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Abstract. In this paper, I will buildup the basic framework of Markov Chains

over finite state spaces using analytical techniques. In particular, we will

see how the study of Markov Chains over finite state spaces reduces to the
study of powers of matrices. Using this framework, I will prove that under

mild restrictions, Markov Chains converge to a unique stationary distribution.

Finally, I will discuss some interesting connections between Markov Chains
and Linear Algebra.
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1. Definitions and Preliminaries

For this paper, we are generally interested in a system that has finitely many
states. We define the state space Ω as the finite set of possible states of our sys-
tem. As a canonical example, the state space for a two sided coin is Ωcoin =
{Heads (H), Tails (T )}. Next we define an event A ⊆ Ω as a subset of the state
space. Continuing with the coin example, possible events for three coins would be:
{(H,H,H), (H,T,H), } and {(H,T, T )}. Given a state space Ω, a finite Markov
Chain moves, or transitions, between elements in the space in discrete times steps
according to a fixed probability distribution P (x, ·) for all x ∈ Ω. In this view, a
Markov Chain is a sequence of random of random variable X1, X2, . . . taking on
values in Ω. The defining property of Markov Chains is that the transition prob-
ability is fixed for each state x ∈ Ω, and hence not dependent on previous states.
Hence, we have for all x ∈ Ω, t ∈ N:

(1.1) P{Xt+1 = y|X0 = x0, . . . , Xt = xt} = P{Xt+1 = y|Xt = xt}.

From Equation 1.1, we see that any finite Markov Chain is completely specified
by its transition matrix P ∈ Mat|Ω|×|Ω| where Px,y is the transition probability
between states x → y. Given that we require the matrix to be stochastic, that is
for any state x ∈ Ω, we want the sum of the probability distribution over the entire
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state space to be 1. That is, for all x ∈ Ω:∑
y∈Ω

P (x, y) = 1.

In terms of matrices we require that all entries be non-negative, and the row sums
to be 1. In general however, the matrix need not be symmetric. Examining this
matrix we see that the k-th row is the distribution associated with transitioning
from the k-th state to any state, and similarly the j-th column is the probability
of transitioning from any state to the j-th state.

We are now ready to build up a computational framework. Suppose we have a
Markov Chain with transition matrix P . We define a probability distribution on
Ω as a row vector where the i-th entry is the probability associated with the i-th
state. Analogously, define a function as a column vector. In general, we define the
length of distribution, |π| as the number of coordinates; similarly, we define the size
of the state space, |Ω| as the number of possible states. Consider for example an
even distribution πeven across on the state space Ω = {xo, x1, x2, . . . , xn−1}:

πeven =
(

1
n
, . . . ,

1
n

)
, |πeven| = n,

and a distribution weighted completely at x1:

πx1 = (0, 1, 0, . . . , 0).

More generally, a distribution π is a row vector with entries πi = p(xi) It is not
difficult to see that a distribution π multiplied by a function f will yield the expected
value of the function with respect to π. In terms of matrices we have,

(1.2) π · f = (π1, π2, · · · , π|Ω|) · (f1, f2, · · · , f|Ω|) =
|Ω|∑
i=1

πifi = Eπ(f).

Diving deeper into the matrix machinery, we see that multiplying an initial distri-
bution π0 on the right by a transition matrix P will yield “tomorrow’s” distribution.
Extending this result to finite powers, we have:

(1.3) π0 · P t = (π0P ) · P t−1 = π1 · P t−1 = · · · = πt · P 0 = πt.

That is, the transition matrix specifies the time evolution of a probability distribu-
tion. We insert the transition matrix between a row and column vector to obtain:

(1.4) (π0P
t)f = πtf = Eπt

(f).

Evaluating what happens to a distribution and function under a finite number of
transitions is then reduced to evaluating finite powers of the associated transition
matrix. However, the natural question becomes what happens to π0 (or f) as
t→∞ ?

2. Convergence to Stationary Distributions

Before we begin, we will need to classify a few basic distributions and Markov
Chains. We say that a distribution π is stationary with respect to transition matrix
P if:

(2.1) π · P = π.
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We say a Markov Chain is irreducible if for any points x, y ∈ Ω there exists n ∈ N
such that:

(2.2) Pn(x, y) > 0.

The notion of irreducibility has a particularly clean interpretation if we consider
a weighted directed graph G = {Ω, E} with the vertex set as the state space, and
with edges between states of positive transition probability, and edge weights of
the corresponding transition probability. The notion of irreducibility corresponds to
connectedness of the associated graph. That is, there exists a finite path connecting
any two vertices, if and only if the Markov Chain is irreducible. Furthermore we
state a basic result as Proposition , the proof of which may be found in [1].

Proposition 2.3. If P is finite, irreducible and aperiodic, then there exists a integer
r such that P r(x, y) > 0 for all x, y ∈ Ω, that is for any Markov Chain under the
usual assumption, some power of the transition matrix will have strictly positive
entries.

Finally, we define total variation distance, which gives us a metric on the space
of distributions.

Definition 2.4 (Metric on space of Distirbutions). Given two probability distri-
bution π and µ we define the total variation distance as:

(2.5) ‖π − µ‖TV := max
A⊂Ω
|π(A)− µ(A)|.

We may prove an alternate formulation of 2.4 as:

(2.6) ||π − µ||TV =
1
2

∑
x∈Ω

|π(x)− µ(x)|.

To prove equivalence, consider the complementary events:

B+ := {x ∈ Ω : π(x)− µ(x) ≥ 0}
B− := {x ∈ Ω : π(x)− µ(x) < 0}.

Fix A ⊂ Ω. Consider:

(2.7) (π − µ)(A) = π(A)− µ(A) ≤ π(A ∩B+)− µ(A ∩B+) ≤ π(B+)− µ(B+),

where the first inequality follows since π − µ is positive on B+. Applying the
analogous logic to (µ− π)(A), we have:

(2.8) (µ− π)(A) ≤ µ(B−)− π(B−).

We also see immediately that if A = B+ or A = B− then the corresponding upper
bounds are sharp, and hence the maxA⊂Ω is obtained precisely for A = B+ and
A = B−. Now, since B+ t B− = Ω, we may add the inequalities and divide the
result by two:
(2.9)

max
A⊂Ω
|π(A)− µ(A)| = 1

2
[
π(B+)− µ(B+) + µ(B−)− π(B−)

]
=

1
2

∑
x∈Ω

|π(x)− µ(x)|.

Hence, we have that total variation distance corresponds to the maximum difference
in area between the two distribution.

Theorem 2.10. Let P be the transition matrix associated with an irreducible
Markov Chain over a finite state space Ω. Then:
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(1) there exists a stationary probability distribution π,
(2) the stationary distribution is unique, and
(3) (Convergence) there exists constants α ∈ (0, 1) and C > 0 such that:

max
x∈Ω
‖P t(x, ·)− π‖TV ≤ Cαt.

Proof. (1) First, fix x ∈ Ω and let µ be an arbitrary distribution. Now consider
the distribution formed by taking n > 0:

µn(x) :=
1
n

(µ(x) + (µP )(x) + · · ·+ (µPn−1)(x)) =
1
n

n−1∑
t=0

(µP t)(x).

This probability distribution is well defined. In particular it is stochastic.
To show this, consider a simple average of two distributions:

1
2

∑
x∈Ω

(π + µ)(x) =
1
2

[∑
x∈Ω

π(x) +
∑
x∈Ω

µ(x)
]

=
1
2
· [1 + 1] = 1.

This will obviously generalize to an average of n distributions. We now
want to find a bound on the change after an application of P . Hence,
consider

(2.11)

|(µnP )(x)− µn(x)| = 1
n

∣∣∣∣ n∑
t=1

(µP t)(x)−
n−1∑
t=0

(µP t)(x)
∣∣∣∣ =

1
n
|(µPn)(x)− µ(x)| ≤ 1

n
.

Where the inequality follows from the fact that we have a probability mea-
sure and hence the difference between any two probabilities is at most 1.
Now that we have our candidate, bounded sequence, we may apply Bolzano-
Weistrauss, which states that any bounded sequence in Rn has a convergent
sub-sequence. Here we use the fact that |Ω| <∞ and that all terms in the
row vector corresponding the distribution are necessarily finite. We take
our candidate stationary distribution π to be the pointwise limit of the
convergent sub-sequence µnk

. That is:

π(x) := lim
k→∞

µnk
(x).

We may now check explicitly that our candidate distribution is stochastic
and stationary. First, to show that the distribution is stochastic note that
we can interchange limits and finite sums. Consider:∑

x∈Ω

π(x) =
∑
x∈Ω

lim
k→∞

µnk
= lim
k→∞

∑
x∈Ω

µnk
= lim
k→∞

1 = 1.

Now to show π is stationary, fix x ∈ Ω. Consider:

π(x) · P − π(x) = lim
nk→∞

µnk
(x) · P − lim

nk→∞
µnk

(x) = 0,

by 2.5 and the condition that nk →∞
(2) We are now in a position to prove directly that the stationary distribution is

unique. Suppose, by contradiction there exists two stationary distribution
π1 and π2. Choose any x ∈ Ω. Since the matrix is irreducible, we have
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strictly positive transition probabilities. That is, for any y ∈ Ω, P t(x, y) >
0 for some t > 0. First, choose y ∈ Ω such that P (x, y) > 0. Hence consider:

(2.12)
π1(x)
π2(x)

=
π1(x)
π2(x)

· P (x, y)
P (x, y)

=
π1(y)
π2(y)

,

where the second equality follows from the fact that both π1 and π2 are
stationary. It is important to note at this point that a stationary distri-
bution must have strictly positive entries which follows immediately from
the irreducibility assumption. Similarly by the irreducibility assumption,
we have that this result holds for all points x, y ∈ Ω, and equality of the
stationary distribution is established transitively by equating neighboring
points. This logic is succinctly stated as:

(2.13)
π1(x)
π2(x)

=
π1(x)
π2(x)

· P
t(x, z)

P t(x, z)
=
π1(z)
π2(z)

,

for some t > 0 and all z ∈ Ω. Hence, we have for any state x, that the ratio
between the distributions is a constant, c. That is:

(2.14) π1(x) = c · π2(x).

Since any distribution must be stochastic, summing over all states x ∈ Ω
we have:

(2.15) 1 =
∑
x∈Ω

π1(x) =
∑
x∈Ω

c · π2(x) = c ·
∑
x∈Ω

π2(x) = c.

Since c = 1, we have that that distributions are equal on all states.
(3) Having shown existence (1) and uniqueness (2), we want to show that any

initial distribution will in fact converge to the unique stationary distribu-
tion. This proof will in general proceed by decomposing the transition
matrix P into two matrices Π and Q where Π will move the distribution
directly to the stationary distribution, and Q is just some matrix which
formally encodes the probability of not moving directly to stationary dis-
tribution. It is not difficult to see, directly from the definition, that once a
stationary distribution is achieved, the Markov chain will remain station-
ary. Since Π was constructed to move directly to stationary, we will want
to study the probability of picking Q by randomly choosing between Π and
Q. In particular, in order to show convergence we want the probability of
never picking Π to decay sufficiently fast as t→∞.

To proceed with the central theorem, let π be the stationary distribution,
and let Π ∈Mat|Ω|×|Ω| such that every row is the stationary distribution
π. We have from Proposition (2.8), there exists a sufficiently small δ > 0
such that:

P r(x, y) ≥ δ · π(y),

for all x, y ∈ Ω. We now define the matrix Q to satisfy the following:

(2.16) P r := (1− θ)Π + θQ,

where θ := 1− δ. We may check that Q is in fact a stochastic matrix, that
is every row sums to one. Note that Π is clearly a stochastic matrix, since
every row is a distribution, and P r is also stochastic since it is positive



6 ZSOLT TERDIK

power of the transition matrix P . Fix x ∈ Ω. Summing over the columns,
we obtain the row-sum of Q:∑
y∈Ω

Q(x, y) =
∑
y∈Ω

P r(x, y)− (1− θ)Π(x, y)
θ

=
1− (1− θ)

θ
= 1.

Now we prove by induction with respect to k that:

(2.17) P rk = (1− θk)Π + (θQ)k.

We start with that base case k = 1 which is true by from the definition of
Q in (2.9). Now assume (2.10) hold for k = n. For our induction step:

P r(n+1) = P rn · P r =
(

(1− θn)Π + θnQn
)
P r

= (1− θn)Π · P r + θnQnP r

= (1− θn)Π · P r + θnQn ·
(
(1− θ)Π + θQ

)
= (1− θn)Π · P r + θn(1− θ)QnΠ + θn+1Qn+1

= (1− θn)Π + θn(1− θ)Π + θn+1Qn+1

= (1− θn + θn − θn+1)Π + θn+1Qn+1

= (1− θn+1)Π + (θQ)n+1.

Hence, we have shown 2.10 for all k. Now, multiplying 2.10 through by P j

so that our result will include for all powers of P , not just multiples of k,
we obtain:

P rk+j −Π = θk(QkP j −Π).

Now, in order to compute ‖·‖TV we fix x ∈ Ω and sum the left and multiply
by 1/2 to obtain:

(2.18)
1
2

∑
y∈Ω

|P rk+j(x, y)−Π(x, y)| = ‖P rk+j(x, ·)− π‖TV .

Computing the total variation distance for the right hand side, we note
that:

‖QkP j(x, ·)− π‖ ≤ 1,

and hence we may bound (2.11) from above to obtain the desired result:

(2.19) ‖P rk+j(x, ·)− π‖TV ≤ θk.

To summarize, this shows that by decomposing the transition matrix (P )
into a matrix of stationary distributions (Π) and some other residue matrix
Q, we may force the total variation distance between distributions at time
t and the stationary distribution to decrease exponentially with respect to
t.

�

3. Markov Chains and Linear Algebra

Consider an n-gon W inscribed in the unit circle on C. Now, let the state space
Ω be the vertices:

Ω := {1, w, w2, . . . , wn−1}.
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Consider a Markov Chain that transitions between adjacent vertices with equal
probability. The transition matrix will be:

Px,y =

{
1
2 , if x is adjacent to y
0, else.

This corresponds to a simple random walk on the n-gon. We see, from the definition
of eigenfunction, that the following must be satisfied:

(3.1) Pf(wk) = λ · f(wk).

Since the probability of transitioning to each of the neighbors wk−1 and wk+1 is
1/2, we have:

(3.2) λ · f(wk) =
f(wk−1) + f(wk+1)

2
.

To find the eigenvalues, consider:
(3.3)

P (wjk) = (Pwj)(wk) =
wj(wk−1) + wj(wk+1)

2
=
wjk−j + wjk+j

2
= wjk

(
w−j + wj

2

)
.

Hence, w−j+wj

2 = cos(2πj/n) is an eigenvalue of wjk. However, this has a simple
geometric interpretation as the length of the projection of tomorrow’s vector wj+l

onto the initial vector wj .
In general, linear algebra proves to versatile tool in study of Markov Chains

precisely because a Markov Chain may be concretely represented as a transition
matrix. Finding the unique stationary distribution then amounts to finding the
eigenvector π with eigenvalue λ = 1. The second and higher eigenvalues may be
used to classify Markov Chains through spectral gap analysis. Furthermore, one
may obtain robust lower and upper bounds by analyzing the spectral gap. For
more information see [1], in particular Chapters 12 and 13.
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