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MATTHEW WOOLF

Abstract. Anyone who has ever seen any differential geometry in action has

probably seen connections, and they may well have wondered what exactly they
are. In this paper, I will try to give them an excruciatingly formal definition,
as well as some intuition about why you should care.
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1. Background

For us, everything in sight is a differential manifold. A differential manifold is
a Hausdorff, second-countable, paracompact topological space X equipped with
a sheaf of R-algebras, AX , called the sheaf of smooth, or differentiable functions
on X (which will be denoted A where there is no ambiguity), which is a subsheaf
of the sheaf of continuous R-valued functions, such that any point x ∈ X has a
neighborhood U homeomorphic to an open subset V of Rn (with n <∞) for some
n such that A restricted to U is isomorphic to the sheaf of C∞ functions on V . A
map between differentiable manifolds M and N is said to be differentiable if it is
continuous, and the induced map on the sheaves of continuous functions restricts to
a map on the sheaf of smooth functions.

A vector bundle over a manifold M is a manifold E and a surjective differentiable
map π : E →M such that the fibers are isomorphic to Rr and for each point x ∈M
there is a neighborhood U such that π−1(U) is diffeomorphic to U ×Rr over π. The
manifold M × Rr is called the trivial bundle. Many operations on vector spaces
can also be performed on vector bundles, for example direct sum, tensor product,
symmetric product, exterior product, and Hom (and hence also dualizing). We
define p-forms to be sections of

∧p(T ∗), and if E is a vector bundle, then E-valued
p-forms are sections of

∧p(T ∗)⊗ E. If V is a vector space, then a V -values p-form
is just a M × V -valued p-form in the above sense.

We define a sheaf Tm, called the tangent sheaf, by letting Tm(U) be the R-linear
derivations from AM (U) to itself. Note that this is a sheaf of R-Lie algebras, and
of left A-modules, but not of A-Lie algebras. Since derivations on Rn are A-linear
combinations of the ∂

∂xi
, this gives a locally free sheaf of rank n (where n is the
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dimension of the manifold). Let Mx be the unique maximal ideal of the stalk of
A at x. We define Tx/MxTx to be the tangent space of M at x. One can think
of the tangent space as consisting of derivations from Ax to R. We can glue these
together in a construction analogous to the étale space, to get TM , the tangent
bundle of M , which is a vector bundle (note that this construction will work for any
locally free sheaf, and conversely, the sheaf of sections of any vector bundle will be
locally free). Sections of the tangent bundle (i.e. differentiable right inverses of the
projection map) are called vector fields. Note that vector fields can also be thought
of as global sections of T , since given a function f and a vector field x, we look at
the germ of f at x, and the tangent vector of X at x, say v, gives a well-defined
real number. It is easy to verify that this gives a derivation, and that this map is in
fact an isomorphism.

We define D1, the sheaf of first-order differential operators to be A⊕T , as a sheaf
of R-vector spaces, with the A-bimodule structure given by f(g ⊕X) = fg ⊕ fX
and (g⊕X)f = (gf +Xf)⊕fX. We give it this module structure, because we want
(f(g ⊕X))(h) = f((g ⊕X)(h) = fgh + fXh, and ((g ⊕X)f)h = (g ⊕X)(fh) =
gfh+ (Xf)h+ f(Xh). We can in fact define an algebra of differential operators of
which the first-order ones form a generating set, but this is not necessary for our
purposes. We can also define first-order differential operators between locally free
sheaves. By definition, D1(E ,F) will be E∗ ⊗D1 ⊗F , where both tensor products
over A, using the A-bimodule structure of D1.D is a first-order differential operator
in the above sense if and only if the map f 7→ σ(D(fs)) is a first-order differential
operator, where σ is a section of E∗ and s is a section of F .

Let G be a Lie group. Then G acts on the tangent bundle by left translation,
and this preserves the Lie algebra structure of vector fields, so we can consider the
Lie algebra of invariant vector fields, denoted g. Any such vector field is determined
by its value at the identity of G, and any tangent vector at e ∈ G gives rise to an
invariant vector field, so there is an isomorphism between g and the tangent space of
G at e. Any homomorphism of Lie groups gives rise to a Lie algebra homomorphism
of their invariant vector fields by taking the differential of the homomorphism at
the identity.

2. Connections

Definition 2.1. Let E be a vector bundle and E be its sheaf of sections. A
connection in E is an A-linear map from T to D1(E , E) (where the image of X in
this map is denoted ∇X) such that for all f ∈ A(M), ∇X(fs) = f∇X(s) + (Xf)s.

We can think of a connection as a way of differentiating sections of a given vector
bundle along a vector field. Sections of trivial vector bundles are just functions to
the fiber, so a section of a vector bundle is given locally by a function. We can
differentiate functions along vector fields, so we would like a way of differentiating
sections of vector bundles along vector fields.

A homomorphism from T to D1(E , E) can be thought of as an element of T ∗ ⊗
E∗ ⊗ D1 ⊗ E ∼= T ∗ ⊗ E∗ ⊗ D1 ⊗ A ⊗ E ∼= (E∗ ⊗ T )∗ ⊗ (E∗ ⊗ D1 ⊗ A), which
is the same as a homomorphism from Hom(E , T ) to D1(E ,A). There is a map
from D1 to T given by projection onto the vector field part, and so we have a
map from D1(E ,A) to Hom(E , T ). We know that there is a short exact sequence
0 → A → D1 → T → 0, so applying Hom(E , ·), we get the short exact sequence
0→ Hom(E ,A)→ D1(E ,A)→ Hom(E , T )→ 0, and hence the kernel of the most
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recent map is Hom(E ,A). By tracing out the definitions, we can see that those
maps from Hom(E , T ) to D1(E ,A) which come from connections are precisely those
which split the above short exact sequence.

Let 0 → E′ → E → E′′ → 0 be any short exact sequence of vector bundles;
we will show that it splits (though not necessarily canonically), and hence, by the
previous discussion, that any vector bundle admits a connection. We note that it
suffices to give a section S2(E)∗ which is positive-definite on the fibers, since then
we will be able to take orthogonal complements. We can certainly do this for a
trivial bundle, so we can do this on the local trivializations, but since the space of
symmetric positive-definite bilinear forms is convex, we can patch these functions
together using partitions of unity to get such a function on the entire vector bundle.

If we are given a connection on a vector bundle, we can often use it to get
connections on other related bundles. For the following, let ∇ be a connection
on E and ∇′ a connection on E′. Then we can form a connection on E ⊕ E′ by
letting ∇′′X(s1 ⊕ s2) = ∇X(s1) +∇′X(s2). We get a connection on E ⊗E′ by letting
∇′′X(s1 ⊗ s2) = ∇X(s1)⊗ s2 + s1 ⊗∇′X(s2). We get a connection on E∗ by letting
∇′′X(f)(s) = X(f(s))− f(∇X(s)). We can similarly get connections on symmetric
and exterior powers. In particular, a connection on the tangent bundle, called
a linear connection, induces a connection on many of the most important vector
bundles of differential geometry.

Notice that we can think of connections as homomorphisms from Hom(E , T )→
D1(E ,A), and that any two differ by a homomorphism from Hom(E , T )→ Hom(E ,A),
which is the same as a homomorphism from T to Hom(E , E), or equivalently, an
End(V )-valued 1-form, where V is the fiber of E. This means that the vector space
of such homomorphisms acts simply transitively on the set of connections, which is
ipso facto an affine space, i.e. a set on which a vector space acts simply transitively.
This means that the set of all connections (since we have shown it is nonempty)
is an affine space. On any trivial bundle, we have a natural connection given by
∇X(s) = Xs, and hence any connection can be written as ∇′X(s) = Xs+ α(X)(S).

We define a gauge transformation on a vector bundle to be a self-diffeomorphism
under which the fibers are invariant. A gauge transformation A has an induced
affine action on the space of connections given by A∗(∇X(s)) = A(∇X((A−1)∗S)).
Any compact Lie group acting by affine transformations of any affine space has a
fixed point, as can be seen by looking at an orbit and averaging with respect to the
Haar measure. In particular, any compact Lie group of gauge transformations has a
connection invariant under it.

3. Vector Bundles and Principal G-Bundles

Definition 3.1. Let G be a Lie group and M a manifold. A principal G-bundle
over M is a manifold P with a surjective map π : P →M such that G acts on P on
the right, and this action descends to a simply transitive action of G on the fibers,
and furthermore, P is locally trivial, in the sense that there is an open cover Uα of
M such that π−1(U) is diffeomorphic to G× U over π. A bundle is called trivial if
it is diffeomorphic to G×M over π.

There is a very close relation between vector bundles and principal G-bundles.
Let E be a vector bundle over M with fiber V . Then there is an associated principal
GL(V )-bundle, the frame bundle, which as a set is the disjoint union of all the
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ordered bases of Ex. Conversely, given any principal GL(V )-bundle, we can get a
vector bundle, by looking at P × V/GL(V ), where (p, v)g = (pg, g−1v).

There is another way of looking at bundles using transition functions. Let E be a
vector bundle with fiber V and Ui, Uj two sets on which we have a local trivialization.
Then we have maps V × (Ui ∩Uj)→ π−1(Ui ∩Uj)→ V × (Ui ∩Uj), where the first
map comes from the trivialization over Ui and the second from the trivialization
over Uj . This then gives us a map from Ui∩Uj → GL(V ). Such maps (denoted mij)
must satisfy mijmjk = mik, called the cocyle condition. Conversely, given an open
cover Ui of M and maps mij : Ui ∩ Uj → GL(V ) satisfying the cocyle condition, we
can look at (

∐
Ui × V )/∼ , where for x ∈ Ui ∩ Uj , (x, v) ∼ (x,mij(v)).

We can also define transition functions for a principal G-bundle. Let P be a
principal G-bundle, trivial on Ui and Uj . Then using the trivializations we get
a map G × (Ui ∩ Uj) → G × (Ui ∩ Uj). The induced self-map of G commutes
with right multiplication, so one can show that it must be left multiplication by
an element of G, which is denoted mij(g). Once again, the transition functions
must satisfy the cocyle condition, and then may be called cocycles, and again such
transition functions give rise to a principal G-bundle. Since vector bundles and
principal GL(V )-bundles are both determined by transition functions to GL(V ), it
seems eminently reasonable to suppose that they are in natural bijection. If you
take different trivializations over an open cover for either principal G-bundles or
vector bundles, then it turns out that the corresponding transition functions satisfy
the same equivalence relation in either case (the cocycles are in this case called
cohomologous), so this does lead to another proof of that fact. If f : G→ H is a
homomorphism of Lie groups, then we can compose with the cocycles of a principal
G-bundle to get the cocycles for a principal H-bundle. This is called extension of
the structure group. In particular, if ρ : G → GL(V ) is a representation of a Lie
group, then we obtain an associated vector bundle. If we have a homomorphism
f : G→ H, and P is a principal H-bundle, then we say that P admits a reduction of
the structure group to G if there is a principal G-bundle P ′ such that P is obtained
from extending the structure group of P ′. Reductions of the structure group are not
necessarily unique, and they don’t always exist. For example, a principal G-bundle
admits a reduction of the structure group to the trivial group if and only if the
bundle is trivial.

Let P be a principal G-bundle over M , and H ⊂ G. Then P → P/H is a
principal H-bundle, so given a section s of P/H → M , we can pull back P to M
and extend the structure group to G to get a principal G-bundle isomorphic to P ,
and hence sections of P/H to M give rise to reductions of the structure group of
G to H. Conversely, given P ′ a reduction of the structure group of P to H, then
P ′ × G → P is a principal H-bundle, so (P ′ × G)/H → P is an isomorphism of
principal G-bundles, and hence the quotients by H are isomorphic, but the quotient
of (P ′ ×G)/H by H is isomorphic to M ×G/H, which has a section, and hence so
does P/H. We have thus proved that there is a one-to-one correspondence between
reductions of the structure group of P to H ⊂ G and sections of P/H →M .

It is a theorem of linear algebra that there is a canonical homeomorphism from
GL(V )/O(V ) to the set of symmetric positive-definite matrices, so reductions of
the structure group of P to O(V ) are the same as differentiable assignments of a
symmetric positive-definite matrix to each point of M , but this is the same as a
section of S2(E)∗ which is positive-definite on fibers. Such a section is called a
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metric on E. If E is the tangent bundle of M , then this is called a Riemannian
metric on M .

Let P →M be a principal G-bundle with projection map π. Then the pullback of
P to P is canonically trivial. Let f : G→ GL(V ) be a representation of G, and let
E be the associated vector bundle. Let σ be a section of E. We can pull it back to
a section of π∗(E) (map x ∈ P to π(x), and look at σ(x) ∈ Eπ(x)

∼= Ex). But π∗(E)
is associated to π∗(P ), which is canonically trivial, and hence is canonically trivial
itself, so this gives a function g : P → V such that g(ph) = f(h)−1g(p). Conversely,
given such a function, by looking at the construction of associated vector bundles,
we get a section of E.

4. Connection Forms on Principal G-Bundles

Let S be a manifold on which the Lie group G acts simply transitively. Then
the tangent bundle of S is canonically isomorphic to S × g with the isomorphism
sending (s,X) to the image of X under the differential at e of the map G → S
given by g 7→ sg. Projection onto g hence gives a g-valued 1-form on S, called the
Maurer-Cartan form, and denoted mG.

Definition 4.1. Let P be a principal G-bundle over M . A connection form on P is
a g-valued 1-form γ on P which is the Maurer-Cartan form on the fibers such that
γ(vg) = Ad(g−1)γ(v), where Ad(g) is the action of G on g given by the differential
of the conjugation map.

Let E be a vector bundle. If E is trivial on Ui, then we have determined that
we can write ∇X(s) = Xs + αi(X)(s) there. Let mij be the transition function
from Ui to Uj . Then on Ui ∩ Uj , one can verify that we must have the condition
αi = mijαjm

−1
ij − (dmij)m−1

ij . On the other hand, a similar argument shows that if
P is a principal G-bundle with a connection form γ, then on U ×G, it is given by
(Ad(g−1)π∗1(ω)) + π∗2(mG), where the πi are the projections onto the first or second
coordinate, and ω is a g-valued 1-form on U . Under a change of trivializations
given by transition function mij , we require that ωi = Ad(mij)ωj − (dmij)m−1

ij .
Since GL(V ) is an open subset of End(V ), which is a real vector space, we can
canonically identify the tangent space at any point, and hence gl(V ) with End(V ).
This means that the data for a connection on a vector bundle and a connection
form on the associated frame bundle are both given by End(V )-valued 1-forms
which must transform in exactly the same way, so we see that there is a canonical
bijection between connections on a vector bundle and connections on the frame
bundle. Notice also that as with connections, we can pull back connection forms,
so on a vector bundle with a metric, we get a connection form on the associated
O(V )-bundle.

Let γ be a connection form on the principal G-bundle P . The vertical vectors
in the tangent bundle of P are those which are mapped to 0 by the differential of
the projection to M . The connection form γ maps the vertical space at each point
isomorphically to g, so the kernel of this map, which will be called the horizontal
space, is complementary to the vertical space. The differential of the projection map
maps the horizontal space isomorphically to the tangent space at the corresponding
point of M . Given a tangent vector on M , we can lift it uniquely to a tangent
vector in the horizontal space of P at any point of P lying above the point of M .
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In particular, we can use this to uniquely lift vector fields of M to horizontal vector
fields of P .

Let E be a vector bundle with metric g, and ∇ a connection on E. ∇ is called
a metric connection if it comes from a connection on the associated principal
O(V )-bundle. This condition is equivalent to the vanishing of ∇′X(g) for all vector
fields X, where ∇′ is the associated connection to ∇ on (S2E)∗. Expanding this
out, we get Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ). The group O(V ) acts by gauge
transformations on E, and is compact, so there must be a metric connection. In
general, this metric connection will not be unique. However, if E is the tangent
bundle, then we can impose another condition in order to make the metric connection
unique.

Definition 4.2. Let ∇ be a linear connection. The torsion of ∇ is ∇XY −∇YX −
[X,Y ].

Proposition 4.3. On any Riemannian manifold there is a unique metric connection
with vanishing torsion. This connection is called the Levi-Civita connection.

This is proved by expanding out g(∇XY, Z) using the fact that ∇ is a metric
connection, summing over the cyclic permutations of X, Y , and Z, and then using
the vanishing of the torsion to express g(∇XY, Z) independently of ∇. This then
shows that ∇XY must be a section of the tangent bundle, and one verifies that it is
indeed a connection.

Definition 4.4. Let ∇ be a connection on a vector bundle E. The curvature form of
∇ is the End(E)-valued 2-form R∇ given by R∇(X,Y ) = ∇X∇Y −∇Y∇X−∇[X,Y ].
If γ is a connection on a principal G-bundle given locally by g-valued 1-forms αi, then
the curvature is dαi + [αi, αi], where [αi, αi](X,Y ) is by definition [αi(X), αi(Y )].
A connection is called flat if the curvature vanishes identically.

It is relatively easy to verify that these conditions are compatible. One can show
that given any principal G-bundle with a flat connection, locally the bundle can
be trivialized along with the connection, an if the trivialization is on a connected
open set, then the trivialization is unique up to translation by an element of
G. As a consequence, any principal G-bundle with a flat connection is given by
locally constant transition functions. This means that the transition functions are
continuous functions to G given the discrete topology, so they give a principal
G-bundle where G has the discrete topology, but this is just a covering space.

5. Holonomy and Parallel Transport

Definition 5.1. A path in a manifold M from a ∈M to b ∈M is a differentiable
map f from a small open interval containing [0, 1] (which we will henceforth call I
for convenience) to M such that f(0) = a and f(1) = b.

Notice that since I is a one-dimensional manifold, it cannot have any 2-forms,
and hence all connections on it are flat. Since it is simply connected, the previous
discussion shows that all principal G-bundles over it with a given connection must
be canonically trivial. By multiplying by the suitable element of G, we can find a
canonical section which has any desired value at 0.

Now let f be a path in M , and P a principal G-bundle over M with a connection
γ. We can pull back P to I, where it becomes trivial, and take a section whose value
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at 0 is any point of P in the fiber over a. By looking at the value of the section at
other points of the interval, we get a unique lift of the path to P . In effect, we are
taking the unique path starting at a given point whose tangent vector at each point
is horizontal and maps to the tangent vector of the path in M . If the path is a loop,
then the section is in the same fiber at 0 and 1, so they differ by a group element.

Definition 5.2. Let f be a loop in M such that f(0) = f(1) = p. The group
element defined by f in the above construction is called the holonomy of f . The
holonomy group at p is the set of all elements of G arising from holonomy of loops
which start and end at p. The restricted holonomy group is the subgroup arising
from holonomy of null-homotopic loops.

The holonomy comes from two different sources: the homotopy class of the
loop, and the connection. The first one can be seen even in covering space theory,
where loops which are not null-homotopic need not lift to loops. The restricted
holonomy group is basically determined by the curvature, however. The Ambrose-
Singer theorem states that the structure group of any principal G-bundle P with
a connection form can be reduced to the holonomy group at each point, and that
the connection form on P comes from a connection form on the reduced bundle.
Furthermore, the Lie algebra of the restricted holonomy group is the subalgebra of
g generated by the values of the curvature form on the reduced bundle.
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