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Abstract. The theory of Hausdorff dimension provides a general notion of
the size of a set in a metric space. We define Hausdorff measure and dimension,

enumerate some techniques for computing Hausdorff dimension, and provide

applications to self-similar sets and Brownian motion. Our approach follows
that of Stein [4] and Peres [3].
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1. Hausdorff measure and dimension

The theory of Hausdorff measure and dimension was invented in order to provide
a notion of size not captured by existing theories, such as that of Lebesgue measure.
The idea is measure the size of a set through choosing some �-dependent measure �
which selects sets of dimension �. From the perspective of �, sets of dimension < �
should be ‘small’, i.e. have measure zero, and sets of dimension > � should be
‘large’, i.e. have measure ∞. Lebesgue measure accomplishes this, but only in
ℝd. Moreover, Lebesgue measure can only give an integer value for dimension, and
hence misses out on some structure. Hausdorff measure takes the idea of looking at
the volume of coverings by rectangles and generalizes it to arbitrary metric spaces
and fractional �.

Notation 1.1. We write ∣E∣ to denote the diameter of a set E.

Definition 1.2. Let E ⊂ X be a subset of a metric space. For every �, � ≥ 0,
let ℋ�� := inf {

∑∞
i=1 ∣Fi∣� : E ⊂

∪
Fi, ∣Fi∣ < �}. Then m∗�(E) := sup

�≥0
ℋ��(E) =

lim
�↓0
ℋ��(E) is the �-Hausdorff content of the set E.

Note that m∗� is monotonic and countably subadditive, hence defines an outer
measure on X. We would like to obtain a measure such that the Borel sets are
measurable. Our approach is dictated by the following theorem, which we state
without proof.

Definition 1.3. d(A,B) := inf{d(x, y) : x ∈ A, y ∈ B}.
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Definition 1.4. An outer measure �∗ is a metric outer measure if ∀A,B ⊂ X
with d(A,B) > 0, �∗(A ∪B) = �∗(A) + �∗(B).

Theorem 1.5. If �∗ is a metric outer measure, then the Borel sets are �∗-measurable.

Hence by Caratheodory’s theorem �∗ restricted to the Borel sets is a measure.
We now show m∗� is a metric outer measure.

Proposition 1.6. If d (E1, E2) > 0, then m∗� (E1 ∪ E2) = m∗� (E1) +m∗� (E2).

Proof. We have ≤ by subadditivity. To prove ≥, first fix � > 0 with � < d (E1, E2).
Given any cover of E1 ∪ E2 by {Fi} with ∣Fi∣ < � for some � < �, let F ′i = E1 ∩ Fi
and F ′′i = E2 ∩Fi. Then {F ′i} and {F ′′i } are covers for E1 and E2 and are disjoint.
Hence

∑
∣F ′i ∣� +

∑
∣F ′′i ∣� ≤

∑
∣Fi∣�. Taking infimums and letting � → 0 we

conclude m∗� (E1) +m∗� (E2) ≤ m∗� (E1 ∪ E2). □

Exercise 1.7. For E ⊂ X, define ℋ∞� (E) := inf {
∑∞
i=1 ∣Fi∣� : E ⊂

∪
Fi}, the

unlimited �-Hausdorff content of E. Show that ℋ∞� (E) is an outer measure
on X but not necessarily a metric outer measure. This justifies the inclusion of a
bound on the diameter of sets in our covering of E.

We write m� to denote �-Hausdorff measure on X. Seeing the similarity be-
tween the construction of Hausdorff and Lebesgue measure we are led to make the
following useful observation.

Proposition 1.8. Hausdorff measure is translation and rotation invariant. More-
over, it scales as follows: ∀� > 0, m�(�E) = ��m�(E).

Proof. The proposition follows from the corresponding statement for the diameter
of a set. □

The uniqueness of Haar measure up to a scalar then implies (after showing md

is a Radon measure on ℝd) that there exists a constant cd dependent only on the
dimension such that cdmd = m. In fact cd = vd/2

d, where vd is the measure of the
unit ball in ℝd. We can easily prove a weaker form of this result.

Lemma 1.9. ∀�, � > 0 ∃ a covering of E ⊂ ℝd by balls {Bi} such that ∣Bi∣ < �,
while

∑
m (Bi) ≤ m∗(E) + �.

Proof. This is an essential consequence of the Vitali covering lemma. □

Theorem 1.10. If E is a Borel subset of ℝd, then md(E) ≈ m(E), in the sense
that cdmd(E) ≤ m(E) ≤ 2dcdmd(E).

Proof. Find a cover of E as in the lemma. Then ℋ�d(E) ≤
∑
∣Bi∣d = cd

−1
∑
m (Bi)

≤ cd
−1(m(E) + �). Letting �, � → 0, we get md(E) ≤ cd

−1m(E). For the reverse
direction, let {Fi} be a covering of E with

∑
∣Fi∣d ≤ md(E) + �. Find closed balls

Bi so that Bi ⊃ Fi and ∣Bi∣ = 2∣Fi∣. Then m(E) ≤
∑
m (Bi) = cd

∑
∣Bi∣d =

2dcd
∑
∣Fi∣d ≤ 2dcd (md(E) + �). Letting �→ 0, we get m(E) ≤ 2dcdmd(E). □

Remark 1.11. The stronger statement cdmd = m follows from the isodiametric
inequality m(E) ≤ cd∣E∣d, which expresses the intuitive fact that among sets of a
given diameter the ball has the largest volume.

The advantage of Hausdorff measure over Lebesgue measure is that it isn’t de-
fined in relation to the dimension of the embedding space. This allows us to make
sense out of the concept of fractional dimension.



HAUSDORFF DIMENSION AND ITS APPLICATIONS 3

Definition 1.12. Let E be a Borel set. Then � := sup {� : m�(E) =∞} =
inf {� : m�(E) = 0} is the Hausdorff dimension of E. If 0 < m�(E) <∞ we say
E has strict Hausdorff dimension �.

Intuitively this definition expresses a set to be large in relation to sets of lower
dimension and small in relation to sets of higher dimension. The following propo-
sition shows that the � in the definition is unique, and so Hausdorff dimension is
well-defined.

Proposition 1.13. 1) If m∗�(E) <∞ and � > �, then m∗�(E) = 0. 2) If m∗�(E) >

0 and � < �, then m∗�(E) =∞.

Proof. Let {Fi} be a covering of E with ∣Fi∣ < �. We have
∑
∣Fi∣� =

∑
∣Fi∣�−�∣Fi∣�

≤ ��−�
∑
∣Fi∣�, so H�

� (E) ≤ ��−�H�
� (E). Letting � → 0 gives the first claim.

Interchanging � and � gives the second claim. □

Exercise 1.14. Find a set without a strict Hausdorff dimension.

At the moment we can compute the Hausdorff dimension of an important class
of sets in ℝd: those with positive finite Lebesgue measure. The power of Hausdorff
dimension lies in its ability to distinguish between sets of zero Lebesgue measure,
which morally should not be of the same ‘size’. For example, the ℝ2 Lebesgue
measure of planar Brownian motion is zero almost surely, yet planar Brownian
motion is neighborhood recurrent. A space-filling curve is the same as a point from
the viewpoint of Lebesgue measure! We now proceed to list some techniques for
computing the Hausdorff dimension of more general sets.

2. Computing Hausdorff dimension

In general obtaining an upper bound for Hausdorff dimension is the easier task;
for the posited dimension �, show H�

�(E) < ∞ by finding an efficient cover of E
for any �. The infimum in the definition of Hausdorff measure makes finding lower
bounds more difficult. The first technique we describe is based on constructing an
appropriate function with domain or range a set with known Hausdorff dimension.
This allows us to compute upper or lower bounds, respectively.

Definition 2.1. A function f : (E1, �1)→ (E2, �2) between metric spaces is called

-Hölder continuous if ∃C > 0 such that �2(f(x), f(y)) < C�1(x, y)
 ∀x, y ∈ E1.

Proposition 2.2. If f : (E1, �1) → (E2, �2) is surjective and 
-Hölder contin-
uous with constant C > 0, then ∀� ≥ 0, m�/
 (E2) ≤ C�/
m� (E1), and hence

dim (E2) ≤ 1

 dim (E1).

Proof. Let {Fi} be a covering of E1. Then {f (E1 ∩ Fi)} covers E2, and ∣f (E1 ∩ Fi)∣
< C∣Fi∣
 . Hence

∑
∣f (E ∩ Fi) ∣�/
 ≤ C�/


∑
∣Fi∣�, and the statement follows. □

The next technique, the mass distribution principle, is similar in flavor to the
above. Instead of a function, we construct an appropriate measure. 
-Hölder
continuity is replaced by a suitable bound on the measure of sets with respect to
their diameter.

Definition 2.3. A Borel measure � is a mass distribution on a metric space E
if 0 < �(E) <∞.
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Theorem 2.4. (Mass distribution principle) Suppose E is a metric space and
� ≥ 0. If there is a mass distribution � on E and constants C, � > 0 such that
�(V ) ≤ C ∣V ∣� for all closed sets V with ∣V ∣ ≤ �, then ℋ��(E) ≥ �(E)/C > 0, and
hence dimE ≥ �.

Proof. Let {Fi} be a covering of E. WLOG we can take the Fi to be closed since∣∣Fi∣∣ = ∣Fi∣. We have 0 < �(E) ≤ �(
∪
Fi) ≤

∑
�(Fi) ≤ C

∑
∣Fi∣�, and the

statement follows. □

The mass distribution principle requires to spread a positive finite mass over
a set such that local concentration is bounded from above. The next technique,
the energy method, is essentially a computational means of measuring the local
concentration of the mass.

Definition 2.5. Let � be a mass distribution on a metric space E and � ≥ 0. The

�-potential of a point x ∈ E with respect to � is defined as ��(x) :=
∫ d�(y)
�(x,y)� .

The �-energy of � is I�(�) :=
∫
��(x)d�(x) =

∫ ∫ d�(x)d�(y)
�(x,y)� .

The idea of the energy method is that mass distributions with I�(�) <∞ spread
the mass so that at each point the concentration is sufficiently small to overcome
the singularity of the integrand.

Theorem 2.6. (Energy method) Let (E, �), �, � be as above. Then ∀� > 0,

ℋ��(E) ≥ �(E)

/∫ ∫
�(x,y)<�

d�(x)d�(y)

�(x, y)�
.

Hence if I�(�) <∞ then m�(E) =∞, and so dimE ≥ �.

Proof. Suppose {Fn}n∈ℕ is a pairwise disjoint covering of E with ∣Fn∣ < �. Then

∫ ∫
�(x,y)<�

d�(x)d�(y)

�(x, y)�
≥
∞∑
n=1

∫ ∫
Fn×Fn

d�(x)d�(y)

�(x, y)�
≥
∞∑
n=1

� (Fn) 2

∣Fn∣�
.

Also, �(E) ≤
∑∞
n=1 � (Fn) =

∑∞
n=1 ∣Fn∣�/2

�(Fn)
∣Fn∣�/2

. By Cauchy-Schwarz,

�(E) ≤
∞∑
n=1

∣Fn∣�
∞∑
n=1

� (Fn) 2

∣Fn∣�
≤ H�

�(E)

∫ ∫
�(x,y)<�

d�(x)d�(y)

�(x, y)�
.

□

We now prove a converse to the mass distribution principle, i.e. starting from a
lower bound on the Hausdorff measure we construct a mass distribution on a set
with bounded local concentration. From here on we work in ℝd.

Theorem 2.7. (Frostman’s lemma) Let E ⊂ ℝd be a closed set with m�(E) > 0.
Then ∃ a Borel probability measure � supported on E and a constant C > 0 such
that �(D) ≤ C ∣D∣� ∀ Borel sets D.

Remark 2.8. Frostman’s lemma holds more generally for Borel subsets of ℝd, though
we do not prove this fact here.

The proof is based on the representation of compact subsets of ℝd by trees. We
first set up some machinery.
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Definition 2.9. A tree T = (V,E) is a connected graph described by an at most
countable set of vertices V , which includes a distinguished vertex � designated as
the root, and a set of ordered edges E ⊂ V × V , such that

∙ ∀v ∈ V the set {w ∈ V : (w, v) ∈ E} consists of exactly one element v̄, the
parent, except for �, which has no parent;
∙ ∀v ∈ V ∃ a unique self-avoiding path from � to v;
∙ ∀v ∈ V the set of children {w ∈ V : (v, w) ∈ E} is finite.

Every infinite self-avoiding path starting at � is called a ray. The set of rays is
denoted ∂T , the boundary of T .

Definition 2.10. Let capacities be assigned to the edges of a tree T in the form of
a mapping C : E → [0,∞). A flow of strength c > 0 through a tree with capacities
C is a mapping � : E → [0, c] such that

∙ for the root � we have
∑
w̄∈� �(�, w) = c, for every other vertex v ∕= � we

have � (v̄, v) =
∑
w:w̄=v �(v, w), i.e. the flow into and out of each vertex

other than the root is conserved;
∙ �(e) ≤ C(e), i.e. the flow through the edge e is bounded by its capacity.

A set
∏

of edges is called a cutset if every ray includes an edge from
∏

.

We omit the proof of the following theorem, a famous result in graph theory. It
will be of critical importance in the proof of Frostman’s lemma.

Theorem 2.11. (Max-flow min-cut)

max{strength(�) : � flow with capacities C} = inf
{∑

e∈
∏ C(e) :

∏
cutset

}
.

We will need the following measure extension theorem, which we state without
proof.

Definition 2.12. A collection of sets S is a semi-algebra if ∀A,B ∈ S, A∩B ∈ S
and Ac is a finite disjoint union of sets in S.

Theorem 2.13. Let S be a semi-algebra and let �̃ be a measure on S. Then �̃
extends uniquely to a measure � on �(S).

Proof. (of Frostman’s lemma) WLOG let E ⊂ [0, 1]d, and define the dyadic cubes
in the usual manner. We construct a tree T = (V,E) as follows. Let the root be
associated with the cube [0, 1]d. Then grow the tree such that every vertex has
2d out-edges, each leading to a vertex associated with one of the 2d subcubes of
half sidelength. Finally, erase the edges ending in vertices associated with subcubes
that do not intersect E. Note that the rays in ∂T correspond to sequences of nested
compact cubes.

There is a canonical mapping Φ : ∂T → E, which maps sequences of nested
cubes to their intersection. Clearly Φ is surjective. Now given an edge e ∈ E at
level n define the capacity C(e) = 2−n�. Associate to every cutset

∏
a covering of

E consisting of those cubes associated with the initial vertices of the edges in the

cutset. We have inf
{∑

e∈
∏ C(e) :

∏
cutset

}
≥ inf

{∑
j ∣Ej ∣� : E ⊂

∪
Ej

}
, and as

m�(E) > 0 this is bounded from zero. Thus, by the max-flow min-cut theorem, ∃
a flow � : E → [0,∞) of positive strength such that �(e) ≤ C(e) ∀ edges e ∈ E.
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Given an edge e ∈ E associate a set T (e) ⊂ ∂T consisting of all rays containing
e. Define �̃(T (e)) := �(e). Note that �̃ is countably additive and that the collection
C(∂T ) of subsets T (e) ⊂ ∂T ∀e ∈ E is a semi-algebra on ∂T . Thus by Theorem
2.12, �̃ extends to a measure � on �(C(∂T )). Define a Borel measure � := � ∘Φ−1

on E. We have �(C) = �(e), where C is the cube associated with the initial vertex
of the edge e.

Suppose now that D is a Borel subset of ℝd and n is the integer such that
2−n <

∣∣D ∩ [0, 1]d
∣∣ ≤ 2−(n−1). Then D∩ [0, 1]d can be covered with 3d dyadic cubes

of sidelength 2−n. Using the bound, we have �(D) ≤ d�/23d2−n� ≤ d�/23d∣D∣�, so
� is as required after normalization. □

Frostman’s lemma now allows us to prove that the energy method is sharp for
closed subsets of ℝd (or Borel subsets of ℝd, if one assumes the more general
version).

Definition 2.14. The �-capacity of a set E is defined to be

Cap�(E) := sup
{
I�(�)−1 : � Borel probability measure supported on E

}
.

Note that the energy method states that a set of positive �-capacity has dimen-
sion at least �.

Theorem 2.15. For any closed set E ⊂ ℝd, dimE = sup {� : Cap�(E) > 0}.

Proof. It only remains to show ≤, and for this it suffices to show that if dimE > �,
then ∃ a Borel probability measure � on E such that I�(�) <∞. By assumption, for
some sufficiently small � > � we have m�(E) > 0. By Frostman’s lemma, ∃ a Borel
probability measure � supported on E and a constant C such that �(D) ≤ C

∣∣D∣�
∀ Borel sets D. WLOG let the support of � have diameter < 1. Fix x ∈ E, and for
k ≥ 1 let Sn(x) :=

{
y : 2−n < ∣x− y∣ ≤ 21−n}. We have∫

d�(y)

∣x− y∣�
=

∞∑
n=1

∫
Sn(x)

d�(y)

∣x− y∣�
≤
∞∑
n=1

� (Sn(x)) 2n� ≤ 22�C

∞∑
n=1

2n(�−�) <∞,

proving the theorem. □

3. Self-similar sets

Definition 3.1. A mapping S : ℝd → ℝd is a similarity with ratio r > 0 if
∣S(x)− S(y)∣ = r∣x− y∣.

Definition 3.2. A set E is self-similar if ∃ finitely many similarities {Si}ni=1 with
the same ratio r such that E =

∪
Si(E).

Example 3.3. Let E be the middle-thirds Cantor set. The similarities S1(x) = x/3
and S2(x) = x/3 + 2/3 (with ratio r = 1/3) show that E is self-similar.

The definition requires us to produce similarities for a given set E, but it turns
out we can dispense with particular sets and instead speak solely of similarities.
Similarities are easy to define, so in effect the following theorem gives us a wide
range of self-similar sets to investigate.

Theorem 3.4. Let {Si}ni=1 be n similarities of common ratio r < 1. Then ∃ a
unique non-empty compact set E such that E =

∪
Si(E).
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The Si are contraction mappings, suggesting a proof in the way of a fixed point
argument. We collect some preliminary lemmas below.

Lemma 3.5. ∃ a closed ball B so that Si(B) ⊂ B for all i.

Proof. We have ∣Si(x)∣ ≤ ∣Si(x)− Si(0)∣ + ∣Si(0)∣ ≤ r∣x∣ + ∣Si(0)∣. If we require
∣x∣ ≤ R to imply ∣Si(x)∣ ≤ R, it suffices to choose R so that R ≥ ∣Si(0)∣ /(1 − r).
Take the maximum of the R so obtained. □

Now, for any set A let S̃(A) =
∪
Si(A). Note that if A ⊂ A′, then S̃(A) ⊂ S̃(A′).

Note further that S̃ is a mapping from subsets of ℝd to subsets of ℝd. There is
a natural metric on compact subsets of ℝd, the Hausdorff metric, that allows us
to exploit the property of contraction. This notion will prove useful for showing
uniqueness.

Definition 3.6. For each � > 0 and set A, let A� := {x : d(x,A) < �}. For
compact sets A,B, define dist(A,B) := inf

{
� : B ⊂ A� and A ⊂ B�

}
.

Lemma 3.7. If {Si}ni=1 are n similarities with common ratio r, then

dist
(
S̃(A), S̃(B)

)
≤ rdist(A,B).

Proof. Exercise. □

Proof. (of Theorem 3.4) Choose B as in Lemma 3.5, and let Ek := S̃k(B) (S̃
composed k times). Each Ek is compact, non-empty, and Ek ⊂ Ek−1. Thus

E :=
∩∞
k=1Ek is compact and non-empty. Clearly, S̃(E) = E. It remains to prove

uniqueness. Suppose G is another compact set so that S̃(G) = G. Then by Lemma
3.7, dist(F,G) ≤ rdist(F,G). Since r < 1, dist(F,G) = 0, so F = G. □

The scaling property of self-similar sets suggests the following preliminary line of
attack for computing the Hausdorff dimension. Suppose for a self-similar set E that
the Si(E) are disjoint. Then m�(E) =

∑n
i=1m� (Si(E)). Since each Si scales by r,

we have m� (Si(F )) = r�m�(F ). Hence, m�(F ) = nr�m�(F ). If 0 < m�(F ) <∞,

we would have � = logn
log 1/r . Of course, for many interesting examples (such as the

Sierpinski triangle) the Si(E) are not disjoint. It turns out that we can relax the
disjointness condition, as follows.

Definition 3.8. Similarities {Si} are separated if ∃ a bounded open set O such
that O ⊃

∪
Si(O) and the Si(O) are disjoint. Note that we do not require O to

contain E.

Theorem 3.9. Let {Si}ni=1 be n separated similarities of common ratio r < 1, and

let E be as in Theorem 3.4. Then E has Hausdorff dimension logn
log 1/r .

Proof. Let � = logn
log 1/r .

m�(E) < ∞: We do not require the separation assumption. In the terminology
of Theorem 3.4, note that Ek is the union of nk sets of diameter less than ∣B∣rk,
each of the form Sm1 ∘ ... ∘ Smk(B), where 1 ≤ mi ≤ n. Thus, if ∣B∣rk ≤ �,
then ℋ��(E) ≤

∑
m1,...,mk

∣Sm1
∘ ... ∘ Smk(B)∣� ≤ ∣B∣�nkr�k = ∣B∣� , and we get

m�(E) <∞.

m�(E) > 0: We first set up some machinery. Fix a point x ∈ E. We define
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the k-vertices as the nk points that lie in E and are given by Sm1 ∘ ... ∘ Smk(x),
where 1 ≤ mi ≤ n. Similarly, we define the k-open sets to be the nk sets given
by Sm1

∘ ... ∘ Smk(O), where 1 ≤ mi ≤ n and O is fixed and chosen to satisfy the
separation condition. Note that the k -open sets are disjoint, and if k ≥ l, each
l-open set contains nk−l k-open sets. For a k-vertex v, let O(v) denote the k-open
set with the same label (m1, ...,mk). Since x̄ is at fixed distance from O, and O has
a finite diameter, we find that: a) d(v,O(v)) ≤ Crk, and b) C ′rk ≤ ∣O(v)∣ ≤ Crk

(∣O(v)∣ ≈ rk), for some constants C,C ′.

By compactness, it suffices to prove that if {Bj}Nj=1 is a collection of balls covering

E with diameters less than �, then
∑N
j=1 ∣Bj ∣� > 0 . Let ℬ be such a covering, and

choose k so that rk ≤ min
1≤j≤N

∣Bj ∣ < rk−1.

Lemma 3.10. Suppose B is a ball in ℬ that satisfies rl ≤ ∣B∣ < rl−1 for some
l ≤ k. Then ∃ constant C such that B contains at most Cnk−l k-vertices.

Proof. Let v ∈ B be a k-vertex. Properties a) and b) above imply ∃ a fixed dilate
B∗ of B such that O(v) ⊂ B∗ and B∗ contains the l-open set that contains O(v).
Since B∗ has volume C ′rdl for some constant C ′, and each l-open set has volume
≈ rdl by property b), B∗ contains at most C l-open sets for some constant C.
Hence B∗ contains at most Cnk−l k-open sets. We conclude B contains at most
Cnk−l k-vertices. □

Now let Nl denote the number of balls in ℬ so that rl ≤ ∣Bj ∣ ≤ rl−1. By Lemma
3.10, we see that the total number of k-vertices covered by ℬ can be no more
than Cmax

∑
lNln

k−l. Since all nk k-vertices belong to E, Cmax

∑
lNln

k−l ≥ nk,

and hence
∑
lNln

−l > 0. The definition of � gives rl� = n−l, so
∑N
j=1 ∣Bj ∣� ≥∑

lNln
−l > 0, completing the proof. □

4. Brownian motion

Definition 4.1. A random variable X is normally distributed with expecta-

tion � and variance �2 if ∀x ∈ ℝ, ℙ{X > x} = 1√
2��2

∫∞
x
e−(u−�)2/2�2

du.

Definition 4.2. A real-valued stochastic process {B(t) : t ≥ 0} is called a linear
Brownian motion with start in x ∈ ℝ if the following holds:

∙ B(0) = x;
∙ the process has independent increments, i.e. ∀ times 0 ≤ t1 ≤ ... < tn,

the increments {B (tk)−B (tk−1)}nk=2 are independent random variables;
∙ ∀t, ℎ ≥ 0, the increments B(t + ℎ) − B(t) are normally distributed with

expectation zero and variance ℎ;
∙ almost surely, the function t 7→ B(t) is continuous.

We say that {B(t) : t ≥ 0} is a standard Brownian motion if x = 0.

Definition 4.3. If B1, ..., Bd are independent linear Brownian motions started in
x1, ..., xd, then the stochastic process {B(t) : t ≥ 0} given byB(t) = (B1(t), ..., Bd(t))
is called a d-dimensional Brownian motion started in (x1, ..., xd).

Remark 4.4. It is a nontrivial theorem that Brownian motion exists. We will be
content with assuming this fact.
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There are two ways to look at this definition. The first is to view Brownian
motion as a family of (uncountably many) random variables ! 7→ B(t, !) defined
on a single probability space (Ω,A,ℙ). The second is to view it as a random func-
tion with the sample functions defined by t 7→ B(t, !). This is the view we will take.

We are interested in the Hausdorff dimension of a set after applying Brownian
motion. The net content of the following theorems is that Brownian motion works
to double the dimension of a set. We begin with the upper bound.

Definition 4.5. A function f : [0,∞) → ℝ is locally 
-Hölder continuous at
x ≥ 0 if ∃�, C > 0 such that ∀y ≥ 0 with ∣y − x∣ < �, ∣f(x)− f(y)∣ ≤ C∣x− y∣
 .

Theorem 4.6. For 
 < 1/2, d-dimensional Brownian motion is everywhere locally

-Hölder continuous almost surely.

Proof. The proof is reliant upon details going into the construction of Brownian
motion and is omitted. □

Corollary 4.7. For a d-dimensional Brownian motion {B(t) : t ≥ 0} and any
fixed set A ⊂ [0,∞), almost surely dimB(A) ≤ min(2 dim(A), d).

Proof. Proposition 2.2 and Theorem 4.6. □

To prove the lower bound we use the energy method. The energy method proves
useful for random sets since to obtain a lower bound it suffices to show the finiteness
of a single integral. In particular, given a random set E and a random measure �
on E, E [I�(�)] <∞ implies, almost surely, I�(�) <∞ and hence dimE ≥ �.

Theorem 4.8. For a d-dimensional Brownian motion {B(t) : t ≥ 0} and a closed
set A ⊂ [0,∞), almost surely dimB(A) = min(2 dim(A), d).

Proof. It remains to prove the lower bound. Let � < min(dim(A), d/2). By The-
orem 2.15, ∃ a Borel probability measure � on A such that I�(�) < ∞. Denote
by �B the measure defined by �B(D) := �({t ≥ 0 : B(t) ∈ D}) for all Borel sets
D ⊂ ℝd. Then

E [I2� (�B)] = E
[∫ ∫

d�B(x)d�B(y)

∣x− y∣2�

]
= E

[∫ ∫
d�(t)d�(s)

∣B(t)−B(s)∣2�

]
,

where the second equality can be verified by a change of variables. Note that the
denominator on the right hand side has the same distribution as ∣t− s∣�∣Z∣2�,
where Z is a d-dimensional standard normal random variable. Since 2� < d, we

have that E
[∣∣Z∣−2�

]
= 1

(2�)d/2

∫
∣y∣−2�e−∣y∣

2/2 dy < ∞. Hence, using Fubini’s

theorem,

E [I2� (�B)] =

∫ ∫
E
[∣∣Z∣−2�

] d�(t)d�(s)

∣t− s∣�
≤ E

[∣∣Z∣−2�
]
I�(�) <∞,

and so I2� (�B) <∞ almost surely. Moreover, �B is supported on B(A) because �
is supported on A. By the energy method, dimB(A) ≥ 2� almost surely. Letting
� ↑ min(dim(A), d/2) completes the proof. □

Remark 4.9. If we assume the stronger version of Frostman’s lemma, Theorem 4.8
holds for all Borel sets A ⊂ [0,∞).
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Exercise 4.10. We remarked earlier that the Lebesgue measure of planar (two-
dimensional) Brownian motion is zero almost surely. How is this not a contradiction
with Theorems 1.10 and 4.8?

To conclude we mention a powerful generalization of Theorem 4.8. Note that
in Theorem 4.8, the null probability set depends on A, while in Theorem 4.11,
dimension doubles simultaneously for almost all sets. This allows us to work with
arbitrary random sets.

Theorem 4.11. Let {B(t) : t ≥ 0} be Brownian motion in dimension d ≥ 2.
Almost surely, for any A ⊂ [0,∞), dimB(A) = 2 dimA.

References

[1] K. J. Falconer. The geometry of fractal sets. Cambridge University Press. 1985.

[2] Gerald Folland. Real Analysis: Modern Techniques and Their Applications. Wiley-Interscience.
1999.

[3] Peter Mörters and Yuval Peres. Brownian Motion. Draft version. 2008.

http://www.stat.berkeley.edu/ peres/bmbook.pdf
[4] E. M. Stein and Rami Shakarchi. Princeton Lectures in Analysis III: Real Analysis.

Princeton University Press. 2005.

[5] Terence Tao. 245C, Notes 5: Hausdorff dimension.
http://terrytao.wordpress.com/2009/05/19/245c-notes-5-hausdorff-dimension-optional/


