
INTEGRATION ON MANIFOLDS

SHIV SUBRAMANIAM

Abstract. The primary goal of this paper is to define the notion of integra-
tion on a k-dimensional manifold and to discuss the machinery required to
do so. The majority of the rigorous definitions and proofs that follow involve
manifolds embedded in an ambient space – specifically, in Rn. However, it is
also possible to talk about abstract manifolds, which are not embedded in any
such ambient space. It can be shown that the theory of integration on abstract
manifolds is merely a generalization of the theory of integration on manifolds
embedded in Euclidean space. Therefore, some abstract generalizations of the
definitions involving Rn are also discussed.
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1. Defining a Manifold

Intuitively, a smooth manifold is a space that, when examined closely enough,
looks like Euclidean space. In this regard, manifolds provide a natural setting for
defining many of the usual notions of calculus, including differentiation, tangent
spaces, vector fields, differential forms, and integration. To begin our discussion,
we need the definitions of a diffeomorphism and a k-dimensional manifold in Rn:

Definition 1.1. If U and V are open sets in Rn, a diffeomorphism is a smooth
(i.e., infinitely differentiable) function h : U → V with a smooth inverse h−1 : V →
U .

Definition 1.2. A subset M of Rn is called a k-dimensional manifold (in Rn)
if for every point x ∈ M , there is an open set U containing x, an open set V ⊂ Rn,
and a diffeomorphism h : U → V such that

h(U ∩M) = V ∩ (Rk × {0}) = {(y1, . . . , yn) ∈ V : yk+1 = · · · = yn = 0}.
In other words, U ∩M is equivalent to Rk, ‘up to diffeomorphism.’
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We will use this definition of a manifold as we formally build up the machinery
required to integrate on a manifold. However, it should also be noted that our
definition need not rely on Rn as an ambient space. In fact, it is possible to define
diffeomorphisms and manifolds in this abstract sense:

Definition 1.3. A function f is a diffeomorphism if it is bijective and smooth
and if its inverse is also smooth.

Definition 1.4. An abstract manifold of dimension k is a second countable
Hausdorff space M , together with an open cover (Ui) of M , and homeomorphisms
ϕi : Ui → Rk such that each ϕj ◦ ϕ−1

i is a diffeomorphism from ϕi(Ui ∩ Uj) to
ϕj(Ui ∩ Uj).

Now, for a subset in Rn, the Euclidean definition of a manifold (Definition 1.2)
and the abstract definition of a manifold (Definition 1.5) are equivalent. One
direction of this fact is proven below:

Theorem 1.5. Suppose M is a set in Rn. If M satisfies the Euclidean definition
of a manifold, then M satisfies the abstract definition of a manifold as well.

Proof. We know that for each point x ∈ M , there is a diffeomorphism h : U →
V between sets U, V ∈ Rn as in Definition 1.2. (Note that here we are using
“diffeomorphism” as we have defined it in Definition 1.1). Take (Ui)i∈J , which is
an open cover of M . For each Ui, we define

ϕi = h|Ui∩M : Ui ∩M → Vi ∩ (Rk × {0}).
Clearly ϕi is a bijective, continuous function whose inverse is also continuous. Thus
(ϕi)i∈J is a collection of homeomorphisms. For all i, j ∈ J , we have the map ϕj◦ϕ−1

i

defined on an open subset of Vj∩(Rk×{0}). We can extend this map’s domain to an
open subset of Vi with the function h◦h−1. Since this function is a diffeomorphism,
one can show that its restriction ϕj ◦ ϕ−1

i is also diffeomorphism. !
The other direction of the proof – that Definition 1.5 implies Definition 1.2

– makes use of the Whitney embedding theorem, which states that any manifold
can be smoothly embedded in Rn

Although we will not rigorously define integration on abstract manifolds, the
abstract analogues of definitions involving Rn will be discussed as appropriate.

2. Tangent Spaces

Another important characterization of a manifold in Rn uses the notion of co-
ordinate systems, or charts. First we will define a coordinate system:

Definition 2.1. Let U be an open set in Rn, x ∈ U , and W be an open set in Rk.
Then the function f : W → Rn is called a coordinate system, or chart, around
x if f is injective and smooth and if the following hold:

1) f(W ) = M ∩ U,
2) For all y ∈ W, Dfy has rank k for each y ∈ W,
3) f−1 : f(W ) → W is continuous.

Based on this definition, the following claim can be made about manifolds: a
subset M of Rn is a k-dimensional manifold if and only if for all x ∈ M , there are
open sets U and W and a function f : W → Rn which satisfy the definition above
(a proof for this statement can be found in [1]). This characterization emphasizes
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that the derivative of any point in W always has full rank, which will help us greatly
in understanding the important notion of a tangent space, explained below.

Consider a point x ∈ M , and a coordinate system f : W → Rn around x such
that x = f(a). (The notation (Rn)x will henceforth denote the set {(x, v)|v ∈ Rn)},
and vx will henceforth denote (x, v).) Since f is a coordinate system, the derivative
of f at the point a has full rank; therefore, Daf is injective. So Daf(Rk)a is
a k-dimensional subspace of (Rn)x, which we call the tangent space to M at
x, denoted by TxM . (Note that the tangent space to a point is independent of
the particular chart chosen at that point: if we chose another coordinate system
g : V → Rn around x such that g(b) = x, then we would have

Dbg(Rk)b = Daf(Db(f−1 ◦ g)(Rk)b) = Daf(Rk)a,

which shows that our notion of a tangent space is well defined.)

The abstract notion of a tangent space is constructed using a type of function
called a derivation, a linear map that generalizes certain features of the derivative.
More specifically, a derivation is a linear operator D, from the space C∞ to R that
satisfies the Leibniz rule; that is, D(ab) = a(Db) + b(Da). Now, consider all the
smooth curves that pass through a point x on a manifold M . Then the derivations
of these curves at x yield directions that span a vector space, which we define to
be the tangent space TxM .

It is easy to see that TxM , as we defined it earlier, must consist of vectors tan-
gent to curves in M passing through x; therefore, we can understand intuitively
why this way of defining a tangent space is equivalent to our previous method.

The existence of a tangent space at each point on a manifold can be conceptual-
ized in the following way: if we looked closely enough at the neighborhoods around
each point on a 2-dimensional manifold, we would find that in these regions, the
manifold appeared ‘flat’ – specifically, it would appear reminiscent of Euclidean
space. Since integration is already defined in Euclidean space, our strategy for
defining integration on manifolds will be to connect this known definition with the
notion of Rn-like tangent spaces.

3. Vector Fields and Differential Forms

First we review some definitions that are important for defining integration in
Rn.

Definition 3.1. A vector field is a function F : Rn → (Rn)p that selects a vector
at each point.

If (e1)p, (e2)p, . . . (en)p is the standard basis for (Rn)p, then any vector field F (p)
can be expressed as F (p) = F 1(p) · (e1)p + F 2(p) · (e2)p + . . . + Fn(p) · (en)p. The
vector field F is defined to be smooth if each F i is smooth.

Definition 3.2. A differential k-form is a function ω : Rn → Λk((Rn)p) that
selects an alternating k-tensor at each point.
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If (e1)p, (e2)p, . . . (en)p is the basis for the dual space of (Rn)p, then any differ-
ential form ω(p) can be expressed as

ω(p) =
∑

i1<i2<...<ik

ωi1,i2,...ik(p)ei1(p) ∧ ei2(p) ∧ . . . ∧ eik(p).

The differential form ω is defined to be smooth if each function ωi1,i2,...ik is smooth.

The relationship between vector fields and differential forms can be described
in the following way: at each point, the differential form selects a k-tensor, which
‘eats’ the particular vector selected by the vector field. Thus, applying a differential
k-form to a k-tuple vector field yields a number at every point.

Now, we would like to talk about vector fields and differential forms as they
relate to our discussion of manifolds. In order to do so, we need to modify our
definitions appropriately. Firstly, note that each tangent space behaves exactly like
a vector space. Thus, a vector field on the entire manifold will be a function from
the manifold to the set of all tangent spaces to the manifold, which we call the
tangent bundle and denote TM . Additionally, we must be careful that at each
point on the manifold, the vector field selects a vector in the tangent space at that
point. With these considerations, we have the following definition:

Definition 3.3. A vector field on a manifold M is a function F : M → TM
that selects a tangent vector at each point on the manifold; that is, such that
F (x) ∈ TxM .

Again, we can express any vector field F as a linear combination of the bases
of the tangent spaces contained in TM with some scalars F i(p). As usual, F is
smooth if each F i is smooth. In fact, TM is a manifold in its own right, and, as
an alternative criterion for smoothness, it can be shown that F is a smooth vector
field if and only if it is a smooth function of manifolds.

We define differential forms on manifolds in a similar way:

Definition 3.4. A differential k-form on a manifold M is a function ω : M →
Λk(TM) that selects a alternating k-tensor at each point of the manifold; that is,
such that ω(x) ∈ Λ(TxM) for each x ∈ M .

Let ω be a k-differential form on M . If f : W → Rn is a chart on M , then the
pullback f∗ω is a k-differential form on W . We define ω to be smooth if f∗ω is
smooth.

4. Integration on Manifolds

we can define integration on manifolds. Again, we begin by reviewing some
definitions that are important in defining integration in Rn.

Definition 4.1. A singular n-cube in a subset A ⊂ Rn is a continuous function
c : [0, 1]n → A. An n-chain is a finite sum of singular n-cubes with integer
coefficients of the form α1c1 + α2c2 + . . . + αncn.

In Rn, we define integration of a differential form ω over a singular k-cube c in
A in the following way: ∫

c
ω =

∫

[0,1]k
c∗ω,
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and we define integration of ω over a chain c =
∑

i aici in A in the following
way: ∫

c
ω =

∑

i

ai

∫

ci

ω.

As expected, integration on a manifold M will be defined in almost precisely the
same way, with the specification that the singular n-cube maps into the manifold;
that is, c : [0, 1]n → M .

Thus the formal definition of integration over a singular p-cube in a manifold
is as follows: Let ω be a p-form on a k dimensional manifold M , and let c be a
singular p -cube in M . Then

∫

c
ω =

∫

[0,1]p
c∗ω,

and integration over chains is also precisely the way we defined it before.
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