COUNTING SELF AVOIDING WALKS OF LENGTH N

ISAAC OTTONI WILHELM

ABSTRACT. This paper investigates properties of Self Avoiding Walks. We re-
view their asymptotic behavior and state some general conjectures about their
exact asymptotic growth. We then explain the Pivot algorithm, a Markov
chain which is the primary method for numerical verification of these con-
jectures, and prove the ergodicity of this Markov chain. We also discuss an
alternate method of studying Self Avoiding Walks through the use of Loops
(a term defined later in this paper). Finally, we state some questions and
conjectures concerning self intersecting walks.

1. INTRODUCTION

A simple walk in Z? proceeds as follows. Starting at (0,0) take a unit step in
any direction, say to (0,1). Take another unit step from this new point. Repeat
this n times, resulting in n total steps. At each step in the walk, there are four
possible directions. Therefore, there are 4™ n-step simple walks.

Definition 1.1. We will refer to directions along a simple walk (or along a loop,
as will be used in section 3) as North (denoted N), South (denoted S), East
(denoted E), and West (denoted W).

This paper studies these walks with an additional condition: the walk may not
revisit a vertex of Z2 which it had previously visited. These walks are called Self
Avoiding Walks.

The most basic unanswered question about Self Avoiding Walks is:

Open Question 1.2. How many Self Avoiding Walks of length n are there in the
integer lattice Z2?

Of course, one may ask the same question for the integer lattice Z3, or any
dimension. In fact, one could ask this question where the lattice is a hexagonal
lattice, or indeed of any graph. This paper will focus on the two dimensional
integer lattice. Note that for the lattice Z, the answer to Question 1.2 is trivially
two.

Let S,, be the number of Self Avoiding Walks of length n. There are a couple
upper and lower bounds we can get on .S,, without much work. Firstly, consider the
set of Self Avoiding Walks which, for each axis in the d-dimensional integer lattice
space, only take steps in positive directions. These are all obviously Self Avoiding,
and at each point there are d potential choices in direction, so there are d"™ such
self avoiding walks. Therefore d* < S,,.

Now for some quick notation. We denote a walk by w,,, where the n denotes
the length of the walk. We will use the notation w,, = {wy, ..., w,}, where w; is the
1th vertex of w,, with 0 < i < n.

Date: August 4, 2009.

2 ISAAC OTTONI WILHELM

Now consider all walks that never return to the vertex they were at in the
previous step, that is, the set of all walks for which w;_1 # w;+1. Then at each
vertex after the first there are 2d — 1 possible choices, and therefore there are
2d - (2d — 1)"~! such walks. All Self Avoiding Walks have this property, so there
are at most 2d - (2d — 1)"~! Self Avoiding Walks. Thus d" < S,, < 2d-(2d —1)""L.

From these computations, it is natural to guess that S,, ~ C™, where ~ is
defined as follows.

Definition 1.3. Let f(z) and g(z) be functions. We say that f(z) is asymptotic

to g(x), written f(z) ~ g(x), if limy_, o0 583 =1

It turns out, however, that S, = C". Instead, we use the following weaker
notion of asymptotic.

Definition 1.4. Let f(z) and g(z) be functions. We say that f(x) is logarithmically

log f(z) _
logg(z) — L

asymptotic to g(z), written f(z) = g(x), if lim, o

The following theorem is well-known. The proof we present can be found in
[2].

Theorem 1.5. The limit lim,_, S}/n exists, which implies that S, ~ C™ for
some C.

Before proving this theorem, we prove the following lemma:

Lemma 1.6. Let (a,)22, be a sequence of real numbers such that anim < an~+am,
a property we will refer to as subadditive. Then

. Qn . . an
lim — = inf —.
n—oo M n>1n

Proof. We first show that

. an, ag
(1.7) llﬁsolip - < 3
for all k.
Fix k. Then for a given n € N, let m be the largest integer less than 7. Then
n = km + r for some r with 1 < r < k. Therefore we have

(1.8) an < Gpm + ar

by subadditivity. Let by = maxi<r<ia,. By induction one can show that
Akm < m - ag. Thus 1.8 becomes

n
an§m~ak+ar<?ak+bk,

Dividing both sides by n and taking the limit superior gives

. Qn .. arp by ay
limsup — < limsup (— + —

which is 1.7.
To see that lim,, . % exists, simply take the limit inferior of both sides of 1.7
to get that

. a L. ag
limsup — < liminf —=.
n—oo N k—o0

COUNTING SELF AVOIDING WALKS OF LENGTH N 3

We may conclude that lim, .., 5= exists. To show that this limit equals
inf,>; %=, simply take the infimum of both sides of 1.7. Therefore, the lemma
holds.

O
We are now properly equipped to prove the theorem.

Proof of Theorem 1.5. Let (a,)52; be a sequence, and let a,, = log(S,). We first
show that

Equation 1.9 holds because every Self Avoiding Walk of length n 4+ m may be
split into two smaller Self Avoiding Walks; one of length n and one of length m.
In more detail, let A, 1, 4y, and A,, be the set of Self Avoiding Walks of length
n-+m, n, and m respectively. Then there exists a function f : A,1m — (An X Ap)
defined by splitting the walk after n steps and sending the n step walk to A,, and
the m step walk to A,,. This function is injective since concatenation yields a left
inverse. Therefore Spim = |[Antm| < |An| - |Am| = Sn - Sm.

Taking the logarithm of both sides of 1.9 gives

log(Sn+m) < 10g(SnSm) = log(Sn) + log(Sy,)

and therefore the sequence (a,)$2 is subadditive. We may therefore apply
Lemma 1.6 and find that

(1.10) lim 2805n) _ ¢ 108(5)
n—oo n>1 n
Therefore the limit lim,,_ % exists. Letting log(p) = lim,_ loggls")
yields
(1.11) p= lim S/

n—oo

since % = log(Sh/™).
From this one can see that S,, = u™ by taking the logarithm of both sides of
1.11.
O

Many computer programs have been created to test these results and to help
propose generalizations. The following similarity has been hypothesized:

SnNA'Nn'n’y7

where A and ~ are constants. Note that since log(u) = inf,, %7 we may

conclude that p™ < S, for all n > 1. This is equivalent to saying that v > 0.

As for bounds on p, the current best lower bound is 2.61987, the best upper
bound is 2.69576, and the best estimate for p in two dimensions is 2.6381585 +
0.0000010. Also, it is conjectured that v = g—g.

4 ISAAC OTTONI WILHELM

2. THE P1vOoT ALGORITHM

Another question one may ask about Self Avoiding Walks is: On average, how
far away from the origin do they get? Let E(|w(n)|?) be the expected distance
(squared) from the origin of a walk w(n) of length n. Then

(21) B(wmP) =g 3 lonl?
" Jwl=n

This definition is well know, though here we use the formulation found in [3].

It has been hypothesized that E(|w(n)|?) ~ B - N2 where B and v are con-
stants. It is conjectured that v = %, but no definitive proof has been found. The
Pivot algorithm is one efficient algorithm for estimating the value of v, and indeed
for numerically investigating most any conjecture about Self Avoiding Walks.

The Pivot Algorithm was first invented by Lal in 1969 and later studied by Neal
Madras and Alan D. Sokal [3], which takes a Self Avoiding Walk and twists it into
another Self Avoiding Walk. The process is as follows. Let w = {wq, w1, ..., w,} be
a Self Avoiding Walk of length n. Pick a vertex w; where 0 < ¢ < n. This divides
our walk of length n into two walks of length ¢ and n — i. Then, fixing vertex w;,
apply a rotation or reflection (or some combination thereof) to the Self Avoiding
Walk {w;t1,...,w,} to get a new walk w’. If this walk is self avoiding, we may
repeat this process on the new walk. If this walk is not self avoiding, it is ignored
and we take the original walk w once again.

One can assign to each vertex between wy and w, a probability of being se-
lected. One can also assign to each element of the symmetry group G a probability
as well. This defines a Markov chain on the set of Self Avoiding Walks.

Definition 2.2. A Markov chain is a sequence of random variables with the
Markov Property, which is as follows. If {X,,} is our sequence of random variables,
and P(A | B) is the probability of A given B, then {X,,} has the Markov Property
if P{X,11 =2 | X,k #n} =P{X,11 =2 | X,}. Moreover, we will only discuss
time homogeneous Markov Chains, which is to say that for all m,n we have
P{Xni1 =2 | Xy =y} =P{Xpu1 =2 | X;n =y}

We first define a few key concepts when discussing Markov chains.

Definition 2.3. Let {X,,} be a Markov chain. We say that {X,,} is irreducible
if for all states « and y there exists an n such that P{X,, =z | Xo =y} > 0.

Definition 2.4. Let Q be the state space. A Markov Chain is said to be aperiodic
if there does not exist a partition Qi,...,€, where Q; N Q; = 0 for all i # j,
Q=Ur, Q, and P{X; € Q| Xo € O} =1 where ¥ =k +1 (mod n).

Definition 2.5. A Markov chain is said to be ergodic if it is both irreducible and
aperiodic.

An important theorem in the study of the Pivot algorithm is that if group
operations occur with nonzero probability, then the Pivot algorithm is ergodic.
The proof of this can be found in [1, Section 4.7]. This theorem allows for accurate
estimations of various desirable constants, such as the ones listed at the top of page
17 in [2].

Here we will reproduce the proof that, if all the probabilities mentioned above
are nonzero (i.e., for each vertex w; with 0 < i < n there is positive probability

COUNTING SELF AVOIDING WALKS OF LENGTH N 5

that it is picked for the Pivot algorithm, and likewise for each element of G) then
the Pivot algorithm is ergodic. We first show that the Pivot algorithm is aperiodic.
We first define diagonal reflections in 7% for d > 3.

Definition 2.6. Let d > 3. Let ay, ..., aq be diagonals in Z¢, meaning that a; is a
line through (0, ...,0) and (1,...,1), ag is a line through (0, ...,0) and (—1,1,...,1),
and so on. A diagonal reflection in Z? is a reflection over each (d— 1)-dimensional
subspace spanned by (d — 1) of the lines aq, ..., aq.

The following two theorems were first formulated and proved in [3].

Theorem 2.7. Let G be the symmetry group on the integer lattice Z¢. Suppose
that all reflections over each (d — 1)-dimensional subspace spanned by (d — 1) co-
ordinate azxies have a nonzero probability of being used, and suppose that either all
90° rotations around the coordinate azies or all diagonal reflections in G have a
nonzero probability of being used. Then the Pivot Algorithm is aperiodic.

Proof. Let wy, be a Self Avoiding Walk. Take the vertex w;. Note that there exists
either a rotation (or diagonal reflection) or a reflection over an axis that would
result in w;_1 = w;41. Because this walk is not self avoiding, it would be thrown
out, and w, would be taken again. Thus, given any partition of the state space,
it is possible that the walk does not change and thus does not advance into a new
subset of the state space proving aperiodicity. ([l

To prove ergodicity we must prove that the Pivot Algorithm is irreducible on
walks in Z¢.

Theorem 2.8. Let G be the symmetry group on the integer lattice Z¢. Suppose that
all reflections over an axis have a nonzero probability of being used, and suppose that
either all 90° rotations or all diagonal reflections in G have a nonzero probability of
being used. Then the Pivot Algorithm is irreducible. Furthermore, any Self Avoiding
Walk of length n may be twisted into a straight line via the Pivot Algorithm in at
most 2n — 1 steps.

Proof. Let w,, = {wq, w1, ..., w, } be a Self Avoiding Walk of length n which is not
a straight line. Let m; = min{e(w;);|0 <4 < n} where e(w;); is the jth coordinate
of the vertex w;. Let M; = max{e(w;);|0 < i < n}. Let R(w,) = {z € Z% |
m; < e(z); < M;}. Then R(w,) contains w,. Let B(w,) be the set of vertices
of wy, that are not at right angles, that is, B(w,) = {w; € w, | 0 < i < n and
w; = %(wi_l + w;q1)}. Finally, let C(wy,) = Z?Zl (Mj - mj).

We split the proof into two cases.

(1) There is a face of R(w,,) which contains neither wy nor wy,.

(2) The vertices wy and w, are on opposite corners of R(w,,).

We will start by examining the first case. Let A be the face of R(w,,) such that
wo,wy, ¢ A. Then A = {x € Z% | e(w;); = m;} or A = {z € Z¢ | e(w;); = M;}
for all ¢ with 0 < ¢ < n and for some j with 1 < j < d. Suppose without loss of
generality that the second set equivalence holds.

Then define p = min{k | e(wi); = M;}, that is, p is the index number of the
first vertex of w, on face A. This will be our pivot point. The symmetric group
operation g is a flip across the face of A, creating the following walk:

If & < p, then g(e(wy);/) = e(wy); for all j’.

If p < k and j’ # j then g(e(wy);/) = e(wg);-

6 ISAAC OTTONI WILHELM

If p <k and j' = j then g(e(wg);) = 2M; — e(wg) ;.

Call the new walk w),.

We shall now see if there was any change in B or C, and that the resulting
walk is self avoiding. First, suppose there exists an ¢ and k' such that w; = wy/
with 7 # k’. Then there are three possibilities.

a) i,k < p (w; and wy were not changed by the operation g. In this case the
original walk w,, would not have been self avoiding, which is a contradiction.

b) p <i,k’. This implies that the new walk {w,, ..., w, } is not self avoiding, which
implies that {wy, ..., wy } is not self avoiding. This implies that w,, is not self
avoiding, which is a contradiction.

¢) i < p < k' (the following proof can be applied to the case k¥’ < p < i too).
This case, however, is impossible since after reflection e(w;); < e(wy);. Obvi-
ously strict inequality cannot hold, and if they're equal then vertex wj; was not
changed by the transformation g, which implies that w,, is not self avoiding, a
contradiction.

Therefore, the resulting walk w, is self avoiding.

Note that this flip didn’t change any right angles between vertices in the part
of the walk {wo, ..., wp—1}, since the transformation was euclidean. Also note that
the flip didn’t change any right angles in the part of the walk {wp1,...,w,} for
similar reasons. Finally, note that because w,, is the first vertex of w,, to be in the
face A, then w, must be attached to a right angle. One of the two sides forming
this right angle would be on face A, so it would have been unaffected by the flip.
Therefore B(w,) = B(w}).

Finally, we show that C(w},) > C(wy). Note that for all » # j we have that
M, —m, = M,» —m,.. So it remains to be shown that M; —m; < M —mj,. This
is a consequence of the fact that the face A contains neither wq nor w,,. Therefore
since A contains at least two vertices of w,,, the walk w, must have an edge that
leaves A, and therefore M;, > M;, and even if m; > m; (and since M; # m;) M;
is increased by strictly more than m; is increased. Therefore, M; —m; < M —mj/,
and therefore C(w],) > C(wy,).

Now consider the second case. First note that if case 1 does not hold then wg
and w, must together touch each face of R(w,). The only way this can happen is
if they both occupy opposite corners of R(w,,).

Define t = max{k | wy, is a vertex at a right angle }. Then the walk {wy, ..., w,}
is a straight line, terminating in a corner. Let E be the edge connecting w;_1 to
wg. There exists a single j such that e(we—1); # e(wy); (this J corresponds to
the dimension along which E lies). Let ¢ be such that e(w:); # e(ws)q (this
q corresponds to the dimension along which the walk {wy,...,w,} lies). Rotate
{w, ..., w,} so that {wi_1,ws, ..., w,} now all line on a straight line, along the
dimension corresponding to j. Call this new walk w/,.

Note that B(w],) = B(wy)+ 1 since this rotation transforms the last right angle
of w, into a straight angle. Also note that w), is a Self Avoiding Walk for reasons
entirely analogous to those given in case 1.

Finally, note that My — my = My — my for all k # 57, ¢'. Also, the quantity
M, —my is increased (or decreased) by at most n —¢—1, and the quantity M;— my
is (depending on what happened to M, — my) decreased (or increased) by at most
n —t — 1, and therefore (M, — m,) + (M — m;.) either increases or stays the same

J
after the rotation. Therefore C'(wy,) < C(w},).

n

COUNTING SELF AVOIDING WALKS OF LENGTH N 7

From each of these two cases, we may conclude that B(wy,)+ C(w,) < B(w},) +
C(wp,) for all Self Avoiding Walks which are not straight lines. Since, in general,
0 < B(wp) <n—1and 0 < C(w,) < n, we may conclude that it takes at most
2n — 1 steps to take a Self Avoiding Walk of length n and transform it into a Self
Avoiding Walk w,, where B(w,) + C(w,) = 2n — 1. But if this last equation holds,
then the walk has no right angles and has total diameter n, meaning that the walk
W, must be a straight line. Therefore it takes at most 2n — 1 steps to transform a
Self Avoiding Walk of length n into a straight line of length n.

Thus, there is a positive probability that any self avoiding walk of length n
may be reduced to a straight line via the pivot algorithm. It follows that a straight
line of length n may be twisted into any self avoiding walk of length n with positive
probability also. Therefore, for each self avoiding walk there is a positive probability
that it can be twisted into any other self avoiding walk of length n. Thus, the
Markov chain {w,} is irreducible. O

The following theorem replaces the condition in the above theorem with the
‘reflection of axies’ condition replaced by 180° rotations.

Theorem 2.9. The Pivot Algorithm is irreducible for Self Avoiding Walks in Z2 if
180° rotations, and either 90° rotations or diagonal reflections, occur with nonzero
probability.

Proof. Let w,, = {wy, ..., w,} be a Self Avoiding Walk of length n in Z? that is not
a straight line. Let e(2); denote the z component of 2, and let e(2)2 denote the y
component of z. Much of the notation from the previous theorem is reused here,
including the definitions of R(wy,), B(wy), C(wy), M;, and m;. We assume that
e(wo)1 # My. If e(wp); = M; then the same proof applies with M; replaced with
my (mq < M since wy, is not a straight line).

We also assume, without loss of generality, that e(w,—1)1 = e(wy)1-

We split this proof into two cases.

(1) e(wn)1 =my.

(2) e(wn)1 # M.

Consider the first case. Define ¢ = max{k | wy is a vertex at a right angle },
just as in the previous theorem. Then the walk {w;,...,w,} is a straight line, and
in a proof similar to the one given in the above theorem, we may rotate {ws, ..., w, }
by 90° to get a new Self Avoiding Walk w!, where B(w}) = B(w,) + 1.

It is enough that each walk w,, may be turned into a walk w/, where w/, has one
right angle less than w,, i.e.,

(2.10) B(W.,) = B(wy) + 1.

n

This is because we can then repeat this process until we get a walk w,, where
A(wy) =n — 1, and therefore, @, is a straight line.

Now, consider the second case. We show that one can apply a 180° rotation
that results in a self avoiding walk. The pivot point is the point w; = (x,y) where
x = M and y = min{z | (M1,2) € w,} (so w; is the point farthest to the right
that is lowest). We rotate the walk {wj, ..., w,} around this point by 180°.

The resulting walk (call it w},) is self avoiding. If not, let w, = w, be two
vertices which intersect after the 180° rotation. There are three cases, just as in
the proof of Case 1 in the theorem above, and the arguments are entirely similar.

8 ISAAC OTTONI WILHELM

Note that B(w,) = B(w),). But this rotation did help us, because now note
that My, > M; (the walk has been extended in the positive x direction). This
should make sense because all vertices of w,, have x coordinate less than or equal to
M7, so after rotating them 180° they are all on the other side of M7, and therefore
have x coordinate greater than or equal to M;.

We may now check to see whether e(w,,); equals My or not. If e(w,); = My,
then we can apply the rotation in Case 1 to get a new Self Avoiding Walk in which
some form of Equation 2.10 holds. If e(w,); # Mj, then we repeat Case 2. After
at most n steps in Case 2 we will be able to use Case 1, so this process eventually
terminates.

By repeating, where appropriate, Case 1 and Case 2, we see that the Pivot
Algorithm is ergodic on Self Avoiding Walks in Z?2.

O

Since after each use of Case 1 (there may be at most n such uses) we may
need to use Case 2 at most n times, the required number of pivots to turn a Self
Avoiding Walk in Z? into a straight line is at most n?.

Thus, the Pivot Algorithm is ergodic in either of these cases.

3. Looprs
We define a loop (in Z? on the integer lattice) as follows.

Definition 3.1. A loop of length 2k is a walk that intersects itself exactly once,
that point of intersection being the first vertex and the last vertex. If the set of
vertices of the loop were to be written {wg, w1, ..., wak }, then wy = wy,.

It is worth studying these loops because walks which are not self avoiding have
loops imbedded in them. If we count the number of loops we may deduce the
number of self avoiding walks. Let Cs; be the number of loops of length 2k.

We introduce the notation ¢5, for a loop of length 2n. We do this because
there is no such thing of a loop that has an odd number of edges, since to return
to the point one starts at, every step in the NV direction must eventually be undone
by an N1 step. The same holds for the E/E~! direction. To write the actual
steps of the loop, we write the edges rather than the vertices. For example, one
way to denote the square loop would be ENE~*N~1. Starting at (0,0), one takes
a single step East. Then one takes a step North, then West (denoted by E~1), then
South (denoted by N~1). For a rectangle with six sides on the perimeter, one could
denote it E2NE"2N~'. The E? term means take two steps in the east direction,
while the E~2 means take two steps in the west direction.

We write v 2 ... pp(7) 19(n) a5 the most general way to write a loop of
length 2n. Note that for any such loop, the following equation holds.

n

S pi) =3 i) = 0.
=1

3

Note that vP(1) ;9™ ... yP(") 14" s 3 word in the free group on two generators,
those two generators being N and E. In fact, a loop is a walk written in word form
that, when commutativity is allowed, reduces to the empty word, though no strict
cyclic sub-string of the loop may have this property. If one wanted to check that
a given random walk was indeed a Self Avoiding Walk, one would write down the

COUNTING SELF AVOIDING WALKS OF LENGTH N 9

non-reduced word form of the walk, and then search for an embedded word which,
with commutativity, could be reduced to the empty word.

When describing a loop in the notation of a word, we always go counterclockwise
around it for consistency of notation. However, if one wanted to describe a loop
pP(D) g oyp(n) 1a(n) by going clockwise, the resulting loop would just be

p 1y =) a1, —p(h),

Theorem 3.2. Any loop of length 2n may be created from a loop of length 2(n—1)
by adding two edges.

Proof. Let lo, = vPM) a0 - p(n) ,9(7) be 3 loop of length 2n. Then it is enough
to show that there exists two edges in {5, that may be deleted, and the resulting
loop is still a loop (only intersects itself on the first and last vertex).

Deleting a pair of edges from /5, involves removing them from the word that
represents fo,,. Note that either an N, N~! pair or an F, E~! pair must be chosen.
By choosing two such edges, one essentially splits the loop s, into two pieces.

The only vertices we must be concerned with are those pairs of vertices which
are within 1 unit of each other (either in the N/N~! or E/E~! direction) but
which are not connected by an edge. When we pick our N, N~! pair to delete, it
is possible that one piece of the old loop ¢, will contain a vertex that is within
N/N~1 of a vertex in the other piece of the old loop f3,. If this is the case, when
these two pieces are combined, the result will not be a loop as it would have a
self-intersection. We must show that one can always get around this problem.

To simplify notation, we will say that (z,y) < (2/,y’) if they are adjacent to
one another in the loop. Additionally, we will say (x,y) € o, if the point (z,y)
occurs in the loop #s,,. Define

A={(z,y) € lan | @' ,y)et,, Where [(y — o) =1, (z,y) ¢ (2',y)
Let C C A be defined as

C={(x,y) € A|V(2,y) € A,z < '}

Now look at the set of vertices and edges of the loop {2, which involves x
coordinates strictly less than the z coordinates of points in C, call this set B.
There are three cases, involving three separate conditions on B. It is worth noting
that if B # () (the case B = () is one of the three cases) then B contains at least
three edges, so there must be at least one N, N~! or E.E~! pair of edges in B.

Case 1) There are two points in B which are connected via an N edge, and
there are two points in B which are connected via an N~! edge. In this case, we
can remove these two edges and the result will still be a loop. This is because one
piece of loop /5, will contain every pair of vertices which are within one unit of
each other. Thus, the problem outlined in the previous paragraph is avoided, and
the result is a loop of lengthfly(, 1), since two edges were removed.

Case 2) Vertices in B are only connected to edges of the form E, E~!, and N1
(instead of N1 we could have N without loss of generality).

In this case we find an F, E~! pair that can be removed. Define

B'(u) = {(z,y) € B|z=u}.

10 ISAAC OTTONI WILHELM

Note that this defines B'(u) as a set of vertices with the same x coordinate
(namely, u), but with different y coordinates. We let v’ be the smallest « value for
which B’(u’) # 0. This means that we let B’(u) be the set of vertices and edges
which lie in the intersection of the line z = u with the loop £a,,. Then B’(v’) is the
set of points and edges in {a,, furthest to the left. We then partition B’(u') into
disjoint subsets (1, ..., Os where

U ﬂl = Bl(ul)7
i=1

and if (z,9),(a,b) € B; then (z,y) is connected to (a,b) by a string of N1
edges.

Then there exists §;; which has the vertices with the smallest y coordinates.
Let (x¢,y:) be the vertex with the largest y coordinate of all vertices in §;/, and
let (zp,ys) be the vertex with the smallest y coordinate of all vertices in §;,. Then
(74, y;) must be connected to an E~!, and (x,y;) must be connected to an E.

Delete this E, E~' pair. If this causes By to intersect fs, only at vertices
(b, yp) and (x4,y:), then we are done. However, this deletion cannot be done if
there are vertices one unit to the right of each vertex in §; besides vertices (¢, y;)
and (xp,ys) (imagine a loop shaped like a capitalized E).

We may then look at the set of all vertices (and edges) each of which are within
one unit of at least one vertex in §;/. In a similar fashion to how we picked [/, take
the bottom most string of N’s, call it s(1). Look at the endpoints of s(1) and see
if one can delete the E, E~! pair without disrupting anything. If not, repeat the
process again. Because each of these strings must have length strictly less than the
previous one, this process will eventually terminate, if only because the last string
will have length 1, being two vertices attached to one N or N~! edge.

Case 3) B = (). This means that each vertex furthest to the right in loop #3,
is within one N/N~1 step of another vertex, though they are not connected via an
edge. The method of proof for this case is entirely similar to the method in the
previous paragraph. We can partition C into disjoint subsets which are strings of
N~1’s. Then we can look at the top and bottom vertices of one of these strings
and delete the E~! associated with the top vertex, and the F associated with the
bottom vertex. If this would cause the string of N ~1’s to illegally intersect a vertex
(and, consequently, a string of N’s), then repeat the process with this new string
of N’s.

O

To find C5; we need to define what it means for two loops to be equivalent.
For example, is the loop ENE~'N~! equivalent to the loop NEN"!E~!? In fact,
when we say that there are 256 walks of length 4, we count these loops as separate
walks.

However, consider loops

(g1 = E*NE'NE !N~

and

lgo=N'E-'N?E’N"'E~L

COUNTING SELF AVOIDING WALKS OF LENGTH N 11

Geometrically, these two loops are very similar. In fact, if one were to flip
lg 1 across the z axis, apply the appropriate shift to the vertex it starts at, and
go around the loop clockwise, one would get fg ». This forces us to ask how many
different ways a loop of length 2n may be written. One may define an equivalence
relation on loops where f5,, ~ {a,, if one can be rotated, flipped and shifted to get
the other.

One can get an upper bound linear on the number of ways to write a loop by
the following argument. Let W ({s,,) be the number of ways to write ¢s,, as a word.
First, associate each vertex to one of the edges touching it so that no two vertices
are matched with the same edge. There are exactly two ways to do this. Any
loop ¢3,, may be written starting from any one of its 2n vertices. For an arbitrarily
chosen vertex (u, v) one can direct it’s associated edge along any of the four possible
directions.

Thus, W (43,) < 2-4-(2n) = 16n. A lower bound is easily obtained by observing
that 2n < W({a,) since the word s, could start at any one of it’s 2n vertices.

One final observation about loops. Recall that when we use the v, 4 notation
we assume that the walk never revisits a vertex it was just at.

Theorem 3.3. Let wy,, = vPMpaM pp() 190 pe ¢ walk (it may or may not
be self avoiding). Then one must check up to (m — 1)? sub-words to see if wa,, has
a loop in it.

Proof. Consider the walk pP(1) 9 yp(2) a(2) - yp(n) a(n)

We would first check the sub-word made up of the first four elements in the
word. For example, if p(1) > 4 (suppose p(1) is positive without loss of generality),
the first four elements would be vvvr. If p(1) =2 and ¢(1) = 1 and p(2) = -2 ¢t
hen the first four elements would be vvur—!. We would then check the sub-word
with six elements, starting with the first v in walk ws,,. Continuing by adding two
elements each time, and checking sub-words that start with the first v in wa,,, we
would check a total of

2m — 2
2

sub-words. We would then repeat the process, but starting with the second
element. If p(1) = 1 that second element would be y*!' depending on the sign of
q(1). If p(1) > 1 then the second element would still be v. Because the walk is of
even length, we would have to check m — 2 sub-words (the last checked word being
of length 2m — 2). Starting with the third element, we would have to check m — 2
sub-words. The fourth and fifth element would require checking n — 3 sub-words
each. The kth and k+ 1th element would require checking m — (L%j +1) sub-words.

Therefore, for a walk of length 2m, one would have to check a total of

=m-—1

m—2
(m—1)+2zi:(m+1)+2(m_2)2¢_1):(m—1)(1+m—2):(m—1)2
i=1

sub-words to see if that walk contained a loop.
|

One way to check whether a given sub-word is indeed a loop is to see if the
sum of the powers of v equal zero, and if the sum of the powers of p equal zero. If

12

ISAAC OTTONI WILHELM

both these conditions hold then the walk is not self avoiding (there’s some sort of
loop in it).

4. FURTHER QUESTIONS

Some further questions include

(1)

3)

Let ¢, be a loop of length 2n. What is W ({s,,)? At the end of the previous
section, we found an upper bound and a lower bound on W (¢3,). Would
it be possible to improve either of these bounds? We conjecture that the
lower bound may be improved to 2-(2n) = 4n, because one would never get
a previously found word by going clockwise and counterclockwise at each
point.

Is it possible to write down explicitly the number of loops of length 2n? If
not, recall that Sy, =~ u™ as proved in Theorem 1.5. Can Cy, be similarly
approximated?

How walks are there of length k which have exactly one loop of length 2n
embedded in them? How many walks are there which have multiple loops
embedded in them?

4.1. Acknowledgments. I would like to thank Tomasz Zamojski for his guidance
through my research. I thank Peter May for reading this paper, and for running
the REU program at the University of Chicago that made this research possible. 1
want to extend a special thanks Brent Werness for the lessons, advice, and multiple
revisions he gave me. This paper would not have been possible without any of you.

[1] D.A.

REFERENCES

Levin, Y.(Yuval) Peres, and Elizabeth L.(Elizabeth Lee) Wilmer. Markov chains and

mixing times, 2006.

[2] N. Madras and G. Slade. The self-avoiding walk. Birkhauser, 1996.

[3] N. Madras and A.D. Sokal. The pivot algorithm: a highly efficient Monte Carlo method for
the self-avoiding walk. Journal of Statistical Physics, 50(1):109-186, 1988.

