ELECTRICAL NETWORK THEORY AND RECURRENCE IN
DISCRETE RANDOM WALKS

DANIEL STRAUS

ABSTRACT. This paper investigates recurrence in one dimensional random
walks. After proving recurrence, an alternate approach using electrical network
theory is analyzed. Using harmonic functions, the function governing voltage
and the function describing the probability in a random walk are proven to be
the same. Then, electrical theory is used to prove that the one dimensional
random walk is recurrent.

CONTENTS

Random Walks

Recurrence

Harmonic Functions

4. Electrical Networks

4.1. Basic Facts

4.2. Electrical Functions

4.3. Effective Resistance and Recurrence
Acknowledgments

References

W=

N 0O UL UL RN

1. RaANDOM WALKS

Definition 1.1 (Simple Random Walk). A simple random walk is a random walk
on the regular d-dimensional lattice with vertices on the integers Z¢ and edges
between adjacent points, i.e. points where only one coordinate differs by +1. The
probability of moving in each possible direction of travel is equal, so this probability
is 1/(2d). Formally, consider the space of all infinite paths beginning at the origin.
Fix a path with length n; the probability that an infinite path begins in this manner
is [1/(2d)]™.

Random walks can take place on non-regular graphs, but for simplicity, this
paper is only concerned with simple random walks.
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FIGURE 1. A one dimensional lattice.
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FIGURE 2. A two dimensional lattice.

In one dimension, an easy way to visualize the probability of arriving at a point
in k steps is Pascal’s triangle. Importantly, the probabilities at any step all sum to
1.

Location
Step -4 -3 -2 -1 0 1 2 3 4
0 1

1/2 0 1/2
1/4 0 2/4 0 1/4
1/8 0 3/8 0 3/8 0 1/8
1/16 0 4/16 0  6/16 0 4/16 0 1/16

TABLE 1. Pascal’s Triangle.
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2. RECURRENCE

We begin by introducing the notion of escape probability.

Definition 2.1 (Escape probability). Consider the set Bj of points on an n-
dimensional lattice that have at least one coordinate equal to k or —k. Note that
on a three dimensional lattice, this set is a cube of sidelength 2k with its center at
the origin. The escape probability pgk) is the probability that starting at the origin,
the walker reaches By before returning to the origin. Since any path meeting By

necessarily meets By, pgk'ﬂ) < pgk). The escape probability p. is defined as

Pe = lim pﬁk).
k—o0

As pgk) is a nonincreasing sequence bounded below by 0, this limit exists.
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Lemma 2.2. If a walker visits a vertex v infinitely many times with probability 1,
then for any other verter w, it visits w with probability 1.

Proof. Starting at v, there is a non-zero probability 0 < p; < 1 that the walker
will pass through w before returning to v. By our assumption, the walker will
return to v infinitely many times. Accordingly, the probability that the walker will
pass through w before returning to v on the second attempt and not the first is
p2 = p1-(1—p1) since 1 —py is the probability that the walker will not pass through
w on the first try, and p; is the probability that on the second try, the walker will
pass through w. Generally, the probability of passing through w before returning
to v on exactly the nth try is

pn=p1-(L—p1)"
Thus the probability of passing through w is

p=Y pi=> pml-p)=p Y (1-p)-
=1 =1 =1

Since 0 < p; < 1, we have a geometric series multiplied by p;, which converges to

(i Yr
1—(1-p1) P

Therefore, the walker has probability 1 of visiting w, as desired. [

Lemma 2.3. If the escape probability is 0, then the walker has a probability 1 of
returning to the origin.

Proof. Since the escape probability is zero, there exists some bounded set of points
inside which the walker remains with probability 1. By the pigeonhole principle,
there is some point v which is visited infinitely many times with probability 1.
Therefore, by Lemma 2.2, the walker has probability 1 of returning to the origin. [J

Definition-Proposition 2.4 (Recurrence). A simple random walk is recurrent if
any of the following equivalent statements holds:

(1) a walker has a probability 1 of returning to the origin.

(2) a walker has a probability 1 of returning to the origin infinitely many times.

(3) a walker has a probability 1 of passing through every point of the lattice at
least once.

Proof of equivalence. To prove that 1 = 2, we prove that a walker has a probability
0 of returning to the origin exactly ¢ times. We know that a walk returns to the
origin with a probability 1. The walk is infinite, so once the walker returns to the
origin, it has a probability 1 of returning to the origin again. Accordingly, all walks
have a probability 0 of returning to the origin exactly ¢ times. The origin is thus
returned to infinitely many times as all walks must return to the origin.

To prove that 2 = 3, note that the assumption is that the walker returns to the
origin infinitely many times. For any point w, the walker has a probability 1 of
passing through w at least once by Lemma 2.2.

3 = 1 is trivial as if the walker must pass through every point of the lattice, it
must return to and pass through the origin. [

Definition 2.5 (Transience). A random walk is transient if it is not recurrent.
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Theorem 2.6 (Recurrence in one dimension). A one-dimensional simple random
walk is recurrent.

Proof. We know that pgk) is a nonincreasing sequence bounded below by 0. Thus to
show that p, = limy_, p.(gk) is 0, it suffices to show that the sequence pgk) becomes
arbitrarily small.

In a one dimensional random walk, if the walker is at the point x, by symmetry
he is equally likely to reach the point 2x before returning to the origin as it is to
reach the origin before reaching 2x. The probability that a walker reaches x from
the origin is equal to the probability of reaching the origin from = as the probability
of moving left or right at any point is equal. It thus follows that the probability

(n)

(2n) _ Pe

€ 2
as the walker is half as likely to reach a point 2n away from the origin before
returning to the origin as it is to reach a point n away. Since the walker always

moves left or right before returning to the origin, pél) = 1, and it follows that
pg) =1/2, p.(34) = pgz)/Q = 1/4, and generally,
K 1
W =

®

Therefore, pe’ becomes arbitrarily small, so

Pe = lim pék) =0. u
k—o00

3. HARMONIC FUNCTIONS

In the remaining sections, we shift focus to analyzing random walks through the
framework of electric networks.

Definition 3.1 (Harmonic function). A harmonic function is a function that sat-
isfies the property that the value at a non-boundary point is equal to the average
of the adjacent points.

Example 3.2 (One-dimensional harmonic function). Let S = {0,1,...,n}. Let
I=1{1,2,...,n— 1}, which is the set of interior points of S. Let B = {0,n}, which
is the set of boundary points of S. A function A : S — R is harmonic if for all
rzel,

W) = h(x—i—l)—;—h(x—l)'

A few important properties of harmonic functions must now be proven.

Lemma 3.3 (Maximum Principle). A one dimensional harmonic function h achieves
its mazimum value M and its minimum value m on B.

Proof. Let M = max {h(z) | z € S}. To avoid triviality, assume = ¢ B. Since h is
harmonic, h(x +1) = h(x —1) = M. If x — 1 € I, then the same argument proves
that that h(z —2) = h(x — 1) = M. This process continues until a boundary point
is reached, when h(0) = M. The proof is similar to show that the minimum is
achieved on the boundary. O

Theorem 3.4 (Uniqueness Principle). If g and h are one dimensional harmonic
functions such that for all x € B, g(x) = h(x), then g = h.



ELECTRICAL NETWORK THEORY AND RECURRENCE IN DISCRETE RANDOM WALKS 5

Proof. Let f=g—h. If x €1,
fle+)+ fle—=1) gle+1)+glx—1) hlz+1)+h(z-1)

2 2 2

Accordingly, f is harmonic. If € B, then f(x) = 0, which by the Maximum
Principle means that the maximum and minimum values of f are 0. Thus, f =0
forall x € S, s0 g = h. a

Theorem 3.5. The function modeling a simple random walk in one dimension is
harmonic.

Proof. Define S ={0,1,...,n}, I ={1,2,...,n—1}, and B = {0,n}. In a simple,
one dimensional random walk on the integers, let p : S — R be defined by letting
p(x) be the probability that that the walker, starting at a given point x, gets to n
before 0. Note that p(n) = 1 and p(0) = 0 by definition. There is a 1/2 chance of
moving to the left and a 1/2 chance of moving to the right by 1 at any point « € I.
If the walker moves to the left, then the new probability of reaching n before 0 is
p(z — 1), and if the walker moves to the right, this probability is p(z + 1). We thus
have the relation that
p(e — 1)+ plo + 1)

p(z) = (1/2)p(z = 1) + (1/2)p(x + 1) = 5 :

Therefore, p(x) is harmonic. (]

4. ELECTRICAL NETWORKS

4.1. Basic Facts. The following facts of physics will not be proven in this paper
[1]. If you are already familiar with basic circuits, feel free to skip this section.

Fact 4.1.1 (Kirchoff’s Loop Laws).

(1) Let x be a point on a circuit. The current flowing into x is equal to the
current flowing out of x.
(2) In any closed circuit, the sum of the potential differences is zero.

Fact 4.1.2 (Ohm’s Law). The potential difference v across a resistor is equal to
the product of the current i and the resistance R. In other words, v = iR.

Additionally, one fact about resistors is necessary.

Fact 4.1.3. When adding resistors in series (one after another),

n
Rtotal = E Ri~
=1

4.2. Electrical Functions. First, we must describe the circuit. Take a simple,
one-dimensional graph with n vertices {0,1,...,n}. Put a resistor between every
pair of adjacent vertices (7,7 + 1) with all resistors having equal resistance. Apply
a 1 volt potential difference to the circuit. Note that the current travels such that
it hits the vertex n first and the vertex 0 last. Ground the vertex z = 0 such that
v(0) = 0. Therefore, v(n) = 1.

Lemma 4.2.1. The voltage across a simple one-dimensional circuit (resistors con-
nected in series) is a harmonic function.
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Proof. By Ohm’s Law, between points a and b on a circuit that are connected by
a resistance R, the current is

)=o)
ab — R .
By Kirchoff’s Loop Law, if « #£ 0,n,

v(e+1)—v() wv()-—v(@-1)
R R

Multiplying by R, we have
vie+1)—v(x) —v(x) —v@—-1)=0

as well. Solving for v(z) yields

v(ix+1)+ov(x—1)
5 .

Therefore, v is harmonic. O

v(z) =

Theorem 4.2.2. The simple random walk and the voltage across this circuit are
the same; that is, the function p from Section 2 is equal to the function v.

Proof. Both v and p are harmonic. Since p(0) = v(0) = 0 and p(n) = v(n) = 1,
their boundary values are equal. Therefore, by the Uniqueness Principle, v = p. 0O

4.3. Effective Resistance and Recurrence. If there is a voltage between points
x and y such that the voltage v, = v and v, = 0, then by Ohm’s Law, a current
will flow into z. Let
Iy = Z inv
n

which is the sum of the current flowing from x to the points connected to x.

Definition 4.3.1 (Effective Resistance). By Ohm’s Law, the effective resistance
R. between x and y in the circuit is

R, =
iz

An important fact to note about effective resistance is that the actual voltage
applied does not affect the effective resistance.

We now consider a one dimensional random walk and sketch a proof of recurrence
using the language of electrical networks.

Since this is an electrical network, positive charges flow from the positive terminal
of the voltage supply to the negative terminal.

First, we explain how current can be interpreted in a probabilistic manner. Con-
sider a circuit where the point a is at the positive terminal of a 1 volt voltage source
and b is at the negative terminal. Between x and y where x and y are points on the
circuit between a and b, the current between x and y is equal to the the expected
number of times a walker who starts at a will pass along the part of the circuit
between x and y before reaching b.

We can now get to the proof. Consider a finite one dimensional lattice consisting
of the integer vertices from —k to k such that between adjacent vertices, there is a
one Ohm resistor. Connect both sides of the lattice to the negative terminal of the
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voltage source, which applies a one volt potential difference. Since these resistors
are all in series, the effective resistance from 0 to k is

k
> Ri=k
i=1

where R; = 1 for all . Also, note that for the circuit as a whole, v = iR, = i =
v/Re. Thus, as k — oo, R, — 00. Accordingly,

indicating that the current in the system goes to zero. Accordingly, there is no
current flowing through the system. As discussed above, the lack of current indi-
cates that the probability a walker can go infinitely far away from the origin before
returning is zero, and thus the random walk is recurrent.
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