW .

Proof. To begin with, let x ∈ f−1(g−1(W )), f(x) = y ∈ g−1(W ), and (g ◦ f)(x) =
g(y) = z ∈W . By assumption, because g tW , we have:

TzZ = dgy(TyY ) + TzW.

First, suppose that f t g−1(W ), so that:

TyY = dfx(TxX) + Tyg
−1(W ).

Thus, we may substitute for TyY :

TzZ = dgy(dfx(TxX) + Tyg
−1(W )) + TzW

TzZ = dgy(dfx(TxX)) + dgy(Tyg−1(W )) + TzW.

By Lemma 4.6, since g t W , we know that dgy(Tyg−1(W )) ⊆ TzW . Thus,
dgy(Tyg−1(W )) + TzW = TzW , and so we have:

TzZ = dgy(dfx(TxX)) + TzW

TzZ = d(g ◦ f)x(TxX) + TzW.
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Which proves that g ◦ f tW .

Now, instead suppose that g ◦ f tW , so that:

TzZ = d(g ◦ f)x(TxX) + TzW

TzZ = dgy(dfx(TxX)) + TzW.

We can then substitute in for TyY and apply (dgy)−1 to both sides:

dgy(TyY ) + TzW = dgy(dfx(TxX)) + TzW

(dgy)−1(dgy(TyY ) + TzW ) = (dgy)−1(dgy(dfx(TxX)) + TzW )

(dgy)−1(dgy(TyY )) + (dgy)−1(TzW ) = (dgy)−1(dgy(dfx(TxX))) + (dgy)−1(TzW )

TyY + (dgy)−1(TzW ) = dfx(TxX) + (dgy)−1(TzW ).

By Lemma 4.6, we know that (dgy)−1(TzW ) = Tyg
−1(W ). And, since (dgy)−1(TzW ) ⊆

TyY , we have TyY + (dgy)−1(TzW ) = TyY . Thus, we have:

TyY = dfx(TxX) + Tyg
−1(W ).

Which proves that f t g−1(W ). �

5. The Transversality Theorem and The Extension Theorem

Definition 5.1. Let I be the unit interval, [0, 1] ⊂ R, and let f0 : X → Y and
f1 : X → Y . If there exists a smooth map F : X×I → Y such that F (x, 0) = f0(x)
and F (x, 1) = f1(x) then we say that F is a homotopy and that f0 and f1 are
homotopic, abbreviated f0 f1. We also define ft : X → Y by ft(x) = F (x, t).

Proposition 5.2. Homotopy is an equivalence relation.

Definition 5.3. Suppose a map f0 : X → Y possesses a specified property, and
ft : X → Y is a homotopy of f0. If there exists an ε > 0 such that if t < ε then ft
also possesses the specified property, we say that the specified property is stable.

Proposition 5.4. (The Stability Theorem) The following properties of smooth
maps from a compact manifold X into a manifold Y are stable:

(1) local diffeomorphisms
(2) immersions
(3) submersions
(4) maps transversal to a specific submanifold Z ⊂ Y
(5) embeddings
(6) diffeomorphisms

Theorem 5.5. (Transversality Theorem) Let F : X × S → Y be a smooth map
between manifolds, let Z be a submanifold of Y , and suppose that out of all manifolds
and submanifolds mentioned, only X has a boundary. If both F t Z and ∂F t Z,
then for almost every s ∈ S, both fs t Z and ∂fs t Z.

Proof. The preimage F−1(Z) = W is a submanifold of X × S with boundary
∂W = W ∩ ∂(X × S). Let π : X × S → S be the regular projection map.

(1) Whenever s ∈ S is a regular value for π|W , then fs t Z.
Let fs(x) = z ∈ Z, and thus F (x, s) is also equal to z. Now, since F t Z:

TzY = dF(x,s)(T(x,s)(X × S) + TzZ
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Thus, for any vector v ∈ TzY there is a vector u ∈ T(x,s)(X × S) such that:

dF(x,s)(u)− v ∈ TzZ

Now, T(x,s)(X × S) = TxX × TsS, so that u = (a, b) for vectors a ∈ TxX and
b ∈ TsS. The derivative of the projection map is:

dπ(x,s) : TxX × TsS → TsS.

Cleary, as dπ(x,s) is also a projection map it must map T(x,s)W onto TsS. There-
fore there must exist a vector (α, b) ∈ T(x,s)W . Since F : W → Z, we have
dF(s,x)(α, b) ∈ TzZ. Let ν = a− α ∈ TxX. Thus:

dfs(ν)− v = dF(x,s)[(a, b)− (α, b)]− v = [dF(x,s)(u)− v]− dFs(α, b).

Both dF(x,s)(u)− v and dFs(α, b) ∈ TzZ. This implies that:

TzY = dfs(TxX) + TzZ.

And thus fs t Z.

(2) Whenever s ∈ S is a regular value for ∂π|∂W , then ∂fs t Z.
The logic for this is similar to that for the previous part.

(3) By Sard’s Theorem, almost every s ∈ S is a regular value for both maps,
which proves the theorem.

�

Proposition 5.6. Let U be an open neighborhood of the closed set C ⊂ X. There
exists a smooth function γ : X → [0, 1] which equals 1 outside of U and 0 on a
neighborhood of C.

Theorem 5.7. (Extension Theorem) Let C be a closed subset of X and let Z be a
closed submanifold of Y , where both Z and Y are without boundary. Suppose that
f : X → Y be a smooth map where f |C t Z and ∂f |C∩∂X t Z. Then there exists a
smooth map g : X → Y homotopic to f , where g = f on a neighborhood of C, and
with g t Z and ∂g t Z.

Proof. To begin with, let γ be the function from the proposition, and define τ = γ2.
Then, dτx = 2γ(x)dγx, and dτx = 0 whenever τ = 0. Furthermore, we define
G : X × S → Y by G(x, s) = F (x, τ(x)s).

(1) f t Z on a neighborhood of C.
First, if x ∈ C but x /∈ f−1(Z), clearly this is true, as Z is closed so that

X − f−1(Z) is a neighborhood of x for which f t Z. If x ∈ f−1(Z) as well, then
take a neighborhood of f(x), call it W , and consider the submersion φ : W → Rk
where φ ◦ f is regular at a point w ∈ f−1(Z ∩W ) when f t Z at w. Thus, φ ◦ f
is regular on a neighborhood of x and so f t Z on a neighborhood of every point
x ∈ C and thus also for a neighborhood of C.

(2) G t Z.
Let (x, s ∈ G−1(Z) and suppose τ(x) 6= 0. Consider the composition of the

diffeomorphism α : S → S defined by α(r) = τ(x)r, with the submersion β : S →
Y defined by β(r) = F (x, r) - that is, consider γ = β ◦ α : S → Y for which
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γ(r) = F (x, τ(x)r) = G(x, r). As a result of this construction, it is clear that G is
regular at (x, s) so that G t Z at (x, s).

On the other hand, let us consider τ(x) = 0. Let H : X × S → X × S be
defined as H(x, s) = (x, τ(x)s). We will now caculate dG(x,s) = d(F ◦ H)(x,s) at
any element (u, v) ∈ TxX × TsS = TxX × Rm:

dG(x,s)(u, v) = dF(x,τ(x)s) ◦ dH(x,s)(u, v) = dF(x,τ(x)s)(u, τ(x)v + dτx(u)s).

And since τ(x) = dτx(u) = 0, we have:

dG(x,s)(u, v) = dF(x,0)(u, 0)

Thus, F reduces to f , as they are equal on X × {0}, so that:

dG(x,s)(u, v) = dfx(u)

Since τ(x) = 0, we must have x ∈ U and so f t Z at x, and since dG(x,s)(u, v) =
dfx(u), we have G t Z at (x, s).

(3) ∂G t Z.
The logic for this is similar to that for the previous part.

(4) There exists a smooth map g : X → Y homotopic to f , where g = f on a
neighborhood of C, and with g t Z and ∂g t Z.

By the Transversality Theorem, there exists an s ∈ S such that g(x) = G(x, s)
and g t Z and ∂g t Z. Clearly, g is homotopic to f . And lastly, if x is a point in
a neighborhood of C for which τ = 0, we have g(x) = G(x, s) = F (x, 0) = f(x).

�

6. The Degree Modulo 2 of a Mapping

Definition 6.1. Let X and Y be two submanifolds inside Z. Then, if dimX +
dimY = dimZ we say that they have complementary dimension. Note that
if X t Y , this implies that X ∩ Y is a manifold of zero dimension, and further, if
X and Y are closed and if at least one of them is compact, then X ∩ Y is a finite
collection of points. We define #(X ∩ Y) to be the number of points in X ∩ Y .

Definition 6.2. Let X be a compact manifold, and let f : X → Y be transversal
to a closed submanifold Z ⊂ Y . Suppose also that dimX + dimZ = dimY .
This implies that f−1(Z) is a closed zero-dimensional submanifold of X, and thus,
is a finite collection of points. We define the Intersection Number, abbreviated
I2(f, Z), to be the number of points in f−1(Z) modulo 2. In the case of an arbitrary
smooth map g : X → Y , not necessarily transversal to Z, simply define I2(g, Z) =
I2(f, Z), where f is homotopic to g and transversal to Z.

Theorem 6.3. If f0, f1 : X → Y are homotopic and both are transversal to a
submanifold Z of Y , then I2(f0, Z) = I2(f1, Z).

Proof. By the Extension Theorem, if we take let F : X × I → Y be a homotopy of
f0 and f1 we may assume that F t Z. Since ∂(X × I) = X × {0} ∪X × {1}, the
restriction ∂F : ∂(X × I)→ Y reduces to f0 on X × {0} and f1 on X × {1}; thus,
∂F t Z. Furthermore, since dimX+dimZ = dimY , the codimesion of Z is dimX,
so that the codimension of F−1(Z) is also dimX. Now, dim(X × I) = dimX + 1,
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so the dimesion of F−1(Z) is simply 1. If we examine the boundary of F−1(Z), we
find:

∂F−1(Z) = F−1(Z) ∩ ∂(X × I) = f−1
0 (Z)× {0} ∪ f−1

1 (Z)× {1}.
Since F−1(Z) is a one dimensional manifold, it must have an even number of bound-
ary points; therefore, f−1

0 (Z) × {0} ∪ f−1
1 (Z) × {1} must be even, so #f−1

0 (Z) =
#f−1

1 (Z) mod 2. �

Corollary 6.4. If g0, g1 : X → Y are arbitrary homotopic maps, then we have
I2(g0, Z) = I2(g1, Z).

Proof. By Definiton 6.2, I2(g0, Z) = I2(f0, Z) where f0 is homotopic to g0 and
transversal to Z, and likewise I2(g1, Z) = I2(f1, Z) where f1 is homotopic to g1
and transversal to Z. Then, because homotopy is an equivalence relation, f0 is
homotopic to f1, and by Theorem 6.3, I2(f0, Z) = I2(f1, Z). This proves the
corollary. �

Theorem 6.5. Let f : X → Y is a smooth map of a compact manifold X into a
connected manifold Y . If dimX = dimY , then I2(f, {y}) is the same for all regular
values y ∈ Y .

Proof. By the Stack of Records Theorem, there is a neighborhood V of y such that
f−1 is a disjoint union U1∪ . . .∪Uk, with each Ui mapped diffeomorphically onto V .
Then, for all points z ∈ V , we have I2(f, {z}) = k mod 2. Therefore, the function
defined as y 7→ I2(f, {y}) is locally constant, and since Y is connected, must be
globally constant. �

Definition 6.6. Suppose that f : X → Y is a smooth map of a compact manifold
X into a connected manifold Y , where dimX = dimY . By the previous Theorem,
I2(f, {y}) is the same for all regular values y ∈ Y , and thus, by Sard’s Theorem,
for nearly all points in Y . We define this number to be the mod 2 degree of f,
abbreviated deg2(f).

Remark 6.7. Note that since the intersection number is the same for homotopic
maps, and since deg2 is defined as an intersection number, homotopic maps must
have the same mod 2 degree.

Definition 6.8. Let X be a compact, connected manifold of dimension n− 1, and
let f : X → Rn (in this way, f may very well be the inclusion map of a hypersurface
into Rn). Then, for any point z ∈ Rn\f(X), we define u : X → Sn−1:

u(x) =
f(x)− z
|f(x)− z|

.

Thus, from Definition 7.6, we know that u hits nearly every point in Sn−1 the same
number of times modulo 2. Therefore, we define the mod 2 winding number of
f around z to be W2(f, z) = deg2(u). (See Figure 5.)
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Figure 5

Definition 6.9. We can apply this definition to the inclusion map of a manifold
into some ambient space Rn. In this case, for any point z ∈ Rn\X, the function
u : X → Sn−1 becomes:

u(x) =
x− z
|x− z|

.

We therefore define the mod 2 winding number of X around z to be W2(X, z) =
deg2(u).

7. The Jordan-Brouwer Separation Theorem

Theorem 7.1. (The Jordan-Brouwer Separation Theorem) Any compact, con-
nected hypersurface X in Rn will divide Rn into two connected regions; the “out-
side” D0 and the “inside” D1. Furthermore, D̄1 is itself a compact manifold with
boundary ∂D̄1 = X.

Proof. To begin with, we must ponder how we may locally identify X with a hy-
perplane in Rn.

Consider the inclusion map i : X → Rn. Now, dimX < n, so i is by defini-
tion an immersion at any point x ∈ X, and so by the Local Immersion Theorem,
there exist local coordinates {x1, . . . , xn−1} around x such that i(x1, . . . , xn−1) =
(x1, . . . , xn−1, 0). For convenience, we may translate these local coordinates so that
x = (0, . . . , 0). Thus, in a neighborhood of x, our manifold X is identified with the
hyperplane H = {α1, . . . , αn−1, 0}, and thus must divide our neighborhood of x into
two open regions: H+ = {(α1, . . . , αn)|αn > 0} and H− = {(α1, . . . , αn)|αn < 0}.
(See Figure 6.)
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Figure 6

(1) Pick a point y ∈ Rn\X. Then for any point x ∈ X there is a point in the
neighborhood of x in Rn which may be connected to y by a curve that does not
intersect X. (See Figure 7.)

To begin with, fix y, and rather than picking any arbitrary x ∈ X, consider the
point closest to y in X, call it ρ (there must be at least one, as both X and y are
compact; if there is more than one, just pick one). Clearly the straight line segment
joining y with ρ must have a nonempty intersection with a neighborhood of y (else
y would be a boundary point for its own neighborhood).

We now use this to establish a nonintersecting curve to any point x ∈ X. Since
the manifold X is connected, and all manifolds are locally path connected, we
know that X must be path connected; therefore, we can find a curve connecting
our arbitrary point x to ρ. Now all we need to do is push the curve off of X. To
do this, we begin at ρ. First note the vector from ρ to y, and call it ~w. At ρ we
may locally identify X with a hyperplane. which must have two normal vectors to
ρ pointing in opposite directions. Pick whichever normal vector points towards the
same half-space which ~w points towards. Use this normal vector to displace the
curve an arbitrary distance ε along the normal vector. In a neighborhood of ρ, since
X looks like a hyperplane, the curve looks like a line segment, and if we continue
this procedure along the curve, locally always directing each displacement towards
the same half-space, it will be the same as simply translating the line segment
upwards. We may locally continue this procedure along the entirety of the path
connecting ρ with x

But can we be assured that this is actually a curve? While it is clear that it will
not intersect X, it may still intersect itself. Provided that dim Rn > 2, even if the
curve does intersect itself, it can not intersect itself transversally. Hence, by the
Stability Theorem, we can simply displace the curve a sufficiently small amount
to rid itself of any self-intersection. In the case that dim R = 2, a nontransver-
sal intersection may be dealt with the same way. On the other hand, any sort of
transversal intersection would imply deeper issues, such as intersection of X with
itself, contradicting its status as a manifold. The case that dim Rn = 1 is trivial.
Thus, we may connect a point in a neighborhood of x back to a neighborhood of ρ,
and finally back to y, and since this is Rn, there must exist a curve which connects
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a point in a neighborhood of x back to y.

Figure 7

(2) Rn\X has, at most, two components. (See Figure 8.)
Simply fix a point x ∈ X and take any three points y1, y2, y3 ∈ Rn\X. Then by

the previous part, these three points may be connected to a point in a neighborhood
of x. But as noted before, X must divide a neighborhood of x into two components.
Therefore, two of the points y1, y2, y3 must be connected to the same neighborhood
component of X, and thus, these two points must belong to the same component
of Rn\X.

Figure 8

(3) If two points, y0 and y1 belong to the same component of Rn\X, then the
winding number of X about both y0 and y1 must be equal.

Since y0 and y1 are part of the same connected component of Rn\X, they may
be joined together by a smooth curve γ : [0, 1] → Rn\X with γ(0) = y0 and
γ(1) = y1, and which does not intersect X. We claim that there exists a homotopy
U : X×I → Sn−1 between the associated direction maps u0 and u1, with U defined
as:

U(x, t) =
x− γ(t)
|x− γ(t)

Now, U(x, 0) = u0(x) and U(x, 1) = u1(x), so all that remains is to check that U is
smooth, easily verifiable through differentiation. Thus, uo and u1 are homotopic,
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and by Corollary 6.4, they must therefore have the same intersection number. But
deg2 is defined as an intersection number, so u0 and u1 have the same degree mod-
ulo 2, and thus, y0 and y1 have the same winding number.

(4) Given a point y ∈ Rn\X and a direction vector ~v ∈ Sn−1, consider the ray
emanating from z in the direction of ~v:

r = [y + ~vt|t ≥ 0].

This ray r is transversal to X if and only if ~v is a regular value for the direction
map u : X → Sn−1.

Define a function g : R\{y} → Sn−1 by:

g(x) =
x− y
|x− y|

.

This definition makes it clear that, in fact, u is simply g composed with the in-
clusion map; u = g ◦ i. Thus we have a sequence of smooth maps of manifolds,
X

i→ Rn\{y} g→ Sn−1 and with a composition g ◦ i = u. Differentiation shows that
~v is clearly a regular value for g, so that we may write g t ~v. And now, we may
invoke Lemma 4.8. By the Lemma, since g t ~v, we have i t g−1(~v) if and only
if g ◦ i t ~v. Rewritten, since g−1(~v) = r, and by how we have defined transversal
inclusion maps, X t r if and only if u t ~v, that is, ~v is a regular value for u.
What is more, by Sard’s Theorem, since nearly every ~v will be a regular value for
u, nearly every ray from z will intersect X transversally.

(5) Let r be a ray emanating from a point y0 ∈ Rn\X which intersects X
transversally in a nonempty (necessarily finite) set. Suppose that y1 is another
point on r (but not on X), and let l be the number of times r intersects X between
y0 and y1. Then W2(X, y0) = W2(X, y1) + l mod 2. (See Figure 9.)

We have just shown that a ray is transversal to X if and only if the normalized
vector of that ray is a regular value for u. It follows then that r̂ is a regular value
for both direction maps u0 and u1 associated with y0 and y1. Now, #u−1

0 (r̂) =
#u−1

1 (r̂) + l, and since deg2(u) = #u−1(~v) mod 2, where ~v is a regular value, it
follows that deg2(u0) = deg2(u1)+l mod 2. Thus, W2(X, y0) = W2(X, y1)+l mod 2.
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Figure 9

W2(X, y0) = W2(X, y1) + 3 mod 2

(6) We may now establish that Rn\X has precisely two components:

D0 = {y|W2(X, y) = 0} and D1 = {y|W2(X, y) = 1}.

Since we have already shown that if two points are part of the same component,
then there winding numbers must be equal, all we need to do now is show that D0

and D1 are nonempty. To do this, pick a point x ∈ X and take a neighborhood
U ⊂ Rn of x. As noted before, we may take local coordinates for this neighborhood
so that X is identified with the hyperplane H = {α1, . . . αn−1, 0} and so that
x = (0, . . . , 0). Now, let y+ be a point in U whose nth local coordinate is greater
than 0, and now, find a point y− ∈ U whose nth local coordinate is less than 0
such that the ray r which emanates from y+ in the direction of y− is transversal to
X. That we can find such a point y− such that r is transversal to X is a result of
Sard’s Theorem, for if r t X then by Part 4, r̂ is a regular value for u, and as we
know, nearly every point in Sn−1 is a regular value for u, so that nearly every ray
is transversal to X.

Thus, we have two points y+ and y−, and a transversal ray which passes through
them both. Clearly, this ray must intersect X only once between y+ and y− (since
between y+ and y−, we may identify X with a hyperplane). And therefore, by Part
5, W2(X, y+) = W2(X, y−) + 1 mod 2, and so D0 and D1 are nonempty.

(7) If the magnitude of a point z ∈ Rn\X is very large, then W2(X, z) = 0.
Since X is compact, by making z very large, u(x) = x−z

|x−z ≈
−z
|z| . Thus, u(X)

must lie in a small neighborhood U of −z|z| . Thus, Sn−1\U is hit by u zero times,
and since this is not a set of measure zero and since deg2 is invariant, we must have
deg2(u) = 0 and likewise W2(X, z) = 0. Furthermore, this gives an intuitive grasp
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that D0 should be considered the “outside” of X. It follows from this that given
a point y ∈ Rn\X, and a ray r emanating from y and transversal to X, then y is
“outside” X if r intersects X in an even number of points, and y is “inside” X if r
intersects X in an odd number of points. (See Figure 10.)

Figure 10

(8) D̄1 is a compact manifold with boundary ∂D̄1 = X.
For any point in the interior of D̄1, a neighborhood of that point is an open set

in Rn and is (very obviously) diffeomorphic to an open set in Rn. If a point x ∈ D̄1

also belongs to X, than as described in the beginning, by the Local Immersion
Theorem, X is identified with a hyperplane H which divides the neighborhood of
x into two regions. As described in Part 9, it is clear that each region will have a
winding number of either 1 or 0, and each region is an open set in either H+ or H−.
The region with a winding number of 1 is thus diffeomorphic to a corresponding
half-space, be it H+ or H−, which shows that the point x ∈ H is the boundary for
D̄1 and furthermore that D̄1 is a manifold with boundary.
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