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Abstract. Category theory provides a more abstract and thus more general
setting for considering the structure of mathematical objects. 2-dimensional
quantum field theories arise in physics as objects that assign vector spaces
to 1-manifolds and linear maps to 2-cobordisms. From a categorical perspec-
tive, we find that they are the same as commutative Frobenius algebras. Our
main goal is to explain this equivalence between the category of 2-dimensional
toplological quantum field theories and the category of commutative Frobenius
algebras.
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1. The main theorem

Our goal in this paper is to understand the equivalence of the category of commu-
tative Frobenius algebras and the category of 2-dimensional Topological Quantum
Field Theories. We state this equivalence first as a theorem to provide motivation
for the rest of our discussion and for ease of reference.

Theorem 1.1. The category of 2-dimensional Topological Quantum Field Theories
(2-TQFT) is equivalent to the category of commutative Frobenius algebras.

To understand this theorem we need to define both of these categories, and that
will be the focus of the next two sections.

2. The category of commutative Frobenius algebras

In this section we define the category of commutative Frobenius algebras over a
fixed field k. In order to do so we require a few preliminary definitions:
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Definition 2.1. An algebra is an vector space A over k, together with multiplica-
tion µ : A⊗k A → A and unit map η : k → A such that multiplication is associative
and unital, i.e. such that the following diagrams commute:

A ⊗k A ⊗k A
idA⊗µ !!

µ⊗idA

""

A ⊗k A

µ

""
A ⊗k A µ

!! A

A ⊗k k
idA⊗η !!

##!!!!!!!!!!! A ⊗k A

µ

""

A ⊗k A

µ

""

k ⊗k A
η⊗idA$$

%%"""""""""""

A A

Example 2.2. Let G = {idG = g0, g1, . . . , gn} be a finite group and k a field.
Let k[G] be the vector space over k with basis elements the elements of G. We
give k[G] an algebra structure by defining a unit map η : k → k[G] by 1 #→ g0 and
multiplication µ : k[G] ⊗ k[G] → k[G] by

∑
i kigi ⊗

∑
j kjgj #→

∑
i

∑
j kikj(gigj).

We check that this satisfies the above requirements for an algebra by calculating
that µ ◦ (idk[G] ⊗ µ) = µ ◦ (µ ⊗ idk[G]).

Definition 2.3. A coalgebra is a vector space A over a field k, together with co-
multiplication δ : A → A⊗k A and counit map ε : A → k such that comultiplication
is associative and unital, i.e. such that the following diagrams commute:

A ⊗k A ⊗k A A ⊗k A
δ⊗kidA$$

A ⊗k A

idA⊗kδ

&&

A
δ

$$

δ

&&

A ⊗k k A ⊗k A
idA⊗kε$$ A ⊗k A

ε⊗kidA!! k ⊗k A

A

''!!!!!!!!!!!
δ

&&

A

(("""""""""""

δ

&&

Example 2.4. Consider the vector space k[G] from 2.2. We can make this into
a coaglebra by defining a comultiplication δ : k[G] → k[G] ⊗ k[G] that sends each
basis element gi to gi ⊗ gi and a counit ε : k[G] → k that sends each basis element
gi to 1.

Definition 2.5. Let A be a k-algebra with multiplication µ : A⊗k A → A and unit
map η : k → A. A right A-module is a vector space M over k together with a map
α : M ⊗k A → M , such that α respects multiplication in A, i.e., such that following
diagrams commute:

M ⊗k A ⊗k A
idM⊗kµ!!

α⊗idA

""

M ⊗k A

α

""
A ⊗k A α

!! A
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M ⊗k A
α !! M

M ⊗k k

idM⊗kη

&& ))#########

A left A-module is defined similarly with a map α : A⊗k M → M that commutes
with the multiplicaiton and unit maps. We can check easily that A is both a left
and right A-module by replacing M above with A and α with µ.

Definition 2.6. If M and N are right A-modules with action maps α : M⊗A → M
and α′ : N ⊗ A → N , then a linear map φ : M → N is a right A-module homomor-
phism if it commutes with α and α′, i.e., if the following diagram commutes:

A ⊗ M
idA⊗φ !!

α

""

A ⊗ N

α′

""
M

φ
!! N

We define left A-module homomorphisms similarly. Now we can define a Frobe-
nius algebra.

Definition 2.7. A Frobenius algebra A is an algebra and a coalgebra such that
the coproduct δ is a left and right A-module homomorphism, that is, A is equipped
with unit map η : k → A and multiplication µ : A⊗A → A as in Definition 2.1 and
counit map ε : A → k and comultiplication δ : A → A ⊗ A as in Definition 2.3 such
that the following two diagrams commute:

A ⊗ A
idA⊗δ !!

µ

""

A ⊗ A ⊗ A

µ⊗idA

""
A

δ
!! A ⊗ A

A ⊗ A
δ⊗idA !!

µ

""

A ⊗ A ⊗ A

idA⊗µ

""
A

δ
!! A ⊗ A

We call the identities expressed in these diagrams the Frobenius relations.

A Frobenius algebra is commutative when the product and coproduct are com-
mutative. This means, if we define a map σ : A ⊗ A → A ⊗ A by a ⊗ a′ #→ a′ ⊗ a,
called the twist map, then A is a commutative Frobenius algebra if δ = σ ◦ δ and
µ ◦ σ = µ. In other words, we require these two diagrams to commute:

A ⊗ A
σ !!

µ
##$$$$$$$$$$ A ⊗ A

µ

""

A ⊗ A
σ !! A ⊗ A

A A

δ

&&

δ

((%%%%%%%%%%

We have now defined the objects of one of the categories in Theorem1.1, that of
commutative Frobenius algebras. Now we define the morphisms in this category.
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Given two Frobenius algebras A and A′, a Frobenius algebra homomorphism is an
algebra homomorphism φ : A → A′ that is also a coalgebra homomorphism, i.e. φ
respects multiplication and unit maps along with comultiplication and counit maps.

Example 2.8. Consider again the vector space k[G]. From Examples 2.2 and 2.4
we know that k[G] admits both algebra and coalgebra structures, so it makes sense
to check whether these two structures make k[G] into a Frobenius algebra:

In order for the counit map δ from Example 2.4 to be a map of right k[G]-
modules, we need (idk[G] ⊗µ)◦ (δ⊗ idk[G]) = δ ◦µ. Applying the left side to a basis
element gi ⊗ gj of k[G] ⊗ k[G] gives following:

(idk[G] ⊗ µ) ◦ (δ ⊗ idk[G])(gi ⊗ gj) = (µ ⊗ idk[G])(gi ⊗ gi ⊗ gj) = gi ⊗ gigj

Applying the right side to the same basis element gives the following:

(δ ◦ µ)(gi ⊗ gj) = δ(gigj) = gigj ⊗ gigj

However, gi ⊗ gigj %= gigj ⊗ gigj . Thus k[G] is not a Frobenius algebra under these
two structures.

If we instead define comultiplication by δ : g #→
∑

i ggi ⊗ g−1
i and counit by

ε : g0 #→ 1 and gi #→ 0 for i %= 0, then k[G] is indeed a Frobenius algebra (verification
of this is left to the reader). When G is abelian, this definition makes k[G] a
commutative Frobenius algebra.

3. The category 2-TQFT

In this section we define the objects and morphisms in the second category of
Theorem 1.1, the category 2-TQFT of 2-dimensional topological quantum field
theories. First we state the definition of the objects in 2-TQFT, then explain the
components of the definition.

Definition 3.1. A 2-dimensional topological quantum field theory (2-TQFT) is a
symmetric monoidal functor from the category 2-Cob of 2-dimensional cobordisms
to the category Vectk of vector spaces over a fixed field k.

Recall that a monoidal category is a category C together with a functor ! : C ×
C → C called the monoidal product, a unit object 1, an associativity isomor-
phism α : (X!Y )!Z → X!(Y !Z) for each X, Y , Z ∈ ob C, and isomorphisms
λ : 1!X → X and ρ : X!1 → X for each X ∈ ob C. Furthermore, these structures
are required to be coherent, meaning that λ and ρ are suitably related and α sat-
isfies MacLane’s pentagon axiom. A monoidal category is said to be symmetric if
there exists for each X, Y ∈ ob C a commutativity isomorphism γ : X!Y → Y !X.

We assume the reader is familiar with the definition of a symmetric monoidal
functor, and merely state that it is a functor between symmetric monoidal categories
that respects the monoidal product and above isomorphisms. We now define Vectk

and 2-Cob and provide their monoidal structures:

Definition 3.2. Let Vectk be the category whose objects are finite dimensional
k-vector spaces and whose morphisms are k-linear maps between them. Vectk is a
symmetric monoidal category with monoidal product ⊗k, unit object k, and twist
map σ : v ⊗ v′ #→ v′ ⊗ v. The associativity and unit isomorphisms α,λ and ρ are
provided by the universal property of the tensor product.

The definition of 2-Cob requires a few preliminary definitions.
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Definition 3.3. Let Σ1 and Σ2 be two closed, oriented 1-manifolds. An oriented
cobordism from Σ1 to Σ2 is a compact oriented 2-manifold M with two boundaries,
one designated the in-boundary, which we always draw on the top, and the other
designated the out-boundary, which we always draw on the bottom, together with a
smooth map f1 : Σ1 → M that maps Σ1 diffeomorphically onto the in-boundary of
M and a smooth map f2 : Σ2 → M that maps Σ2 onto the out-boundary of M . In
order for f1 and f2 to respect orientations, we require f1 to reverse the orientation
of Σ1 and f2 to preserve the orientation of Σ2.

We assume the result that every closed oriented 1-manifold is either empty or
the disjoint union of circles. Thus both boundaries are disjoint unions of circles,
including possibly the disjoint union of zero circles, or the empty 1-manifold. These
disjoint unions of circles will be the objects in 2-Cob. We still need one more
definition for the morphisms:

Definition 3.4. Let M and N be two oriented cobordisms from Σ1 to Σ2, and
let f1 : Σ1 → M , f ′

1 : Σ1 → M ′, f2 : Σ2 → M , f ′
2 : Σ2 → M ′ be diffeomorphisms

mapping Σ1 onto the in-boundaries of M and M ′ and Σ2 onto their out-boundaries.
Then M and M ′ are equivalent (in 2-Cob), that is, in the same diffeomorphism
class, if there exists an orientation preserving diffeomorphism g : M → M ′ such
that the following diagram commutes:

M ′

Σ1

f ′
1

**&&&&&&&&

f1

!! M

g

&&

Σ2

f ′
2

++''''''''

f2

$$

Now we define 2-Cob:

Definition 3.5. Let 2-Cob be the category whose objects are closed, oriented 1-
manifolds, and whose morphisms are diffeomorphism classes of oriented cobordisms
between them.

Thus, the objects in 2-Cob are disjoint unions of circles, with the empty manifold
being the disjoint union of 0 circles. We denote an object in 2-Cob as n, where n is
the number of disjoint circles. A morphism between two such objects, say between
m and n, is a diffeomorphism class of an oriented 2-manifold whose in-boundary is
the disjoint union of m circles and whose out-boundary is the disjoint union of n
circles. We define composition of two cobordism classes by pasting representatives
along their out and in boundaries, then passing to equivalence classes.

Next we give 2-Cob the structure of a symmetric monoidal category. We take
the disjoint union of cobordisms to get a functor ( : 2-Cob×2-Cob to 2-Cob and
let this be our monoidal product. We define for each Σ1,Σ2 ∈ ob2-Cob, the twist
map s : Σ1 ( Σ2 → Σ2 ( Σ1 to be the class of the twist cobordism:

Here, the trapezoids stand for copies of Σ1 × I and Σ2 × I twisting pass each
other. Finally we make the empty 1-manifold our unit object, and this makes
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(2-Cob, ∅,(, T ) into a symmetric monoidal category. A generating set for a
monoidal category C is a set of maps S such that every map in C is the com-
position and disjoint union of some elements of S. It is a result following from the
classification of surfaces that there exists a generating set for the category 2-Cob.
We state the result as a theorem, then discuss why it is true.

Theorem 3.6. The category 2-Cob is generated under composition and disjoint
union by the following morphisms: (we label the generators in order from left to
right: a : ∅ → 1, m : 2 → 1, i : 1 → 1, d : 1 → 2, e : 1 → ∅, and s : 2 → 2)

Our goal is to demonstrate that every cobordism is diffeomorphic to the com-
position and disjoint union of this set of generating morphisms. We will do this
by defining a normal form for a connected cobordism determined only by the num-
bers of in- and out- boundaries and the number of holes, and explaining why every
connected cobordism is diffeomorphic to some normal form. Then we explain why
every cobordism can be expressed as the disjoint union of connected components.

First we recall the classification of surfaces, that is, that two connected, compact,
oriented surfaces without boundary are diffeomorphic if and only if they have the
same genus (i.e. number of holes). For a surface with boundary, we define the genus
to be the number of holes of the surface after sewing in discs onto its boundary
components. Thus, to classify connected cobordisms, we need to also specify the
numbers of in-boundaries and the number out-boundaries components. This means
two connected 2-cobordims are diffeomorphic if and only if they have the same
genus, the same number of in-boundaries, and the same number of out-boundaries.

We define the normal form in the following way. Given a 2-cobordism with n in
boundaries, m out boundaries, and g holes, we define the normal form in three parts.
The first part we define as ((n−2i(m)◦((n−3i(m)◦ ...◦(i(m)◦m : n → 1. This
gives us n in boundaries. The middle part we define as (m◦d)◦ (m◦d)◦ ...◦ (m◦d)
where we have g copies of (m ◦ d). This part gives us g holes. The third part we
define as d◦ (i(d)◦ (i( i(d)◦ ...◦ ((m−2i(d) : 1 → m. This part gives us m out-
boundaries. The composition of the three parts gives us a connected cobordism
with n in-boundaries, m out-boundaries, and g holes. Thus we have a standard
way of expressing a diffeomorphism class of a connected 2-cobordism in terms of
the generating morphisms i, m, and d.

Now we consider cobordisms that are the disjoint union of connected cobordisms.
We need to show that permuting the order of the boundary components does not
change the diffeomorphism class of a surface. Let M and M ′ be two cobordisms with
the same numbers of in and out boundaries and the same number of holes, such that
the out-boundary components of M ′ are some permutation of the out-boundaries
of M . Since every permutation can be written as the product of transpositions, we
can compose the out-boundary of M ′ with the twist cobordism s in disjoint union
with the cylinder i to rearrange the boundary components of M ′ so that their order
matches those of M . Similarly we can rearrange in-boundary components.

We refer the reader to [1] for a more complete proof of the above result and of the
following. We also have what are called relations, or equivalent ways of expressing
a morphisms in terms of generators. The following is a complete list of relations in
2-Cob.
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These relations result from sewing a disc to one of the legs on a pair of pants:

∼= ∼= ∼= ∼=

m ◦ (a ( i) = i = m ◦ (i ( a) (e ( i) ◦ d = i = (i ( e) ◦ d.

We also have associativity and coassociativity relations:

∼= ∼=

m ◦ (i ( m) = m ◦ (m ( i) (d ( i) ◦ d = (i ( d) ◦ d.

We also have commutativity and cocommutativity relations:

∼= ∼=

m ◦ s = m s ◦ d = d.

Finally we have what is called the Frobenius relation:

∼= ∼=

(i ( m) ◦ (d ( i) = d ◦ m = (m ( i) ◦ (i ( d).

Generators make specifying a 2-TQFT easy, since we need only specify where
the TQFT sends the generating elements of 2-Cob. For example, consider the
morphism M = (a( i)◦ e◦m and a TQFT A. Since A is a functor, the following is
true: A((a( i)◦ e◦m) = A(a( i)◦A(e)◦A(m), and since A is a monoidal functor,
we have A(a( i)◦A(e)◦A(m) = A(a)⊗A(i)◦A(e)◦A(m). Since every morphism
in 2-Cob is the composition and disjoint union of the generating morphisms, if we
know where A sends the generating morphisms, we know where it sends all the
morphisms.

We also know how A acts on objects. A sends the circle, 1, to a vector space A.
Since it is a monoidal functor, A sends the disjoint union of n circles, n = 1(· · ·(1,
to A tensored with itself n times, A⊗ · · ·⊗A. Again, since A is monoidal, it sends
the empty union of circles ∅ to the field k. So a TQFT A is determined by where
it sends 1 and where it sends the generating morphisms.

We have defined the objects of 2-TQFT; now we define the morphisms.

Definition 3.7. A morphism α between two 2-TQFTs A → A′ is a natural trans-
formation of functors. By definition, this is a collection of morphisms αm : A(m) →
A′(m), for m ∈ ob2-Cob such that for all 2-cobordisms M : m → n, the following
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diagram commutes:
A(m)

αm !!

A(M)

""

A′(m)

A′(M)

""
A(n) αn

!! A′(n)

We now have the category of 2-TQFTs:

Definition 3.8. 2-TQFT is the category whose objects are 2-dimensional topo-
logical quantum field theories and whose morphisms are natural transformations
between them.

4. Proof of the main theorem

In this section we discuss the equivalence between the category of TQFT’s and
the category of commutative Frobenius algebras. We first recall what it means for
two categories to be equivalent.

Definition 4.1. A functor F from a category C to another category D is essentially
surjective if for every Y ∈ obD, there exists a X ∈ ob C and an isomorphism in D
from FX to Y .

Definition 4.2. A functor F from a category C to another category D is full if for
every pair X, Y ∈ ob C, F : C(X,Y ) → D(FX,FY ) is surjective.

Definition 4.3. A functor F from a category C to another category D is faithful
if for every pair X, Y ∈ ob C, F : C(X,Y ) → D(FX,FY ) is injective.

Definition 4.4. Two categories C and D are equivalent if there exists a functor
F : C → D that is full, faithful, and essentially surjective.

We define a functor F from 2-TQFT to the category Frobk of commutative
Frobenius algebras in the following way. Given a TQFT, A, define F (A) to be the
image under A of the circle, that is, let F (A) = A(1). This gives us a vector space
A = A(1), and we need to prove:

Proposition 4.5. A is a commutative Frobenius algebra.

Proof. Notice how the functor A acts on the generating morphisms of 2-Cob:
a : 0 → 1 is sent to a map η : k → A, m : 2 → 1 is sent to a map µ : A⊗A → A, the
identity i : 1 → 1 is sent to idA : A → A, d : 1 → 2 is sent to a map δ : A → A⊗A,
e : 1 → 0 is sent to a map ε : A → k, and finally s is sent to a map σ : A⊗A → A⊗A.
These maps will be the structure maps making A a commutative Frobenius algebra.

Since A is a symmetric monoidal functor, it preserves the relations among these
maps. For example, the (topological) Frobenius relation

(i ( m) ◦ (d ( i) = d ◦ m = (m ( i) ◦ (i ( d)

implies the (algebraic) Frobenius relation

(idA ⊗ µ) ◦ (δ ⊗ idA) = δ ◦ µ = (µ ⊗ idA) ◦ (idA ⊗ δ).

and this is exactly the requirement that δ be a map of left and right A-modules as
in the definition of a Frobenius algebra. The relations

m ◦ (a ( i) = i = m ◦ (i ( a) and (i ( e) ◦ d = i = (e ( i) ◦ d
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imply the unit and counit conditions:

µ ◦ (η ⊗ idA) = idA = µ ◦ (idA ⊗ η) and (idA ⊗ ε) ◦ δ = idA = (ε ⊗ idA) ◦ δ.

Similarly, (topological) associativity and coassociativity relations imply the alge-
braic associativity and coassociativity conditions. These are exactly what we re-
quire for A to be an algebra and a coalgebra, and thus A is a Frobenius algebra.
Finally the commutativity and cocommutativity relations imply that µ◦σ = µ and
σ ◦ δ = δ, i.e. that A is commutative Frobenius algebra. !

To define F on natural transformations between TQFTs, let α : A → A′ be
a natural transformation between two TQFTs. Then by the definition of α as a
natural transformation, we get a map α1 : A(1) → A′(1), which we can check is a
map of Frobenius algebras. Since A a symmetric monoidal functor, this map α1

determines all the other component maps, since each component αn will just be
α1 tensored with itself n times. Let F assign each natural transformation α to its
component function α1.

To check that α1 is a map of Frobenius algebras, consider what it means for α
to be a natural transformation. It means that given a 2-cobordism M from m to
n, we have A′(M) ◦αm = αn ◦A(M). In particular, this is true for M equal to the
generators a, m, e, and d. This tells us the following diagrams commute:

k
α0 !!

A(a)=η

""

k

A′(a)=η′

""

A ⊗ A

A(m)=µ

""

α2 !! A′ ⊗ A′

A′(m)=µ′

""
A α1

!! A′ A α1

!! A′

This shows that α1 is an algebra homomorphism. Similarly, we can draw di-
agrams with the generators e and d that show α1 is a coalgebra homomorphism.
Thus, F assigns each object A ∈ 2-TQFT to an object FA = A(1) ∈ Frobk

and each natural transformation α : A → A′ to a map of Frobenius algebras
α1 : A(1) → A′(1).

To complete the proof of Theorem 1.1, we will show that the functor F is an
equivalence of categories. First we check that F is essentially surjective. Given a
commutative Frobenius algebra A, we want to find a TQFT A such that F (A) ∼= A.
Define A on objects by sending ∅ to k, 1 to A, and n to A⊗n. Define A on
morphisms by assigning the generating morphisms of 2-Cob to the corresponding
maps in A, that is, send a to η, m to µ, and so on. The proof of Proposition 4.5
now shows that A respects the relations among the generating morphisms, so this
defines A on the whole category 2-Cob.

Now we check that F is full. Let A and A′ be two TQFTs. Let FA = A and
FA′ = A′ be the images in Frobk of A and A′, i.e. let A = A(1) and A′ = A′(1).
We need to show that for every Frobenius algebra homomorphism g : A → A′,
there exists a natural transformation α : A → A′, such that g = Fα. We can
construct such a natural transformation by merely defining α1 to be the function
g : A → A′ and for any object m in 2-Cob, defining αm to be the map g tensored
with itself m times. To check naturality we need to check that for any 2-cobordism
M : m → n we have αn ◦A(M) = A′(M) ◦ αm. This follows directly from g being
a Frobenius algebra homomorphism. For example let us consider the 2-cobordism
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M = (e ( i) ◦ d ◦ m:

We want α2 ◦ A(M) = A′(M) ◦ α2. This is equivalent to requiring the following
diagram to commute:

A ⊗ A
µ !!

g⊗g

""

A
δ !!

g

""

A ⊗ A

g⊗g

""

ε⊗idA !! k ⊗ A

id⊗g

""
A′ ⊗ A′

µ′
!! A′

δ′
!! A′ ⊗ A′

ε′⊗idA′

!! k ⊗ A′

The above squares commute because g is a Frobenius algebra homomorphism,
and so respects multiplication, comultiplication and unit maps. Since every cobor-
dism in 2-Cob can be expressed as the composition of generating morphisms, and
these are sent to the Frobenius algebra structure maps, such diagrams will all com-
mute.

To check that F is faithful we need to check that for every Frobenius algebra
homomorphism g : A → A′, if two natural transformations α,α′ : A → A′ map to
g, then α = α′. If both α and α′ map to g then α1 = α′

1 = g. But since the rest of
the component functions of α and α′ are determined α1 and α′

1 respectively, this
implies αn = α′

n for each object n ∈ 2-Cob.
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