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Abstract. The Max-Flow Min-Cut Theorem is an elementary theorem within

the field of network flows, but it has some surprising implications in graph
theory. We define network flows, prove the Max-Flow Min-Cut Theorem, and

show that this theorem implies Menger’s and König’s Theorems.

Contents

1. Introduction to Network Flows 1
1.1. Basic Definitions 1
1.2. Additional Tools 2
2. The Max-Flow Min-Cut Theorem 3
3. Applications of the Max-Flow Min-Cut Theorem 4
3.1. Menger’s Theorem 4
3.2. König’s Theorem 5
Acknowledgments 6
References 6

1. Introduction to Network Flows

Graph theory provides a framework for discussing systems in which it is possible
to travel between discrete vertices. If we extend a directed graph to a network flow
by assigning a capacity and a flow value to every edge, then this flow can be used to
model any number of systems in which a resource travels from one point to another,
e.g. the spread of data in a network, traffic along roads, water in pipes, and so on.

1.1. Basic Definitions. We model a network as a directed graph with a weight
at every edge. For this paper, all graphs considered will be simple and finite.

Definition 1.1. A network N is a directed graph G = (V,E) with a mapping
w : E → R that assigns a weight to each edge. The function w is called the weight
function of N .

To define a flow on a network N = (G, w), it is necessary to introduce the
following additional features:
(a) Two vertices of G are given special names: a source s and a sink t.
(b) We extend w to a function c : V × V → R as follows:

c(u, v) =
{

w(uv) if uv ∈ E
0 otherwise.
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c is called the capacity function of N , and represents how much data can flow
along that edge.

Definition 1.2. A flow on a network N with source s, sink t, and capacity function
c is a function f : V × V → R such that:

(a) f(u, v) < c(u, v)∀u, v ∈ V .
(b) For every vertex v not equal to s or t,

∑
u∈V f(u, v) =

∑
w∈V f(v, w).

(c)
∑

u∈V f(s, u) ≥ 0 and
∑

u∈V f(u, t) ≥ 0.

The value of a flow is simply
∑

u∈V f(s, u) ≥ 0, that is, the total data leaving the
source.

In other words, the flow does not exceed the capacity on any edge, and at every
vertex (other than the source and sink) the quantity of data entering equals the
quantity of data leaving. The source has a non-negative amount of data leaving it,
and the sink has a non-negative amount of data entering it.
For the purposes of this paper, we will assume that c and f take only non-negative,
integral values.

1.2. Additional Tools. It is useful in talking about flows to define an edge’s
residual capacity as the difference between an edge’s maximum allowed data flow
and the amount of flow actually passing through it. We can then extend this
definition to define the residual capacity along a path from s to t.

Definition 1.3. The residual capacity of an edge uv is cf (u, v) = c(u, v)− f(u, v).

Definition 1.4. Let p be a simple path from s to t. The residual capacity of p is
cf (p) = min{cf (u, v) : uv ∈ p}. If cf (p) > 0, then p is called an augmenting path.

We call a flow maximal between s and t if no legal flow on that network has
a greater flow value. An augmenting path for a given flow is a path along which
more data could flow. In other words, if there is an augmenting path, the flow is
not maximal for that graph.

Lemma 1.5. Let f be a flow on a network N = (G, c). Then f is maximal only if
f has no augmenting paths.

Proof. Let f be a flow and suppose that an augmenting path p exists with residual
capacity cf (p). Then we can define a new flow f ′ by adding cf (p) additional flow
along each edge in f . By the definition of residual capacity, f ′ satisfies the capacity
restraints for each edge in p, and has cf (p), a positive number, more net flow than
f . Therefore f is not maximal. �

Lastly, we define a vertex cut in the context of a network.

Definition 1.6. A vertex cut of a flow f on a network N = (G, w) with graph
G = (V,E) is a partition of V into disjoint sets S and T such that s ∈ S, t ∈ T ,
and S ∪ T = V . The net flow of a cut (S, T ) is f(S, T ) =

∑
u∈S,v∈T f(u, v), and

the capacity is c(S, T ) =
∑

u∈S,v∈T c(u, v)

Since for all vertices u and v, f(u, v) is non-negative, it is clear that for any
vertex cut (S, T ), c(S, T ) is bounded below by zero. Since the set of all cuts for a
given graph is finite, there exists a vertex cut of minimal capacity.
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2. The Max-Flow Min-Cut Theorem

Fix a network (G, c). The Max-Flow Min-Cut Theorem states that the cut of
minimum capacity vertex cut of a network N is equal to the maximal flow that
could travel along that network. To prove this, we begin with the following lemma.

Lemma 2.1. Let f be a flow on a network (G, c) with net flow v and let C be a
vertex cut (S, T ) with capacity k. Then v ≤ k.

Proof. Define P = {xy : x ∈ S, y ∈ T}, the set of edges from S to T . As the flow
along each edge cannot exceed the capacity along that edge for all edges in the
network flow, in particular this is true for each edge in P . It therefore follows that
the net flow over C f(S, T ) ≤ k. �

The previous lemma is a result that follows easily from defintions, yet it shows
a fundamental connection between vertex cut size and max flow. The following
theorem strengthens this connection.

Theorem 2.2. For any network (G, c), the value of the maximal flow is equal to
the minimum-capacity cut.

Proof. We will begin with an arbitrary flow on the network. We will then define
an augmentation process which, when taken to completion, will result in a maxi-
mum flow. Finally, we show how this process defines a minimum-capacity cut, and
moreover that the maximal flow and the minimal cut have the same value.

Begin with any flow f . Since the zero-flow, the flow where every edge carries
value zero, is valid for any network, such a flow must exist. Define the digraph Df

on the vertex set V with edge set E′ = {uv|cf (u, v) > 0. Suppose there is a path p
from s to t within Df . In G, p is a path along which every edge could carry more
flow, and therefore p is an augmenting path. Let m be the minimum of cf (p), the
residual capacity of the forward-oriented edges from s to t, and the set {f(u, v)|uv
is a backwards-oriented edge from s to t}. m > 0 by the construction of Df . Then
increasing the flow of each forward-oriented edge by m and decreasing the flow of
each backwards-oriented edge by m preserves the non-negativity of flows and the
capacity restraint along each edge. This augmentation also increases the flow from
s to t by the positive quantity m.

Denote the augmented flow by f ′. Since p is not an augmenting path in f ′, as
augmenting the flow by m either made one of the forward-oriented edges have
maximum capacity flow or one of the backwards-oriented edges have zero flow.

Repeat the above process until no augmenting paths remain. As the number of
total paths from s to t is finite in any finite graph, this task will finish in a finite
number of steps. In the resulting digraph Df , denote the set of vertices reachable
from s as R and the set of vertices unreachable from s as U . It is clear that s is in
R, and as no paths from s to t yet remain in Df , t is in U . For each edge from a
vertex in R to a vertex in U , each forward-oriented edge must be at full capacity
and each backwards-oriented edge must have zero flow. Thus the augmented flow
f ′ is a maximum flow, the cut (R,U) is a minimum cut, and moreover the flow of
f ′ equals the capacity of (R,U), proving the claim. �
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3. Applications of the Max-Flow Min-Cut Theorem

The Max-Flow Min-Cut Theorem is a fundamental result within the field of
network flows, but it can also be used to show some profound theorems in graph
theory.

3.1. Menger’s Theorem. There are multiple versions of Menger’s Theorem, which
all link the number of disjoint paths between two vertices to the size of some sort
of minimum cut to separate those vertices. The theorem below is the vertex cut
version for undirected graphs.

Definition 3.1. Let G be an undirected graph (V,E) and let u, v be vertices in V .
Then a set W ⊆ V is called an vertex cut of u and v if the removal of W separates
u and v.

For all graphs, for each pair of vertices (u, v), it is clear that a minimal edge cut
exists. Also note that this definition of vertex cut is easily reconcilable with the
definition we used earlier – just let S be the union of the subgraph containing s
separated by W and W itself and let T be the subgraph containing t separated by
W .

Theorem 3.2. For any finite undirected graph G = (V,E) with vertices x and y,
the minimum vertex cut of x and y is equal to the number of pairwise internally-
disjoint paths (that is, the number of paths that pairwise share no edges) from x to
y.

Proof. Denote a maximal set of pairwise internally-disjoint paths from x to y as P ,
with |P | = n. Define a flow f on G as follows:
(a) Let x be the source and y be the sink
(b) Extend G to a network N by the capacity function c(u, v) = 1 for each edge

uv ∈ E.
(c) The flow along an edge e in E is 1 if e ∈ p for some path p ∈ P and e is

forward-oriented from x to y, and 0 otherwise.
(d) If a vertex v is not x or y and it is part of a path p in P , erase all edges entering

and leaving v that are not in p.
First, we must show that this flow must satisfy the capacity restraint and the
conversion-of-flow restraint. The capacity restraint is trivially satisfied, as every
edge has capacity 1 and flow 0 or 1. The conversion-of-flow restraint is also satis-
fied: pick any v in V such that v is not x or y. If v is not a member of any path
in P , then no flow passes through it. If v is in at least one member of P , then it is
in exactly one, as the paths in P are pairwise internally-disjoint. Denote the path
containing v as p. Within p, for every edge uv entering v there is another path vw
leaving v, with f(u, v) = f(v, w) = 1. Thus, for any vertex that is not a source or
sink, the flow entering that vertex is equal to the flow leaving that vertex, satisfying
the conversion-of-flow restraint.

Now we have a flow from s to t. Our next step will be to show that this flow
is maximal. Suppose there is an augmenting path q from s to t. All edges are at
full capacity, so any augmenting path cannot share any edge with any of the existing
paths. Furthermore, q cannot pass through a non-source non-sink vertex belonging
to a path in P , as we erased these edges in our construction of f . Therefore q is a
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path from s to t with no internal vertices in common with any member of P , and q
is not in P . However, P was constructed to be a maximal set of internally-disjoint
paths from s to t, a contradiction. Therefore f is maximal.

Since f was constructed to have flow 1 along each of its n pairwise internally-disjoint
paths from x to y, the net flow of F is simply n. By the Max-Flow Min-Cut Theo-
rem, the maximum flow from x to y is equal to the size of the minimal vertex cut of
x and y, so the minimal vertex cut of x and y must be of size n. Thus the number
of pairwise-internally disjoint paths is equal to the size of the minimum vertex cut,
proving the claim. �

3.2. König’s Theorem. Bipartite graphs are an important subclass of graphs
with a number of applications. A graph is bipartite if it can be separated into two
subsets such that no edges travel within a single subset. König’s Theorem relates
the size of a matching, a set of pairs of connected vertices from the two subsets, to
the size of a vertex cover.

Definition 3.3. For any bipartite graph G with vertex sets X and Y , a matching
is a set of disjoint pairs (x, y) such that x ∈ X, y ∈ Y , and the edge xy is in G.
Since X and Y are finite, the cardinality of the set of such pairs is bounded above,
so there is a maximal matching.

Definition 3.4. Let G = (V,E) be any graph. A vertex cover is a subset W of V
such that every edge in E has at least one vertex in W . Since the size of a cover
is bounded below by 1 for any graph with at least one edge, every graph has a
minimal cover.

Theorem 3.5. For any finite bipartite graph G, the number of edges in a maximal
matching equals the number of vertices in a minimal vertex cover.

Proof. We will first extend G to a network, adding a source and a sink. We will
then see that, in our new network, a maximal flow corresponds to a maximal match-
ing, and a minimum cut corresponds to a minimum cover. From here, the min-cut
max-flow theorem implies the desired result.

Let X and Y be a bipartite separation of the vertices of G. Starting with this
graph, construct a digraph G′ = (V ′, E′) where V ′ has all the vertices of V as well
as a source s and a sink t. E′ consists of all the edges in E, as well as new edges
leading from s to every vertex in X, and also edges leading from each vertex in
Y into t. Assign capacity values to edges as follows: give infinite capacity to each
edge in E′ that was originally in E (i.e., each edge from X to Y ). To each of the
newly added edges, give capacity 1.

Given a matching of cardinality k, it is easy to find a flow of value k. Simply
push a flow of value 1 along the paths sx, xy, yt, where (x, y) is one of the matched
pairs. Likewise, any flow f must have a corresponding matching with cardinality
equal to the flow’s value. Thus, a maximal flow in G′ corresponds to a maximal-
cardinality matching in G.

Let W be a covering in G with r vertices, and let W (X) and W (Y ) be subsets
of W consisting of the vertices of W in X and Y , respectively. Next, let X ′ be
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X −W (X) and Y ′ be Y −W (Y ). The fact that W covers G implies that there
is no edge from X ′ to Y ′. Let S be the union of s, W (Y ), and Y ′ and let T be
the union of t, W (X), and Y ′. Consider the cut (S, T ) of G′; its cardinality is r,
the cardinality of W . Thus, any vertex covering defines a vertex cut with equal
value. Likewise, consider any vertex cut (S, T ) in G′ with finite value r. Edges from
X to Y have infinite capacity, so each edge from S to T must either go from s to
X or from Y to t, which have capacity 1. Since the cut had value r, (S, T ) has r arcs.

Let W be the union of the set of vertices x in X such that sx is in (S, T ) and
the set of vertices y in Y such that yt is in (S, T ); clearly, W has r vertices. For
every covering in G there is a corresponding cut in G′. So a minimum cut corre-
sponds to a minimum covering in G.

Thus far, we have shown that a maximal flow corresponds to a maximum-cardinality
matching, and a minimum cut corresponds to a minimum vertex cover. By the
max-flow min-cut theorem, a minimum cut is equal in value to a maximal flow.
Therefore, by transitivity, the cardinality of a maximal matching in G is equal in
value to that of a minimum covering. �
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