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ALEXANDER TOLISH

Abstract. Newton’s Laws of Motion, which equate forces with the time-

rates of change of momenta, are a convenient way to describe mechanical

systems in Euclidean spaces with cartesian coordinates. Unfortunately, the
physical world is rarely so cooperative—physicists often explore systems that

are neither Euclidean nor cartesian. Different mechanical formalisms, like the

Lagrangian and Hamiltonian systems, may be more effective at describing
such phenomena, as they are geometric rather than analytic processes. In

this paper, I shall construct Lagrangian and Hamiltonian mechanics, prove
their equivalence to Newtonian mechanics, and provide examples of both non-

Newtonian systems in action.
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1. The Calculus of Variations

Lagrangian mechanics applies physics not only to particles, but to the trajectories
of particles. We must therefore study how curves behave under small disturbances
or variations.

Definition 1.1. Let V be a Banach space. A curve is a continuous map  :
[t0, t1] →V. A variation on the curve  is some function ℎ of t that creates a new
curve +ℎ. A functional is a function from the space of curves to the real numbers.

Example 1.2. Φ() =
∫ t1
t0

√
1 + ẋ2dt, where ẋ = d

dt , is a functional. It expresses

the length of curve  between t0 and t1.

Definition 1.3. A functional Φ is differentiable if Φ( + ℎ) − Φ() = F (ℎ) + R
where F is linear in ℎ and R is O(ℎ2). F (ℎ) is called the differential of Φ.
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Definition 1.4. An extremal of a differentiable functional Φ() is a curve  such
that F (ℎ, )=0 for all ℎ. It is conceptually akin to a critical point of a traditional
function.

Remark 1.5. Lagrangian mechanics is primarily concerned with the variations and

extremals of one particular form of functional, Φ() =
∫ t1
t0
L(x(t), ẋ(t), t)dt, where

L is a function differentiable in x, ẋ, and t. We would therefore be well advised to
pay close attention to this functional.

Theorem 1.6. Functionals of the form Φ() =
∫ t1
t0
L(x(t), ẋ(t), t)dt, where L is

differentiable in x, ẋ, and t, are themselves differentiable.

Proof.

Φ( + ℎ)− Φ() =

∫ t1

t0

L(x+ ℎ, ẋ+ ℎ̇, t)dt−
∫ t1

t0

L(x, ẋ, t)dt(1.7)

=

∫ t1

t0

[
L(x+ ℎ, ẋ+ ℎ̇, t)− L(x, ẋ, t)

]
dt(1.8)

=

∫ t1

t0

[
∂L

∂x
ℎ+

∂L

∂ẋ
ℎ̇

]
dt+O(ℎ2)(1.9)

=

∫ t1

t0

[
∂L

∂x
− d

dt

∂L

∂ẋ

]
ℎdt+

(
ℎ
∂L

∂ẋ

) ∣∣∣∣ t1t0 +O(ℎ2)(1.10)

= F (ℎ) +O(ℎ2) = F +R.(1.11)

□

So the differential of Φ is
∫ t1
t0

[∂L∂x−
d
dt
∂L
∂ẋ ]ℎdt+(ℎ ∂L∂ẋ )∣ t1t0 . We now wish to determine

the extremals of this functional, but before we do, we must establish an intermediate
lemma.

Lemma 1.12. If a continuous function f(t) satisfies
∫ t1
t0
f(t)ℎ(t)dt = 0 for any

continuous function h(t) provided ℎ(t0) = ℎ(t1) = 0, then f(t) ≡ 0.

Proof. Assume that
∫ t1
t0
f(t)ℎ(t)dt = 0 and 0 < c < f(t∗) for some t∗ ∈ (t0, t1). f is

continuous, so there exists an interval Δ around t∗ such that f(t)≥c for all t ∈ Δ.
Pick some d such that [t∗−d, t∗+d] ⊂ Δ. Define ℎ to be 0 outside of Δ, greater than

0 within Δ, and 1 within [t∗− d, t∗+ d].
∫ t1
t0
f(t)ℎ(t)dt ≥ cd > 0, which contradicts

our hypothesis; there cannot exist any t∗ such that f(t∗) is greater than zero. A
similar proof can be constructed for f(t∗) < 0, so f(t) must be exactly zero for all
t ∈ (t0, t1). □

Theorem 1.13. The curve  is an extremal of the functional Φ() =
∫
t1
t0
L(x, ẋ, t)dt

on the space of curves passing through x(t0) = x0 and x(t1) = x1 if and only if L
satisfies d

dt
∂L
∂ẋ −

∂L
∂x = 0 along the curve .

Proof. We have established that the differential of Φ is
∫ t1
t0

[∂L∂x −
d
dt
∂L
∂ẋ ]ℎdt+ ∂L

∂ẋℎ∣
t1
t0 .

Because we are considering the extremals of Φ, this expression equals zero. Because
we are only considering the curves that pass through x0 and x1, ℎ(t0) = ℎ(t1) = 0

and the term outside of the integral equals zero, so
∫ t1
t0

[∂L∂x −
d
dt
∂L
∂ẋ ]ℎdt = 0. This is

comparable to the integral we encountered in the lemma, where ∂L
∂x −

d
dt
∂L
∂ẋ = f(t)
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and ℎ = ℎ(t). By lemma 2.6, f(t) ≡ 0. On the other hand, if f(t) ≡ 0 then the
integral as a whole equals zero. □

Remark 1.14. This equation lies at the heart of Lagrangian mechanics. We call

(1.15)
∂L

∂x
− d

dt

(
∂L

∂ẋ

)
= 0

the Lagrange-Euler equation. However, before we begin to explore the physics of
the Lagrange-Euler equation, we must specify what space our system exists in-so
far, we have considered only real Euclidean space. We can expand our settings with
the geometry of manifolds.

2. Manifold Geometry

Even though a space may not be perfectly Euclidean, it may be ‘Euclidean
enough’ for our purposes. We will consider manifolds, structures which are locally,
even if not globally, Euclidean.

Definition 2.1. A manifold is a Hausdorff space M covered by a countable number
of charts so that every point in M is represented in at least one chart. A chart is
a homeomorphism from an open subset of ℝn to U ⊂M . A union of charts which
cover an entire manifold is an atlas.

Remark 2.2. If two charts (U, �) and (V,  ) map onto intersecting neighborhoods on
M , then we can pass between the charts by inverting and composing the bijections.
In other words, if there exist U ′ ⊂ U and V ′ ⊂ V such that image�(U ′)=image (V ′)
then  −1 ∘ � : U ′ →V ′. If the functions between charts are infinitely differentiable,
then we say that the charts are compatible. If a manifold can be covered by a union
of compatible charts, then we call it a differentiable manifold. We will be considering
differentiable manifolds exclusively in this paper.

Example 2.3. Euclidean ℝn is a manifold covered by the chart ℝn. The circle,
sphere, and hyperspheres are each manifolds covered by two charts of the same
dimension as the manifold itself ‘wrapped’ around the surface from opposite poles.

Definition 2.4. A tangent vector to M at x is the velocity vector of some curve

embedded on M : ẋ = limt→0
(t)−(0)

t , where (0) = x and (t) ∈M . The space
of all vectors tangent to M at x is the tanget space at x, TxM . The union of TxM
for all x ∈ M is the tangent bundle TM on manifold M . If we impose a local
coordinate system xi in a neighborhood of x, then we can break ẋ into components:
ẋi = di

dt ∣t=0.

Definition 2.5. A Riemannian manifold is a differentiable manifold M with a
positive definite quadratic form (ẋ, ẋ):TM → ℝ. The form (ẋ, ẋ) is called the
Riemannian metric.

Remark 2.6. This metric allows us to measure tangent vectors; no longer abstract
derivatives, they can now be used in calculations. This allows us to carry the
Lagrange-Euler equation over to manifolds. Consider a Riemannian manifold M .
We can define a differentiable function L : TM → ℝ that depends on x, ẋ, and

t and construct the old functional Φ() =
∫ t1
t0
L(x, ẋ, t)dt for any  embedded on

M . We can carry this functional by bijection onto the Euclidean charts, among
which we can move freely because this is a differentiable manifold. We established
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the Lagrange-Euler equation for Euclidean space, so we can now apply it to curves
on manifolds as well. To do so, we will define a specific function L(x, ẋ, t), the
Lagrangian.

3. Lagrangian Mechanics

Definition 3.1. x ∈ M is position along curve  on Riemannian manifold M .
ẋ is the velocity of x along —i.e., a tangent vector. The body at x has mass
m. Define kinetic energy T : TM → ℝ so T = 1

2mẋ
2 = 1

2m(ẋ, ẋ) and system-
dependent potential energy U : M → ℝ. We call the function L(x, ẋ, t) = T − U
the Lagrangian or the Lagrange function. Φ =

∫ t1
t0

(T −U)dt is called the action of
a system.

Theorem 3.2. Hamilton’s Principle of Least Action. The Lagrange-Euler
equation over the Lagrangian function is equivalent to Newton’s second law. That

is, any mechanical system is an extremal of the functional Φ =
∫ t1
t0
Ldt on that

system’s configuration space, where L is the Lagrangian.

Proof. At the extremals of the system’s action, the Lagrangian satisfies the Lagrange-
Euler equation, or d

dt
∂L
∂ẋ = ∂L

∂x . U is a function of position alone and T is a function

of velocity alone, so ∂L
∂x = −dUdx and ∂L

∂ẋ = dT
dẋ . Therefore d

dt

d 1
2mẋ

2

dẋ = −dUdx , or
d
dtmẋ = −dUdx . By definition, p = mẋ and F = −dUdx , so in the end, d

dtp = F , which
is Newton’s second law. □

Remark 3.3. Nowhere in the proof did we use cartesian coordinates—the physics
which we used in our definitions is generalized to any basis. Therefore, we can use
Hamilton’s principle of least action over a generalized coordinate system qi with
generalized velocities q̇i and generalized momenta pi = ∂L

∂q̇i
. The evolution of q⃗

along  is subject to the general form of the Lagrange-Euler equation,

(3.4)
d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0.

Example 3.5. A mass is in free Euclidean ℝ3 space so that T = m
2 (q21+q22+q23), U =

0, and L = T = m
2 (q21 + q22 + q23). Putting this into the Lagrange-Euler equation,

we find that d
dtp1 + d

dtp2 + d
dtp3 = 0. In the absence of energy fields (i.e., in the

absence of any external forces), linear momentum is conserved, in agreement with
Newton’s first law.

4. Two Electric Pendula

Let us attempt to use Hamilton’s principle of least action in a physical problem.
Consider two simple planar pendula, both of length l and mass m, suspended a
distance a apart on a horizontal line so that they swing in the same plane. We
wish to study only small oscillations, so we can approximate a swing by its linear
displacement in the horizontal direction; the first pendulum will have displacement
q1 and the second q2. In the exact problem, qi represents an angle so the config-
uration space is S1 × S1, the torus; in the approximation, it is ℝ × ℝ = ℝ2, the
plane. Both spaces are manifolds, so we are entitled to use Lagrangian mechanics
in either case.

Put a charge +e on both pendula and insulate them. We wish to find the motion
of the pendula that arises from slight disturbances from their equilibrium position.
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Let us begin by finding the Lagrangian in terms of our coordinates qi. We know
that the kinetic energy is given by

(4.1) T =
1

2
m(q̇21 + q̇22).

Potential energy is the sum of two terms; one gravitational, the other electrostatic.
Using various small-angle trigonometric approximations, we hypothesize the grav-
itational term to be

(4.2) UG =
1

2

mg

l
(q21 + q22)

and the electrostatic term to be

(4.3) UE =
e2

a+ q2 − q1
.

Therefore, the entire Lagrangian function is

(4.4) L = T − U =
1

2
m(q̇21 + q̇22)− 1

2

mg

l
(q21 + q22)− e2

a+ q2 − q1
.

Using q1 and q2 as the generalized coordinates, we can apply the Lagrange-Euler
equation to the system. We get the two equations of motion

(4.5)
d

dt
(mq̇1) +

mg

l
q1 +

e2

(a+ q2 − q1)2
= 0

(4.6)
d

dt
(mq̇2) +

mg

l
q2 −

e2

(a+ q2 − q1)2
= 0

If we add these two equations, we get

(4.7)
d

dt
m(q̇1 + q̇2) +

mg

l
(q1 + q2) = 0⇒ d2

dt2
(q1 + q2) = −g

l
(q1 + q2).

If we subtract them, we find

(4.8)
d2

dt2
(q2 − q1) +

g

l
(q2 − q1)− 2e2

m(a+ q2 − q1)2
= 0.

Because we assume that both q1 and q2 are very small and far less than a, we can
expand the electrostatic term of (5.8), yielding

(4.9)
d2

dt2
(q2 − q1) + (q2 − q1)

(
g

l
+

4e2

ma3

)
− 2e2

ma2
= 0.

Both (4.7) and (4.9) are harmonic oscillations in (q1+q2) and (q2−q1), respectively.
They therefore have relatively simple solutions.

(4.10) (q1 + q2)(t) = A1 cos

(√
g

l
t+ �1

)

(4.11) (q2 − q1)(t)− 2e2

ma2
(
g
l + 4e2

ma3

) = A2 cos

(√
g

l
+

4e2

ma3
t+ �2

)
Ai and �i are amplitudes and phases, respectively. They depend on the initial con-
ditions of the system and not on the system itself, so we will leave them unspecified.



6 ALEXANDER TOLISH

Now we can add and subtract these two expressions to find the individual motions
of q1 and q2.

(4.12) q1 =
−e2

ma2
(
g
l + 4e2

ma3

) +
A1

2
cos

(√
g

l
t+ �1

)
− A2

2
cos

(√
g

l
+

4e2

ma3
t+ �2

)

(4.13) q2 =
e2

ma2( gl + 4e2

ma3 )
+
A1

2
cos

(√
g

l
t+ �1

)
+
A2

2
cos

(√
g

l
+

4e2

ma3
t+ �2

)

We can translate the origins for both q1 and q2 to eliminate the constant e2

ma2( g
l +

4e2

ma3 )
.

Now both motions are the composition of two simple sinusoidal motions; depending
on the initial conditions, they might simplify further.

5. Differential Forms and Symplectic Geometry

The Hamiltonian formalism provides yet another way to look at classical me-
chanical systems. But before we develop the physics, we much establish some
mathematical groundwork.

Definition 5.1. A 1-form is a linear vector function !1 : ℝn → ℝ. !1(�1⃗v1 +
�2⃗v2) = �1!(v⃗1) + �2!(v⃗2). A 2-form is a bilinear skew-symmetric function of
2 vectors !2 : ℝn x ℝn → ℝ. !2(�1⃗v1 + �2⃗v2, v⃗3) = �1!

2(v⃗1, v⃗3) + �2!
2(v⃗2, v⃗3)

and !2(v⃗2, v⃗1) = −!2(v⃗1, v⃗2). Similarly, a k-form is a multilinear skew-symmetric
function from k vectors to the real numbers. If we define form addition and
scalar multiplication so that (!k1 + !k2 )(. . . v⃗i . . .) = !k1 (. . . v⃗i . . .) + !k2 (. . . v⃗i . . .)
and (�!k)(. . . v⃗i . . .) = �(!k(. . . v⃗i . . .)) then the set of k-forms forms a vector space
itself.

Definition 5.2. The exterior product !1
1 ∧ !1

2 of two 1-forms !1 and !2 is the 2-
form !2(v⃗1, v⃗2) that gives the oriented area of the parallelogram formed by vectors
(!1

1(v⃗1), !1
2(v⃗1)), (!1

1(v⃗2), !1
2(v⃗2)). Similarly, the exterior product of k 1-forms !1

1 ∧
!2
2∧. . .∧!1

k is the k-form that gives the oriented volume of the parallelotope formed
by the vectors (!1

1(v⃗1), . . . , !1
k(v⃗1)), (!1

1(v⃗2), . . . , !1
k(v⃗2)), . . . , (!1

1(v⃗k), . . . , !1
k(v⃗k)).

In matrix notation, (!1
1 ∧ . . . ∧ !1

k)(v⃗1 . . . v⃗k) =det

⎡⎢⎣!
1
1(v⃗1) . . . !1

k(v⃗1)
...

...
!1
1(v⃗k) . . . !1

k(v⃗k)

⎤⎥⎦.

Definition 5.3. A differentiable 1-form on manifold M is a smooth map !1 :
TM → ℝ which is linear on each fibre to the tangent bundle. A differentiable
k-form at x is a k-form at x !k : TxM → ℝ. A differentiable k-form may be
differentiable for all x on M .

Definition 5.4. We can construct exterior differentiation, an operation relating
functions and forms. The exterior derivative df of function f is uniquely defined
so that df acts on vector field V by (df)(V ) = V (f). Additionally, ddf = dd! = 0
for any form ! or function f and d(!k ∧ !l) = d!k ∧ !l + (−1)k!k ∧d!l. Exterior
differentiation sends k−forms to k + 1−forms; standard functions are regarded as
0−forms, so the exterior derivative of a function is a 1−form. If d! = 0, then ! is
said to be a closed form.
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Definition 5.5. A symplectic structure on 2n-dimensional manifold M2n is a
closed, skew-symmetric, nondegenerate differential 2-form !2 : TxM

2n → ℝ. This
makes M2n a symplectic manifold. To say that !2 is nondegenerate means that
for every v⃗ ∈TxM2n, there exists some w⃗ ∈TxM2n such that !2(v⃗, w⃗) ∕= 0. From
the linear algebra of the symplectic form, we find that it is impossible for an odd-
dimensional manifold to support a symplectic structure.

Definition 5.6. Suppose Mn is an n−dimensional differentiable manifold. A 1-
form acting on TxM

n is called a cotangent vector to Mn at x. The set of all 1-forms
acting on TxM

n is called the cotangent space of Mn at x, or T ∗xM
n. The union of

all cotangent spaces for all x on Mn forms the manifold’s cotangent bundle, T ∗Mn.
If we assign T ∗Mn a 2-form !2 = dp⃗ ∧dq⃗ = dp1 ∧dq1 + dp2 ∧dq2 + . . .+ dpn ∧dqn,
then T ∗Mn has a symplectic structure. It can be shown that this symplectic form
does not depend upon the coordinate systems of the charts.

Definition 5.7. Let M2n be a symplectic manifold. Because the symplectic form
!2 is nondegenerate, for every v⃗ ∈ TM2n there exists some w⃗ ∈ TM2n such that
!2(w⃗, v⃗) ∕= 0. Therefore we can create a 1-form !1

v⃗(w⃗) = !2(w⃗, v⃗) which serves as
an isomorphism I : T ∗M2n → TM2n. If H is a differentiable function on M2n,
then its exterior derivative is the 1−form dH ∈ T ∗M2n. By applying I to dH,
we find a vector field IdH ⊂TM2n that provides a tangent vector everywhere on
M2n. If we call H the Hamiltonian function, this field is the Hamiltonian vector
field associated with H.

Remark 5.8. Let q⃗ of dimension n specify some point on Mn, and let p⃗q of di-
mension n specify some tangent vector at q⃗. Then the 2n−dimensional ordered
pair (q⃗, p⃗) serves as a coordinate in the cotangent bundle. Furthermore, if Mn is
the configuration space of a dynamic system with q⃗ the generalized position and p⃗
a generalized momentum, then the cotangent bundle is the system’s phase space,
which exhibits symplectic geometry. Because motion depends exclusively on posi-
tion and velocity or momentum, every possible condition of the particle is a point in
phase space, and every possible trajectory is an embedded curve. With the proper
Hamiltonian function, we could produce a Hamiltonian vector field where every
mechanical trajectory is an integral curve dependent only on the initial conditions.

6. Hamiltonian Mechanics

We have seen that a Hamiltonian function produces a Hamiltonian vector field.
We now wish to find a Hamiltonian function that produces a field worth studying;
one corresponding to a vector field that describes how a body’s position and mo-
mentum (i.e., its coordinates in phase space) evolve in time. Physical motion is
then an integral curve that satisfies the vector field, given the system’s boundary
conditions.

Definition 6.1. ∂L
∂q̇i

= pi, where L is the Lagrangian and pi is the itℎ component of

the generalized momentum. Then the Hamiltonian function is H(q, p, t) = ⟨dq⃗dt , p⃗⟩−
L(q, q̇, t). Note that for classical mechanical systems the Hamiltonian is just the

total mechanical energy: H = ⟨dq⃗dt , p⃗⟩ − L = ⟨v⃗,mv⃗⟩ − ( 1
2mv

2 − U(q)) = 1
2mv

2 +
U(q) = T + U.

Theorem 6.2. Hamilton’s Canonical Equations. For a mechanical system,
q⃗ = (. . . , qi, . . .) is the generalized position, p⃗ = (. . . , pi, . . .) = (. . . , ∂L∂q̇i , . . .) is the



8 ALEXANDER TOLISH

generalized momentum, and H is the Hamiltonian. Then

(6.3)
∂H

∂q⃗
= −dp⃗

dt

(6.4)
∂H

∂p⃗
=
dq⃗

dt
.

Properly,

(6.5)
∂H

∂qi
= −dpi

dt

(6.6)
∂H

∂pi
=
dqi
dt
.

Proof. (Note: for typographical reasons, I will denote vector status by boldface font
within this proof.) We know, by definition, that

(6.7) H(q, p, t) = ⟨dq
dt
,p⟩ − L(q, q̇, t).

Taking the differential of both sides, we find that

(6.8)

(
∂H

∂q

)
dq+

(
∂H

∂p

)
dp+

(
∂H

∂t

)
dt = dH =

(
dq

dt

)
dp−

(
∂L

∂q

)
dq−

(
∂L

∂t

)
dt.

Matching the differentials, we immediately find that

(6.9)
∂H

∂p
=
dq

dt

∂H

∂t
= −dL

dt
.

We also see that

(6.11)
∂H

∂q
= − ∂L

∂q
.

By the chain rule, we can expand this to

(6.12)
∂H

∂q
= −∂q̇

∂q

∂L

∂q̇
.

By drawing out the time derivative and identifying ∂L
∂q̇ = p, we can reduce this to

the last of Hamilton’s canonical equations,

(6.13)
∂H

∂q
= − d

dt

∂q

∂q

∂L

∂q̇
= −dp

dt
.

□

Definition 6.14. A solution satisfying Hamilton’s canonical equations is called a
system’s Hamiltonian phase flow because it describes movement in phase space.

Definition 6.15. In the canonical coordinates (q⃗, p⃗), we define the Poisson bracket

of two functions f and H on a symplectic manifold as (f,H) =
∑[

∂f
∂qi

∂H
∂pi
− ∂f

∂pi
∂H
∂qi

]
.

We see that it is skew-symmetric (so (H, f) = −(f,H)) and, by the properties of
the derivative, bilinear. In terms of the symplectic form, (f,H) = !−1(df, dH):
although we have introduced and will use the bracket in coordinates, it is important
to note that it is actually independent of the coordinate system.
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Remark 6.16. The Poisson bracket has a number of interesting properties. For a
fixed f, (f, ⋅) satisfies the Leibnitz Rule. Like the Lie bracket, it also satisfies the
Jacobi identity; if A,B, and C are functions on a manifold, then ((A,B), C) +
((B,C), A) + ((C,A), B) = 0. Furthermore, if f is a vector function and [X,Y ]
is the Lie bracket acting on vector fields X and Y , then (fX , fY ) = −f[X,Y ], the
full implications of which go beyond the scope of this paper. However, the Poisson
bracket does have a relevant application at our level.

Theorem 6.17. f(q⃗, p⃗) is a function in a system’s phase space and H is the Hamil-
tonian function. f is conserved through motion (i.e., it is constant along the phase
flow) if and only if (f,H) = 0.

Proof.

(6.18)
d

dt
f =

∂f

∂q⃗

dq⃗

dt
+
∂f

∂p⃗

dp⃗

dt

(6.19)
d

dt
f =

∂f

∂q⃗

∂H

∂p⃗
− ∂f

∂p⃗

∂H

∂q⃗

(6.20)
d

dt
f = (f,H)

t is the parameter of phase flow, so if f is conserved, then df
dt = 0; (f,H) = 0 by

consequence. □

Example 6.21. Consider a body of mass m in a uniform gravitational field g⃗. y⃗
is a coordinate with ŷ antiparallel to g⃗. T = 1

2mẏ
2 and U = mgy so H = T + U =

1
2mẏ

2 +mgy =
p2y
2m +mgy. By Hamilton’s equations,

(6.22) Fy = ṗy = −∂H
∂y

= −mg

(6.23) vy = ẏ =
∂H

∂py
=
py
m

=
mvy
m

= vy

as we would expect from Newtonian mechanics. y(t) can be found by simple inte-
gration.

Remark 6.24. Although our examples are all systems that can be easily described in
coordinates, Hamilton’s canonical equations work independently of any coordinate
system because they were developed on manifolds. They are fundamentally geo-
metric concepts, as are phase space and phase flow; we artificially impose analytic
coordinates on the system in order to quantify and describe the phenomena.

7. The Double Planar Pendulum

Consider a standard planar pendulum of length l and mass m in a uniform
gravitational field g⃗. We fix a second identical pendulum onto the bob of the first
so that both swing in the same plane. Given initial conditions, we wish to find the
pendula’s coordinates as a function of time.

We will take as our generalized coordinates (�1, �2), the angle each pendulum’s
rod makes with the vertical. One pendulum has configuration space S1 (the circle,
corresponding to a full rotation about the axis), so the double pendulum has con-
figuration space S1 × S1, the torus. The torus is a manifold, so we can construct
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a symplectic phase space from its cotangent bundle and use Hamilton’s equations
to find a phase flow. First, we must find the energies and Lagrangian and Hamil-
tonian in terms of the generalized coordinates. To do so, let us assign a temporary
cartesian frame with origin at the first pendulum’s axis.

(7.1) x1 = l sin �1

(7.2) y1 = −l cos �1

(7.3) x2 = l(sin �1 + sin �2)

(7.4) y2 = −l(cos �1 + cos �2)

(7.5) T =
1

2
mv21 +

1

2
mv22 =

1

2
m
(
ẋ21 + ẏ21 + ẋ22 + ẏ22

)
(7.6) U = mgy1 +mgy2

(7.7) L = T − U =
1

2
m
(
ẋ21 + ẏ21 + ẋ22 + ẏ22

)
−mgy1 −mgy2

(7.8) H = T + U =
1

2
m
(
ẋ21 + ẏ21 + ẋ22 + ẏ22

)
+mgy1 +mgy2

Now we must revert back into our general angular coordinates.

(7.9) T =
1

2
ml2

(
2�̇21 + �̇22 + cos(�1 − �2)�̇1�̇2

)
(7.10) U = −mgl (2 cos(�1) + cos(�2))

(7.11) L =
1

2
ml2

(
2�̇21 + �̇22 + cos(�1 − �2)�̇1�̇2

)
+mgl (2 cos(�1) + cos(�2))

(7.12) H =
1

2
ml2

(
2�̇21 + �̇22 + cos(�1 − �2)�̇1�̇2

)
−mgl (2 cos(�1) + cos(�2))

We can find our generalized angular momenta by differentiating the Lagrangian:

(7.13) p1 =
∂L

∂�̇1
= 2ml2�̇1 +

1

2
ml2 cos(�1 − �2)�̇2

(7.14) p2 =
∂L

∂�̇2
= ml2�̇2 +

1

2
ml2 cos(�1 − �2)�̇1

Solving these for �̇1 and �̇2 in terms of p1 and p2 and substituting into the Hamil-
tonian, we find

(7.15) H =

(
p21 + 2p22 − 2p1p2cos(�1 − �2)

2ml2(1 + sin2(�1 − �2))

)
−mgl (2 cos �1 − cos �2) .

The Hamiltonian is expressed entirely in constants, coordinates, and momenta, so
we can use Hamilton’s canonical equations.

(7.16) �̇1 =
∂H

∂p1
=

p1 − p2 cos(�1 − �2)

2ml2
(
1 + sin2(�1 − �2)

)
(7.17) �̇2 =

∂H

∂p2
=

2p2 − p1 cos(�1 − �2)

ml2
(
1 + sin2(�1 − �2)

)
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(7.18) ṗ1 = − ∂H
∂�1

= −2mgl sin �1 −A+B

(7.19) ṗ2 = − ∂H
∂�2

= −mgl sin �2 +A−B

where

(7.20) A =
p1p2 sin(�1 − �2)

ml2(1 + sin2(�1 − �2))

(7.21) B =
p21 + 2p22 − p1p2 cos �1 − �2
2ml2(1 + sin2(�1 − �2))2

sin[2(�1 − �2)].

These differential equations form the components of the Hamiltonian field. The
initial conditions (�1(0), p1(0), �2(0), p2(0)) serve as a point in phase space; starting
from here, we can integrate the differential equations numerically to find the phase
flow, which fully describes the motion of the double pendulum. The complexity of
all four equations gives rise to the double pendulum’s notorious chaotic motion; a
small change in the initial conditions will generate very large changes in the phase
flow.
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