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Abstract. This paper presents a brief introduction to algebraic geometry and

provides several theorems and lemmas with proofs, along with many examples

that allow one to gain a deeper intuitive understanding of the material. Fi-
nally, having worked through the prerequisites, this paper demonstrates an

elementary proof of the Riemann–Roch Theorem, which is a vital tool to the

fields of complex analysis and algebraic geometry. It is used for the computa-
tion of the dimension of the space of meromorphic functions with prescribed

zeroes and allowed poles. It also relates the complex analysis of a compact,

connected Riemann surface with the surface’s purely topological genus, in a
way that can be carried over into purely algebraic settings.
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Some preliminaries for this article can be found at [1], Preliminaries. Necessary
information on coverings can be read at [3], Ch.5.

1. Introduction to Riemann surfaces

In order to understand the statement and proof of the Riemann–Roch Theorem,
one must first state several basic definitions about Riemann surfaces, hence:

Definition 1.1. A Riemann surface is a one-dimensional, connected, complex man-
ifold. This means that every Riemann surface is a union of connected open subsets,
which are homeomorphic to open sets in C (these homeomorphisms are called [local]
charts, and the full collection of such charts is called an [complex] atlas). More-
over, for each two such neighborhoods having a non-empty intersection, there must
exist a conformal isomorphism between the two images of the intersection created
correspondingly by two individual neighborhood isomorphisms.

A more formal definition of a [complex] atlas and [local] charts can be found at
[1], Definition 2.1.1.
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2 VALERIYA TALOVIKOVA

Any conected open set in C is also is a non-compact Riemann surface. An atlas
of such surfaces can contain just one chart and unlike more complicated surfaces
there is no necessity in change of coordinates.

Remark 1.2. In the following, unless explicitly stated otherwise, we assume that
our Riemann surfaces are compact topological spaces.

Definition 1.3. Any compact Riemann surface is homeomorphic to a sphere with
g > 0 handles attached, and the number g is called the genus of the Riemann
surface.

In particular, the simplest example of a compact Riemann surface is the Riemann
sphere (i.e. a sphere with zero handles).

Fact 1.1 (Riemann Classification Theorem). Every compact Riemann surface is
homeomorphic to a sphere with g handles for a certain g. A sphere with zero
handles is simply a sphere. A sphere with one handle homeomorphic is to a torus.
The proof of this Theorem can be found at [3], Ch 1. Another example of a compact
Riemann surface is a torus. The proof that a torus is, in fact, a Riemann surface
can be found at [1] (Example 2.2.3, Proposition 2.2.4).

Definition 1.4. The Riemann sphere is the set C = C∪∞ with the neighborhoods
U0 = C and U1 = (C\ {0}) ∪ {∞} and corresponding charts given by:

φ0(z) = z and φ1(z) =

{
1
z , if z 6=∞
0, if z =∞

The proof that Riemann sphere is, indeed, a Riemann surface can be found at
[1] (Proposition 2.2.2).

2. Holomorphic and meromorphic functions on Riemann surfaces

Definition 2.1. (Cf. [1], Definition 2.3.1) Let X and Y be Riemann surfaces that
are not necessarily compact. A function f : X → Y is called holomorphic if for
all charts φ : U1 → V1 on X, and ψ : U2 → V2 on Y the function ψ ◦ f ◦ φ−1 is
holomorphic (in usual sense) on φ(U1 ∩ f−1(U2)).

Proposition 2.2. Let X be a compact Riemann surface. If f : X → C is holo-
morphic, then f is constant.

Proof. Can be found at [1], Theorem 2.3.3. �

Definition 2.3. Let X be a Riemann surface that is not necessarily compact. A
function f on X is called meromorphic if f is holomorphic on X\S, where S ⊂ X
is a discrete (possibly empty) subset of X, and f has poles at every point x ∈ S.
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Obviously, any holomorphic function is also meromorphic; the sums, differences,
products, and quotients of two meromorphic functions are also meromorphic.

Proposition 2.4. There exists a natural bijection between the set of meromorphic
functions on a Riemann surface X, which is not necessarily compact, and the set
of holomorphic functions (maps) from X to C.

Proof. If f is our meromorphic function on X, and S is the set of its poles, we
can define a map f̄ : X → C by the following rule: f̄(x) = ∞, if x ∈ S, and
f̄(x) = f(x), otherwise. It is easy to see that f̄ is holomorphic: for x /∈ S, there
is no contradiction because f is already holomorphic at x. If x ∈ S, then the
composition of f with the chart φ1 : U1 → C is z 7→ 1

f(z) , and if f has a pole at
x, then 1

f(z) is bounded in the neighborhood of x and can be made holomorphic in
accordance with the removable singularity theorem. Thus, f̄ is also holomorphic
(since its local representation in the neighborhood of x is.) The converse is also
true: if we have a holomorphic map f̄ , we can easily build a meromorphic function
f by restriction of f̄ to pre-images of C. Using same ideas we can see that f has
poles in the points at the pre-images of ∞. �

Fact 2.1 (Riemann’s Existence Theorem). Every compact Riemann surface admits
a non-constant meromorphic function. The proof of the Theorem can be found at
[10].

Definition 2.5. If f : X → Y is a holomorphic map of Riemann surfaces and a is
a point of X, then we can find a local chart neighborhood U of a, defined by the
coordinate z, such that a corresponds to z = 0. We can similarly find a chart for
f(U) under which f(a) corresponds to zero. Under these coordinates, f in U will
be represented by a Taylor series cnzn + cn+1z

n+1 + · · · , where n ≥ 1. We will call
such coordinates local coordinates, and the corresponding Taylor series as the local
representation for f .

3. Coverings

Definition 3.1. A local homeomorphism π : M ′ → M , where M and M ′ are
manifolds, is called a covering if each x ∈M has a connected neighborhood V such
that every connected component of π−1(V ) is mapped by π homeomorphically onto
V . If π is clear from the context, we sometimes also call M ′ a covering space of
M , and π is the covering map. The homeomorphic copies in M ′ of the connected
neighborhood V are called sheets. For any point x ∈ M the inverse image of x in
M ′ is called the fiber over x.

For every x ∈M , the fiber over x is a discrete subset of M ′. If M is connected,
the fibers are homeomorphic and so there is a discrete space F such that the fiber
over each x ∈ M is homeomorphic to F . Moreover, for every x ∈ M there is a
neighborhood V of x such that its full pre-image π−1(V ) is homeomorphic to V ×F .
In particular, the cardinality of the fiber over x is equal to the cardinality of F and
it is called the degree of the cover π. Thus, if every fiber has n elements, we refer
to it as an n-fold covering.
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The following proposition gives a useful criterion to determine if a map is a
covering; its proof can be found at page 56 of [2].

Proposition 3.2. ([2], Proposition 7.2) Let f : M ′ →M be a surjective continuous
mapping of manifolds that satisfies the following conditions:

(1) f is a local homeomorphism
(2) for each compact subset K ⊂M , the set f−1(K) ⊂M ′ is also compact.

Then, f is a covering map and for each x ∈M the fiber of x is finite.

Definition 3.3. Let f be a holomorphic map from a Riemann surface X to a
Riemann surface Y and let a be a point of X. The winding number of f(X) with
respect to the point f(a) is a positive integer called the ramification index of a. If
the ramification index is greater than 1, then a is called a ramification point of f ,
and the corresponding value f(a) is called a (algebraic) branch point. Equivalently,
a is a ramification point with ramification index k if there exists a holomorphic
function φ defined in a neighborhood of a such that f(z) = φ(z)(z − a)k for some
positive integer k > 1. If z is a local coordinate, f can be presented as φ(z)zk.

Proposition 3.4. ([2], pg. 55) Let f be a holomorphic map from a Riemann
surface X to a Riemann surface Y ; then:

(1) f(X) = Y
(2) For each y ∈ Y , the fiber of y is a finite set.
(3) The number of ramification points on X is finite; If S ⊂ Y is the set

containing images of all ramification points of X, then restriction of f on
X\f−1(S)→ Y \S is a covering map.

(4) If the degree of this covering map equals n and f−1(y) = {x1, . . . , xk} is the
pre-image of a point y ∈ Y , then

∑k
i=1 ei = n, where ei is the ramification

index of xi.

Proof. (1) f(X) is closed in Y , because X is compact and f is continuous, and
f(X) is open in Y , because f is holomorphic. Since Y is connected, it must
be that f(X) = Y .

(2) f−1(y) cannot have an accumulation point x0 in X (otherwise, f would be
constant in a neighborhood of x0 and, hence, everywhere). So, f−1(y) is
discrete and (since X is a compact) finite.

(3) From the local representation viewpoint,a ramification point is a zero of a
derivative of f (with f presented locally as φ(z)zk). By the same reasoning
zeroes of the derivative cannot have an accumulation point (otherwise, the
derivative will be zero everywhere, and f would be a constant). So, again
this set is discrete and finite. To prove that restriction of f to X\f−1(S)→
Y \S is a covering map we can use 3.2, with M ′ = X\f−1(S) and M = Y \S.
Second condition of 3.2 is satisfied because X is compact.

(4) We can find neighborhoods Ui for each xi such that the local representation
for f in Ui behaves like zei , so restriction of f on Ui\{xi} covers its image
ei times. Since, for all points y′ close enough to y, we have f−1(y′) ⊂ ∪iUi,
the equality

∑k
i=1 ei = n follows from the fact that all points y′ 6= y close

enough to y have n pre-images.
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�

Proposition 3.5. The number of zeroes is equal to the number of poles for any
meromorphic function on a Riemann surface.

Proof. In virtue of 2.4 to the meromorphic function f corresponds a holomorphic
map f̄ from our Riemann surface X to C. By 3.4, to f̄ corresponds a covering map
from X to C and the degree of the covering map is the number of pre-images for
any point of C counted with multiplicities (ramification indexes).

The degree is the same for every point, in particular, for 0 and ∞. Thus, the
number of pre-images of 0 counted with multiplicities (zeroes of f) is the same as
the number of pre-images of ∞ counted with multiplicities (poles of f). �

Theorem 3.1. Fundamental Theorem of Algebra Every non-constant, single-variable,
degree-n polynomial with complex coefficients has n complex roots (counted with
multiplicities).

Proof. Our polynomial f is a meromorphic function f(z) = w on the Riemann
surface C(the details can be found in [2], Lecture 6). Hence, f has to have as many
zeroes as poles (counted with multiplicities). Clearly, f has just one pole of order
n (at infinity), so the number of zeroes of f also is n. �

Definition 3.6. We can define the Euler characteristic for a Riemann surface X
in the following way. Let us triangulate the Riemann surface (we assume that this
is always possible). The Euler characteristic of the surface is then χ = V −E + F ,
where V , E, and F are respectively the numbers of vertices, edges, and faces of our
triangulation. It is well-known that Euler characteristic χ is a topological invariant
and, in particular, does not depend on the triangulation itself.

It is also well-known that if the genus of our Riemann surface is equal to g, then
χ = 2−2g. (For the proof, we could describe our Riemann surface as a sphere with
g handles, triangulate it, and find the Euler characteristic directly).

Theorem 3.2. Riemann-Hurwitz formula (Cf. [2], pp.57, 58) Let f : X → Y be a
non-constant holomorphic map of one compact Riemann surface into another. If
degf = n, the genus of X is equal to g(X), the genus of Y is equal to g(Y ), and f is
ramified at m points on X with indexes of ramification e1, . . . , em correspondingly.

(3.7) 2− 2g(X) = n(2− 2g(Y ))−
m∑

i=1

(ei − 1).

Proof. We will triangulate the surface Y in such way that all branch points are
among the vertices of the triangulation. Then, f will provide for a branched covering
map from X to Y . If V , E, and F are correspondingly the number of vertices,
edges and faces of the triangulation, then the Euler characteristic χ = 2− 2g(Y ) =
V − E + F . If we consider the pre-image of our Y triangulation on X, we will
get a triangulation on X, with the number of edges E′ = nE, the number of faces
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F ′ = nF and the number of vertices V ′ = nV −
∑m

i=1 (ei − 1) (because a single
branch point i will correspond to ei regular points).

Now, we can calculate the Euler characteristic for X. It is:

2−2g(X) = V ′−E′+F ′ = nV −
m∑

i=1

(ei − 1)−nE+nF = n(2−2g(Y ))−
m∑

i=1

(ei − 1).

�

4. Holomorphic and meromorphic 1-forms on Riemann surfaces

Definition 4.1. A holomorphic 1-form on a Riemann surface X is a complex
differential form of degree 1 on X that can be written in local coordinates as
ω = fdz, where function f is a holomorphic function of the local coordinate z.

If we change our coordinate in a holomorphic way: z = z(w), where z(w) is
a holomorphic function of argument w, then f(z)dz = f(z(w))z′(w)dw. So if a
1-form can be written as fdz with holomorphic f for some coordinate z, it can be
written this way for any coordinate.

Definition 4.2. A meromorphic 1-form on a Riemann surface X is a complex
differential form of degree 1 on X that is holomorphic on X\S, where S ⊂ X is a
discrete (possibly empty) subset ofX, such that any point a ∈ S has a neighborhood
U on which the restriction of ω can be written as fω′, where f is a meromorphic
function on U with a pole at a, and ω′ is a holomorphic 1-form on U .

Informally, a meromorphic 1-form ω is something that can be written in local
coordinates as f(z)dz, where f is a meromorphic function. ω has a pole at the
point a if and only if f(z) has a pole at a, provided that ω can be written as f(z)dz
in a neighborhood of the point a.

Proposition 4.3. If ω1 and ω2 are meromorphic 1-forms on a compact Riemann
surface X then there exists a meromorphic function f for which ω1 = fω2.

Proof. If in some neighborhood U ⊂ X our 1-forms can be written as ω1 = f1dz,
ω2 = f2dz, where f1 and f2 are meromorphic functions on U and z is a local
coordinate, we will set fU to be the meromorphic function f1/f2 on U . If in some
other neighborhood V ⊂ X having non-empty intersection with U , we have ω1 =
g1dw, ω2 = g2dw, then on U ∩ V we have g1 = f1 · (dz/dw) and g2 = f2 · (dz/dw),
so f1/f2 = g1/g2. Hence, the function f = f1/f2 is well-defined and ω1 = fω2. �

Proposition 4.4. The sum of the all residues for a meromorphic 1-form ω on any
compact Riemann surface X is 0.

Proof. Let a1, . . . , an be set of all poles of the 1-form ω. Since this set is discrete
we can surround every point ai with a small disk Di, which does not contain other
poles. On the set X ′ = X\∪ int(Di), our 1-form is holomorphic and closed. Hence,
by the Stokes Theorem we have:∑

i

∫
∂Di

ω =
∫

∂X′
ω =

∫
X′
dω = 0.
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�

Definition 4.5. The principal part at z = a of a function: f(z) =
∑∞

k=−∞ ak(z −
a)k is the portion of the Laurent series consisting of terms with negative degree.
That is,

∑−1
k=−∞ ak(z − a)k is the the principal part of f at a.

Proposition 4.6. Reverse Residue Theorem If we have a set of points {a1, . . . , an}
on a compact Riemann surface and also a set of principal parts {f1, . . . , fn}, then
the following are equivalent:

(1) There exists a meromorphic function f that has principal part fi at each
point ai and has no other poles.

(2)
∑n

i=1 Resai
fiω = 0 for all holomorphic 1-forms ω on our Riemann surface.

Proof. We will first prove the forward implication. If such a meromorphic function
f exists, then for any holomorphic 1-form ω, we have

∑n
i=1 Resai

fω = 0 by 4.4.
Now, f only has poles in points {a1, . . . , an}, and the principal part of f at ai is
equal to fi. Therefore the residue of f at the point ai is the coefficient of the z−1

term of the Laurent series fi. Taking into account that ω is a holomorphic 1-form,
and so multiplying by ω can only increase degrees but never decrease them, we have
Resaifω = Resaifiω and

∑n
i=1 Resaifiω = 0.

As to the reverse implication – follows from the Serre Duality (cf. [4], pg. 188).
�

We will need to make use of the following theorem, whose proof can be found at
[10].

Theorem 4.1. If the genus of Riemann surface X is equal to g, there exist on X
exactly g independent holomorphic 1-forms.

5. Divisors

Definition 5.1. A divisor is an element of a free abelian group generated by the
points of Riemann surface. Or, more simply stated, a divisor is a linear combination
of finite number of points with integer coefficients.

Since divisors are elements of an abelian group, they can be added, subtracted,
and multipled by integers. If D1 =

∑
a naa and D2 =

∑
amaa are divisors, then

D1 +D2 =
∑

a (na +ma)a. We can also compare divisors: D1 ≤ D2 if and only if
na ≤ ma for all a.

Definition 5.2. If D =
∑

a naa is a divisor, then the degree of D is the sum
deg(D) =

∑
a na. (Do not confuse the degree of a divisor with the degree of a

covering map!) Because deg(D1 + D2) = deg(D1) + deg(D2), we see that deg is a
homomorphism from the abelian group of divisors to the abelian group Z.
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Definition 5.3. If f is a meromorphic function on a (not necessarily compact)
Riemann surface X, and a is a point of X, we define the order of f at a as

orda(f) =

{
k, f has a zero of multiplicity k at a
−k, f has a pole of multiplicity k at a

For every meromorphic function f on a compact Riemann surface, there cor-
responds a divisor

∑
a orda(f)a over the (discrete and hence finite) set of points

where the function f has zeroes and poles.

Definition 5.4. The divisor
∑

a orda(f)a is denoted as (f) and called the principal
divisor for f .

It is obvious that (f · g) = (f) + (g) and (f/g) = (f)− (g).

Lemma 5.1. If f is a meromorphic function on a compact Riemann surface, then
deg((f)) = 0.

Proof. As we proved earlier in the paper, any meromorphic function on a compact
Riemann surface has as many poles (counted with multiplicities) as it has zeroes
(counted with multiplicities). Thus, by definition of ord and deg, deg((f)) = 0. �

Definition 5.5. If ω is a meromorphic 1-form on a (not necessarily compact)
Riemann surface X, and a is a point of X, we define the order of ω at a to be
orda(ω) = orda(fa), where fa is a local representation of ω at the point a, i.e. ω is
represented locally as fadz in a neighborhood of a.

Definition 5.6. The divisor
∑

a orda(ω)a is denoted as (ω) and called the canonical
divisor of the meromorphic 1-form ω.

It is obvious from the given definitions that if f is a meromorphic function and
ω is a meromorphic 1-form, then (f · ω) = (f) + (ω). Due to additivity of deg and
the previous lemma, we see that deg((fω)) = deg((f)) + deg((ω)) = deg((ω)).

Since, any meromorphic 1-form can be presented as any other meromorphic 1-
form multiplied by some meromorphic function, we see that all canonical divisors
have the same degree.

Lemma 5.2. If ω is a meromorphic 1-form on a compact Riemann surface X, then
deg((ω)) = −χ, where χ is the Euler characteristic of the Riemann surface.

Proof. Due to the remark above, it is enough to prove the lemma for any 1-form.
For our 1-form we choose df , where f is some non-constant meromorphic function
on our Riemann surface, which exists due to Riemann’s Existence Theorem (2.1).
We will consider f as a holomorphic map from X to C.

We may assume that there are no ramification points among pre-images of∞ ∈ C
– otherwise, we can “rotate” the Riemann sphere (using some Moebius transforma-
tion) and consider the combination of f with this “rotation” and its inverse.

Let us count deg(df). We will denote the covering degree of f by n, and ramifi-
cation indexes of f by e1, . . . , em.
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Our function f has exactly n simple poles (pre-images of ∞), and at each of
them the 1-form df has a pole of order 2 (because, d(1/z) = −1/z2). On the other
hand, zeroes of df are ramification points of the map f , and if the ramification
index at some point is equal to e, then df has a zero of order e − 1 at this point.
(Explanation: at this point the Taylor series for f starts with ceze, so, instead of e
pre-images, f has just one at this point; thus the local representation of df at the
point will start with ecez

e−1, i.e., it has a zero of order (e− 1).)
So, df has n poles of order 2 and m zeroes of orders e1−1, . . . , em−1. Summing

it all up, we get:

deg(df) =
m∑

i=1

(ei − 1)− 2n,

and this number is equal to −χ = 2g − 2 by the Riemann-Hurwitz formula. �

Definition 5.7. If D is a divisor, we define L(D) to be the set of all meromorphic
functions f for which (f) +D ≥ 0. Obviously, L(D) is a vector space over C, and
we define l(D) to be the dimension of this vector space. Similarly, I(D) is defined
as the set of all meromorphic 1-forms ω for which ω ≥ D. Obviously, I(D) is a
linear space over C, and i(D) is defined to be dimC(I(D)).

Corollary 5.3. If deg(D) < 0, then l(D) = 0.

Proof. Since any meromorphic function satisfies deg((f)) = 0, we see that L(D) = ∅
(there is no such function f such that (f) + D ≥ 0, otherwise we would have =
deg(D) = deg((f)) + deg(D) = deg((f) +D) ≥ 0.) Thus, l(D) = 0. �

Corollary 5.4. If the divisor D = 0, then l(D) = 1.

Proof. Indeed, the space of meromorphic functions f such that (f) ≥ 0 is just the
space of all holomorphic functions (no poles), i.e. the space of constants, which is
isomorphic to C. �

Lemma 5.5. The linear space I(D) is isomorphic to the space L(K −D), where K
is a canonical divisor. The linear space I(K −D) is isomorphic to the space L(D).

Proof. We shall prove that I(K −D) is isomorphic to L(D) first. We assume that
K = (ω) for some meromorphic 1-form ω.

If f is a meromorphic function, then (f) + D = (fω) − (ω) + D = (fω) −
(K − D). So, f ∈ L(D) = {g | (g) +D ≥ 0} if and only if fω ∈ I(K − D) =
{β | (β) ≥ K −D}. Thus, we have a map: (L(D)→ I(K −D)) given by f 7→ fω.
Since every meromorphic 1-form in I(K − D) can be presented as fω for some
meromorphic function, we similarly have an inverse function I(K − D) → L(D).
Since linearity of our map is obvious, we have an isomorphism between I(K −D)
and L(D) for any divisor D.

Now, if we substitute K−D instead of D, we will get isomorphism between I(D)
and L(K −D). �
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Lemma 5.6. The linear space L(K), where K is a canonical divisor, is isomorphic
to the linear space of all holomorphic 1-forms on the same Riemann surface.

From the previous lemma L(K) is isomorphic to I(K−K) = I(0) = {ω | (ω) ≥ 0},
which is obviously the space of all holomorphic 1-forms. From the previous lemma
and the Theorem 4.1 it follows that l(K) = dim(L(K)) = g.

Definition 5.8. Two divisors D1 and D2 on a Riemann surface are called linearly
equivalent if there exists a meromorphic function f defined on the same surface
such that D1 and D2 differ by its principal divisor (f), i.e., if D2 = D1 + (f).

Lemma 5.7. Linearly equivalent divisors have equal degrees.

Proof. If D2 = D1 + (f), then deg(D2) = deg(D1 + (f)) = deg(D1) + deg((f)) =
deg(D1), since deg((f)) = 0. �

Lemma 5.8. If divisors D1 and D2 are linearly equivalent, the space L(D1) is
isomorphic to L(D2), and the space I(D1) is isomorphic to I(D2).

Proof. Let us assume that D2 = D1 + (f) for a certain meromorphic function f .
If g is a meromorphic function and g ∈ L(D2), then (fg) + D1 = (f) + (g) +
D1 = (g) + D1 + (f) = (g) + D2. It follows that (g) + D2 ≥ 0 if and only
if (fg) + D1 ≥ 0. Therefore, we have a map L(D2) → L(D1). Since, f is a
meromorphic function, its inverse f−1 also is a meromorphic function, which clearly
provides us with the inverse map L(D2) 7→ L(D1). Since linearity is also obvious we
have an isomorphism between L(D1) and L(D2). The fact that I(D1) is isomorphic
to I(D2) is proved similarly.

�

6. Riemann–Roch Theorem

Theorem 6.1. (Riemann–Roch Theorem) If D is a divisor on a compact Riemann
surface of genus g, then l(D)− i(D) = deg(D) + 1− g.

There are several obvious implications of Riemann–Roch Theorem. If we assume
that it is valid (without proof), we actually can prove the theorem that there exist
exactly g holomorphic 1-forms on the Riemann surface X with genus g.

Indeed, if we take D = 0 and substitute it in the Riemann–Roch Theorem, we
will get:

l(0)− i(0) = deg(0) + 1− g.
Now, l(0) = 1 as we have established earlier, and deg(0) is simply 0, as it is the
sum of coefficients of the zero divisor.
i(0) = l(K), where K is a canonical divisor. As we know L(K) is isomorphic

to the space I(0) = {ω | (ω) ≥ 0}, which is the space of all holomorphic 1-forms.
Thus, the formula gives us:

1− i(0) = 0 + 1− g,
and we conclude that i(0) is equal to the dimension of the space I(0) = {ω | (ω) ≥ 0}
of all holomorphic 1-forms.
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Furthermore, if we substitute D = K into the Riemann–Roch formula, we will
get:

l(K)− i(K) = deg(K) + 1− g.
Since l(K) = i(0) = g, and i(K) = l(0) = 1 as mentioned above, we see that

g − 1 = deg(K) + 1− g.
Therefore we obtain the same formula deg(K) = 2g − 2 that was proven earlier.

Proof. The proof is done in three parts:
First we will prove the statement in the case where deg(D) ≥ 0. Consider a

divisor

D =
n∑

i=1

miai

with D ≥ 0.
Let V be the set of all tuples {f1, . . . , fn} of principal parts of the form

fi =
cmi

zmi
+ · · ·+ c−1

z
.

Obviously, V is a linear space over C of dimension deg(D).

(Example: Say D = 3a1 +2a2. Then V =
{(

c−3
z3 + c−2

z2 + c−1
z , d−2

z2 + d−1
z

)}
, and

dimC(V ) = 5 = deg(D).)
Let us create a map Φ : L(D)→ V that sends f ∈ L(D) to the tuple of principal

parts of f at the points ai.
Also, let us consider the kernel of Φ, which is the set of functions in L(D) that

are sent to 0. Since D ≥ 0, a function f with (f) ≥ −D that is in the kernel has
no principle parts at the points ai and can have no other other poles. This implies
that such an f is holomorphic and, therefore, constant. Thus dim(Ker(Φ)) must
equal 1, since only constant functions are in the kernel.

Now, if we let Im(Φ) = W , then we have

l(D) = dim(Ker(Φ)) + dim(Im(Φ)) = 1 + dim(W )

.
Next, we need to find out what dim(W ) is: W is a set of {fi} principal parts, such

that exist f ∈ L(D) with set of tails equal to {fi}. According to 4.6, such f exists if
and only if for all holomorphic 1-forms ω on our Riemann surface

∑n
i=1 Resai

fiω =
0. For each holomorphic 1-form ω we will consider the linear map λω : V → C
defined by {f1, . . . , fn} 7→

∑n
i=1Resai

fiω.
Now, W =

⋂
Ker(λω) is the intersection of the kernels of λω for all holomorphic

1-forms ω. It follows (due to the standard theorem from Linear Algebra), dim(W ) =
dim(

⋂
Ker(λω)) = dim(V )− dim({λω}), where {λω} is the linear space generated

by all λω.
We know that dim(V ) = deg(D), so dim(W ) = deg(D)−dim({λω}) and l(D) =

1 + dim(W ) = 1 + deg(D)− dim({λω}).
Next, we need to find dim({λω}). The dimension of {λω} is less than or equal to

the genus g, since we know that the number of independent holomorphic 1-forms
ω is g. Thus, one needs to consider the 1-forms that turn all principal parts, the
elements of our space V , to zero, because these will exactly correspond to maps λω

that do not contribute to the space generated by {λω}.
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To make the principal part cmi

zmi
+ · · · at ai to turn to zero we need to multiply

it by an ω which has ordai(ω) ≥ mi. This is true if and only if (ω) ≥ D, i.e.,
if and only if ω is in I(D). Thus, λω = 0 if and only if ω is in I(D), and so
dim({λω}) = g − i(D). From which follows, l(D) = 1 + deg(D) − g + i(D), as
desired.

Next, we will show that for all D, l(D)− i(D) ≥ 1 + deg(D)− g. Let a ∈ X be a
point on our surface. Obviously, deg(D−a) = deg(D)−1, so, if the inequality above
is true for some divisor D, it easy to see that l(D−a)−i(D−a) ≥ 1+deg(D−a)−g =
deg(D) + 1 − g − 1 = l(D) − i(D) − 1, and the inequality is true for the divisor
D − a too.

The idea is to take some divisor ≥ 0 and subtract from it point-by-point. In
fact, taking into account the equality established in Part I, in order to establish
our inequality, we just need to show that l(D − a)− i(D − a) ≥ (l(D)− i(D))− 1.

It is obvious that l(D) ≥ l(D − a) ≥ l(D) − 1 and i(D) + 1 ≥ i(D − a) ≥ i(D)
(since we only add/remove at most one coefficient/member at a single point - a),
so the worst case scenario occurs when l(D−a) = l(D)−1 and i(D)+1 = i(D−a),
because only in this case l(D−a)−i(D−a) = (l(D)−i(D))−2 (in all remaing cases
either l(D−a)−i(D−a) = (l(D)−i(D))−1 or l(D−a)−i(D−a) = (l(D)−i(D))).

We will show that this scenario is impossible: let us take f in L(D) \ L(D−a) and
ω in I(D−a) \ I(D). Such f and ω exist by our assumption that l(D−a) = l(D)−1
and i(D)+1 = i(D−a). Then, (f) ≥ −D, (f) < a−D, (ω) ≥ D−a, and (ω) < D.
Say, D = na + . . .. This implies that −n + 1 > orda(f) ≥ −n, which means that
orda(f) = −n.

Similarly, n > orda(ω) ≥ n−1, which implies orda(ω) = n−1. Thus, orda(fω) =
−n+ n− 1 = −1. In addition, for all b 6= a, ordb(fω) ≥ 0, because (f) ≥ −D, and
(fω) ≥ −a, which implies that the poles may be in a only. Indeed, orda(fω) = −1.

But now we have both
∑n

i=1 Resai
fω = 0 and Resa(fω) = c−1 6= 0 (for some

c−1, which cannot be equal to 0 because we have a pole of exactly first order), with
a being the only point where (fω) may have (and has) non-zero residue; but this
is a contradiction and implies that the worst case scenario never happens.

Thus, l(D− a)− i(D− a) ≥ (l(D)− i(D))− 1. This implies that for all divisors
D we have

l(D)− i(D) ≥ deg(D) + 1− g.

Finally, for the last part of the proof we use a clever trick to obtain the desired
equality for an arbitrary divisor D. We substitute K −D for D in the inequality
proved in Part II. Since l(K −D) = i(D) (see 5.5).

l(K −D)− i(K −D) ≥deg(K −D) + 1− g
i(D)− l(D) ≥deg(K −D) + 1− g
i(D)− l(D) ≥degK − deg(D) + 1− g
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Since degK = deg((ω)) = −χ = 2− 2g, we then have

i(D)− l(D) ≥2g − 2− deg(D) + 1− g = g − 1− deg(D)

l(D)− i(D) ≤deg(D) + 1− g
l(D)− i(D) =deg(D) + 1− g.

Combining this with the inequality from Part II proves the theorem for an arbitrary
divisor D.
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