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Abstract. In this paper, we differentiate between cold games, which are eas-

ier to analyze and play, and hot games, much more difficult in terms of strategy.
We present algorithms to find the left stop, right stop, and mean value of a

hot game. We finish with an application of temperature theory and introduce

the thermostatic strategy, a strategy that is particularly useful in analyzing
sums of hot games.
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1. An Introduction to Games

The games that are studied in combinatorial game theory involve only two play-
ers, Left and Right, and a finite set of moves before the game comes to an end.
Left and Right alternate moves, and the first player who cannot move loses. There
are no moves depending on chance, and both players have perfect information.

Definition 1.1. A game is an ordered pair of sets of games. This is denoted by

G = {GL ∣ GR},
where GL is the set of games Left can reach in the next move, and GR is the set of
games Right can reach.

Let us look at a few games—the games may be illustrated using trees, with GL

and GR branching out from the starting node.

L R L R

1
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In the first game, to the very left, there is a starting position, but no moves
for either player. Using the preceding definition, we write G = {∣}. We call this
the zero game, and, as the first player to move loses, the zero game is a second
player win. In other words, the zero game is a game in which the second player has
a winning strategy. This will take on greater meaning when we come upon more
complicated games in which the second player is only guaranteed a win so long as
he plays optimally.

The second game is a game in which Left has a move but Right does not. If Right
is offered the chance to move first, he will lose. If Left moves first, however, he has
a move to the zero game, which will also force Right, the next player to move, to
lose. This game is {0 ∣}, which we denote by 1. Our sympathies are usually with
Left, so we say that a game with a winning strategy for Left is a positive game.

Conversely, consider the third game. It is the same game as 1 except the players’
moves are flipped. This game is {∣ 0}, which we denote by −1. We say that a game
with a winning strategy for Right is a negative game.

Definition 1.2. The negative of a game G is given by

−G = {−GR ∣ −GL}.

The last game that ends in at most one move looks like the fourth game pictured.
Both Left and Right can move to the zero game, and so the game is {0 ∣ 0}, which
we denote by ∗. In this game, the first player to move wins. Generally we say that
games in which the first player to move has a winning strategy are fuzzy.

To summarize and introduce useful notation,

∙ G = 0 if there is a winning strategy for the second player.
∙ G > 0 if there is a winning strategy for Left.
∙ G < 0 if there is a winning strategy for Right.
∙ G ∥ 0 if there is a winning strategy for the first player.

Proposition 1.3 ([1], p. 73). All games fall into one of these four categories.

We can combine notation to attain some more nuanced comparisons. For exam-
ple, we say that G ≥ 0 if either G > 0 or G = 0. In either case, if Right goes first
then Left has a winning strategy. On the other hand, if Right goes first and has a
winning strategy himself, then either G < 0 or G ∥ 0. Therefore, a game G satisfies
G ≥ 0 if and only if Left has a winning strategy when Right goes first. Similarly,
we say that G ∣⊳ 0 if either G > 0 or G ∥ 0. This means that Left has a winning
strategy if Left starts.

2. Sums of Games

Definition 2.1. The sum of two games G and H is

G+H = {GL +H,G+HL ∣ GR +H,G+HR}.

In gameplay, this is the equivalent of placing two games next to each other, for
then our players can make a move in either G or H.

To find the difference between two games G and H, we simply take the negative
of the latter game: G −H = G + (−H). We can now use our definition of −G to
check that G+ (−G) = 0.
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Example 2.2. The game 1− 1, or 1 + (−1), is shown here:

L R

1 + H -1 L

We can see that the player who goes first will end up losing, as the second player
will then have the last move. Thus this game does turn out to be a zero game.

In the same way, for all games G, the second player is able to mirror the first
player’s moves exactly, and will win the game by making the last move. We find
that addition of games is both associative and commutative, with identity 0 and
−G the additive inverse of G.

Armed with our newfound knowledge of summing up games, we can now compare
two games with each other. We say that G ≥ H if G−H ≥ 0, and define equality
by G = H if G ≥ H and G ≤ H.

Definition 2.3. An equivalent definition of inequality is that G ≥ H if and only
if there is no option HL such that HL ≥ G and there is no option GR such that
GR ≤ H.

3. Numbers

A number x = {xL ∣ xR} is a game in which all elements of xL and xR are
numbers (or the empty set), and no element of xL is greater than or equal to any
element of xR. The number x is equivalent to the simplest number between xL and
xR, simplest meaning the one that is created earliest in the order of construction.

For all numbers x, we have x ≱ xR and xL ≱ x. To see this, we consider x ≥ xR.
This can only be so if there exists no inequality of the form xR ≥ xR or x ≤ (xR)L,
which is impossible, since xR ≥ xR is always true. The inequality xL ≱ x is proved
similarly, and from here it is a short step to proving that xL < x < xR for all x.
Since we already know that x ≱ xR, we simply have to show that xR ≥ x. This is
true unless there exists some xRR ≤ x or some xL ≥ xR. The latter is prohibited
by the definition of a number, and the former implies xR < xRR ≤ x, which is
clearly false.

Construction 3.1. Before we have any numbers, we have the empty set. Plugging
in the empty set as the sole element of xL and xR, we get x = {∣}, which we call 0.
With the creation of 0, we have two possible elements of xL and xR, and {∣}, {0 ∣},
{∣ 0}, and {0 ∣ 0} as possible numbers. We have seen {∣} before, and {0 ∣ 0} fails
to be a number by definition. Recall our earlier notation {0 ∣} = 1 and {∣ 0} = −1.

Now we have numbers {∣ −1}, {−1 ∣ 0}, {0 ∣ 1}, and {1 ∣}, which respectively
we call −2, − 1

2 , 1
2 , and 2. Note that y = {1 ∣} is equal to x = {0, 1 ∣}. Because

x > xL, we have x > 1 and x > 0, but because 1 > 0, the 0 is dominated by the 1.
In gameplay, this means that the 0 will never be picked, for Left will always want
to move to the most positive game he is able to play (and Right the most negative).

Proposition 3.2. With notation as above, 1
2 + 1

2 = 1.
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Proof. We have by definition of addition 1
2 + 1

2 = { 12 ∣ 1 + 1
2}. It suffices to show

that 1 ≥ 1
2 + 1

2 and 1 ≤ 1
2 + 1

2 . We have that 1 ≥ 1
2 + 1

2 is true if there does not

exist an option ( 1
2 + 1

2 )L ≥ 1 and if there does not exist an option 1R ≤ 1
2 + 1

2 . The

former is true since ( 1
2 + 1

2 )L = { 12}, and the latter is trivially true, as there are no

elements in 1R. The other inequality, 1 ≤ 1
2 + 1

2 , is proved similarly. □

By continuing the above construction, we can obtain all natural numbers, and
moreover, all dyadic rationals. We see this as a natural number n is equal to
{0, 1, 2, . . . , n− 1 ∣}, and a dyadic rational number x with denominator 2n is equal
to {x − ( 1

2n ) ∣ x + ( 1
2n )}. If we allow the sets of left and right options to be

infinite, then we find that these numbers will contain ordinals and real numbers.
For example, an ordinal number w is equal to {� : � < w ∣}, and 1

3 is equal to

{ 14 ,
1
4 + 1

16 ,
1
4 + 1

16 + 1
64 , . . . ∣

1
2 ,

1
2−

1
8 , . . .}. Additionally, numbers are totally ordered:

we can think of them as being on an extended number line.
At this point, we will make the transition from numbers to a different sort of

game. Numbers are in actuality very boring games to play. This is because numbers
are basically guaranteed wins for one player or another, and neither player will want
to move in a number, as all of Left’s options, xL, are less than x, and vice versa
for Right. When playing sums of games, players will choose to move in the games
which are not numbers.

Theorem 3.3 (Number Avoidance Theorem). For a game x a number and a game
G not a number,

G+ x = {GL + x ∣ GR + x}.

We will save the proof of this theorem for a later section, after we learn a couple
of algorithms that will help us in our proof.

4. Hot Games

In the previous section, we looked at games we claimed weren’t particularly
interesting in terms of strategy. We call numbers cold games, as there is not much
incentive to move in a game that is a number. Hot games, on the other hand, hold
much incentive to move.

What kind of game is a hot game? Possibly a game like {1000 ∣ −1000}, where
whichever player goes first gains a big advantage!

We can’t exactly compare hot games to all numbers, as they are not numbers,
but we can compare them to some numbers. For any hot game G, we may split
the number line into numbers that are greater than or equal to G, numbers that
are less than or equal to G, and numbers that are confused with, or incomparable,
to G. The numbers that we call confused with the hot game are represented by a
cloud, flanked by numbers greater than or equal to the game to the right of the
cloud, and numbers less than or equal to the game to the left.

Fortunately, we can strip away the confusion to find that the hot game has a mean
value above one specific number, a value that the game attains on average when
many multiples of the game are played. We are able to find out a lot of information
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about the hot game, including its mean value and right and left boundaries of the
cloud of numbers incomparable with the game.

Definition 4.1. A Dedekind section splits the class of all numbers into two subsets
at a number x, with x in one of the two subsets. Pictorially, we can represent
Dedekind sections as drawn below.

or

We define two Dedekind sections on the number line for a hot game G.

Definition 4.2. For the Left section of G, L(G), we place into its right hand side
all numbers x such that x ≥ G and into its left hand side all numbers x such that
x⊲∣G.

For the Right section of G, R(G), we place into its left hand side all numbers y
such that y ≤ G and into its right hand side all numbers y such that y ∣⊳G.

Note that these are indeed sections, as proposition 1.3 tells us that every number
is in exactly one side of L(G) and one side of R(G).

We can define Left and Right sections for numbers too, with numbers greater
than or equal to a number x inhabiting the right side of L(x), and numbers strictly
less than x inhabiting the left side of L(x). Likewise, the numbers to the left of R(x)
are less than or equal to x, and the numbers to the right of R(x) strictly greater.
Intuitively, we can compare Left and Right sections by comparing the points at
which they are split. While for numbers L(x) < R(x), it is not so for hot games,
where R(G) < L(G). If for a hot game G we had L(G) < x < R(G), we would
have x ≤ G ≤ x, and thus G = x, a contradiction.

5. The Right and Left Stops

We call the cutoff points of the Left and Right sections the left stop, l(G), and
right stop, r(G), respectively. These and the attached sections may be identified
using the following algorithms.

Theorem 5.1. If G is a number, then l(G) = r(G) = G and we know from above
what the sections L(G) and R(G) are equal to. For a game G that is not a number,
we have

(5.2) l(G) = max
GL

r(GL)

and

(5.3) r(G) = min
GR

l(GR),

and similar equations for the left and right sections.

When playing a game, both players will eagerly move until a number is reached,
at which point it would be disadvantageous for either player to move. We can agree
to stop a game when a number is reached, and tally up the score of a sum of games
by adding up the components when they are numbers.
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Left will try to reach as large a number as possible, while Right will try to reach
as small a number as possible. In this way we can find the left and right stops by
following intelligent play. We play the game until a number is reached, taking note
of the next unfortunate player to move. The game will fall slightly to the left or
right of the stopping value, depending on the next player to move.

Example 5.4. The game {9 ∣ {7 ∣ 2}}. If Left goes first, Left will move to the
game 9, with Right about to move. Thus we say that l(G) = r(9). If Right starts
he will move to {7 ∣ 2}, and Left to 7, so r(G) = r(7). The cloud of confusion
extends from just to the right of 7 to just to the right of 9, and thus excludes 7
while including 9.

Now we know enough to prove the Number Avoidance Theorem. Recall the
statement of the theorem that G+ x = {GL + x ∣ GR + x}.

Proof of theorem 3.3. We want to show that G + x ≤ {GL + x ∣ GR + x} and
G + x ≥ {GL + x ∣ GR + x}. We will only prove the former inequality since the
latter inequality is proved similarly.

We have G + x = {GL + x,G + xL ∣ GR + x,G + xR} by definition. Let us
suppose for contradiction that G+ x ≰ {GL + x ∣ GR + x}. This means that either
there exists (G+x)L such that (G+x)L ≥ {GL +x ∣ GR +x}, or GR +x ≤ G+x.
The latter is impossible, as GR + x is a right option of G + x. Similarly, if there
exists (G + x)L such that (G + x)L ≥ {GL + x ∣ GR + x}, it is not GL + x.
The only possibility remaining is G + xL ≥ {GL + x ∣ GR + x}. We assume that
we have already proven the theorem for all numbers simpler than x, and so let
H = {GL + x ∣ GR + x} ≤ {GL + xL ∣ GR + xL} = H ′. We will show that this is
impossible, using the algorithms shown above.

The left stop of H is given by our algorithm to be l(H) = max(r(GL + x)),
where the maximum is taken over the set GL. Similarly, the left stop of H ′ is
given by l(H ′) = max(r(GL + xL)) taken over the same set. For any GL we have
GL + xL < GL + x, and thus l(H ′) = max(r(GL + xL)) < max(r(GL + x)) = l(H),
a contradiction. □

6. The Mean Value Theorem

Since we found the right and left stops following intelligent play, we know that
a hot game G will result on its right stop when Right plays first, and its left stop
when Left plays first. We can further say that G finds on average its center of mass
at a value we call its mean value, m(G). We propose that for any finite n, the game
nG is very close to the game nm(G).

To prove this, we start with some inequalities about the right and left stops.

Theorem 6.1. For games G, H, we have

r(G) + r(H) ≤ r(G+H) ≤ r(G) + l(H) ≤ l(G+H) ≤ l(G) + l(H).

Proof. These inequalities may be proved using playing strategies, and are proved
similarly. For example, we will prove the first inequality, that r(G) + r(H) ≤
r(G+H). Left player plays second, and if he does not have a better strategy, may
simply respond in the same component that Right plays, continuing the strategies
that yield r(G) and r(H). In this way, Left can always ensure a stopping value that
is at least equal to r(G) + r(H). □
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We may come up with many more inequalities which are in essence the same.
For example, r(G) = r(G+H −H) ≥ r(G+H) + r(−H) = r(G+H)− l(H).

Theorem 6.2 (Mean Value Theorem). For every game G there is a number m(G)
and a real number t such that

nm(G)− t ≤ nG ≤ nm(G) + t,

for all finite integers n.

Proof. It will suffice to show that the difference between l(nG) and r(nG) is bounded
independently of n. By the previous theorem, we have nr(G) ≤ r(nG) and l(nG) ≤
nl(G), and thus r(G) ≤ 1

nr(nG) ≤ 1
n l(nG) ≤ l(G). Our proof would then show

1
nr(nG) and 1

n l(nG) to converge to the common value m(G).

We have l(nG) = r((n−1)G+GL) assumingGL is the left option that satisfies the
maximum in equation 5.2. Then l(nG) = r((n−1)G+GL) ≤ r(nG)+l(G−GL). □

7. Thermographs

We find the mean value of a hot game G by imposing a real-valued tax, t, on
its left and right options to reduce the incentive to move. We call such a tax
temperature, and refer to this process as “cooling” G.

We define a new cooled game, Gt, that takes into account such a tax for the game
G, adding a fee of t to every move that a player makes.

Definition 7.1. For a game G and t a real number ≥ 0,

Gt = {GL
t − t ∣ GR

t + t},
unless Gt is a number.

Note that Gt will be a number for all t that are sufficiently large. Just before Gt

becomes a number, it will be infinitesimally close to a number. Infinitesimals are
games which have right and left stops both equal to 0: for example, ∗ = {0 ∣ 0},
↑= {0 ∣ ∗}, and ♥ = {∗ ∣ 0}1. We say that Gt is infinitesimally close to a number if
Gt is the sum of a number with an infinitesimal. We specify t0 as the temperature
of G, or the smallest t for which Gt is infinitesimally close to a number, and we
denote this number by x. For all t > t0, we let Gt = x.

Thus we may slightly refine the previous definition, and say that

Gt =

{
{GL

t − t ∣ GR
t + t} 0 ≤ t ≤ t0

x t > t0.

For example, take G = {1000 ∣ −1000}. When t = 1000 we have Gt = {0 ∣ 0},
which is infinitesimally close to the number 0. Therefore, Gt = {1000−t ∣ −1000+t}
for t < 1000, G1000 = 0 + ∗, and Gt = 0 for t > 1000.

Let us define new values lt(G) and rt(G) that are l(Gt) and r(Gt).

Theorem 7.2. For a game G and a real number t ≥ 0, we have

(7.3) lt(G) = max rt(G
L)− t

and

(7.4) rt(G) = min lt(G
R)− t,

1Stuffy old men know this game to be ↓.
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unless lt(G) < rt(G). If lt(G) < rt(G), then Gt is the simplest number x at the
lowest temperature at which this occurs, and we have lt(G) = l(x) and lt(G) = r(x).

For games with more complicated right and left options, we may draw a ther-
mograph to illustrate the game’s mean value. A thermograph is the region between
a game’s left and right boundaries, lt(G) and rt(G). We plot games on the same
number line as their right and left options, and temperature on the vertical axis.

Convention dictates that the number line be backwards, so that positive values
may be further left than negative, and the left stop to the left of the right stop.

Example 7.5. The game G = {{7 ∣ 5} ∣ {4 ∣ 1}}. Let us name for clarity
H = {7 ∣ 5} and K = {4 ∣ 1}. Since Gt has a recursive definition, we study
recursively the left and right options until we reach options that are numbers. We
do not tax numbers, and so draw vertical arrows above the games 7, 5, 4, and 1.

We shall start with H: Ht = {7− t ∣ 5 + t} becomes a number at a temperature
of t > 1. We tax the options of H with a tax t until both left and right boundaries
meet above the number 6. Thus for t > 1 we draw a vertical arrow above 6, denoting
it as the mean value.

Similarly with K, Kt = {4− t ∣ 1 + t} becomes a number at temperature t > 1 1
2 .

We tax the options of K with a tax t until we reach the mean value of K, 2 1
2 .

1234567

t = 1

t = 1.5

H K

Now, the left boundary of G is found by taxing the right boundary of H with a
tax of −t, and the right boundary of G is found by taxing the left boundary of H
with a tax of t. We continue until the mean value of G is reached.

We have

Gt =

⎧⎨⎩
{{7− t ∣ 5 + t} − t ∣ {4− t ∣ 1 + t}+ t} 0 ≤ t ≤ 1
{6− t ∣ {4− t ∣ 1 + t}+ t} 1 < t ≤ 1 1

2
{6− t ∣ 2 1

2 + t} 1 1
2 < t ≤ 1 3

4
4 1
4 t > 1 3

4 .

Note that at temperature t < 1, Gt = {{7− t ∣ 5 + t} − t ∣ {4− t ∣ 1 + t}+ t} =
{{7 − 2t ∣ 5} ∣ {4 ∣ 1 + 2t}}, and thus the left and right boundaries of Gt at such
temperatures are vertical lines above 5 and 4.
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1234567

t = 1

t = 1.5

t = 1.75

H
KG

There are some rules and patterns that apply to all thermographs.

Theorem 7.6. For any game G, its left boundary is a line in periods either vertical
or diagonal to the right with a slope of −1. The right boundary of G is a line in
periods either vertical or diagonal to the left with a slope of 1. The two boundaries
meet and form a mast above a dyadic rational.

Proof. Observe that subtracting t from a right boundary, a line that is vertical or
diagonal to the left with a slope of 1, will result in a line that is diagonal to the
right with a slope of −1 or vertical, a left boundary. Adding t to a left boundary
will result in a right boundary with the specifications we desire. The games that
we start such a process with are always numbers. Two boundaries that are aiming
toward each other at the same rate must meet at a number that may be found by
dividing by 2. □

8. The Thermostatic Strategy

When playing combinatorial games, things may become complicated very quickly
when you are faced with sums of hot games. We can use temperature to determine
the most advantageous move to make. The thermostatic strategy provides a gener-
ally optimal analysis of sums of hot games, telling the player in which component
in the sum to move. By following the thermostatic strategy, the player ensures that
he can reach a stopping position for the sum of games that differs from the optimal
one by no more than the temperature of the hottest game.

Suppose we are playing a sum of games A+B+C+ ⋅ ⋅ ⋅ as Left player, and that
we know the thermographs of each of the individual components in the sum. Let
us define a compound thermograph as having a right boundary that is the sum of
all of the right boundaries of the individual components

rt(A) + rt(B) + rt(C) + ⋅ ⋅ ⋅

and a left boundary that is

rt(A) + rt(B) + rt(C) + ⋅ ⋅ ⋅+Wt

where Wt is the maximum width of any of the components A + B + C + ⋅ ⋅ ⋅ at
temperature t.



10 KAREN YE

In other words, Wt = max{Wt(A),Wt(B),Wt(C), . . .} and we can see that the
compound thermograph of the sum A + B + C + ⋅ ⋅ ⋅ will have a width of Wt at
temperature t.

The ambient temperature is the least temperature such that the left boundary,
rt(A)+rt(B)+rt(C)+⋅ ⋅ ⋅+Wt, is maximal. If the Left player moves in a component
that is widest—with a width of Wt—at the ambient temperature, he is guaranteed
a stopping position that is at least rt(A) + rt(B) + rt(C) + ⋅ ⋅ ⋅+Wt.

Example 8.1. Let us see an example.

In this case, the left boundary of the compound thermograph is maximal be-
tween the temperatures of 5 and 7, and thus the ambient temperature is 5. The
thermostatic strategy recommends that the player move in component B, which is
the widest component at temperature t = 5, with a width of Wt.

Let us introduce a few theorems before we prove the thermostatic strategy.

Theorem 8.2. The difference between the right or left stop of a game and its mean
value is no more than the temperature of the game.

Proof. This follows from the observation that the right and left boundaries of a
thermograph are always either vertical or diagonal with a slope of ±1. The maximal
difference occurs only if a boundary is completely diagonal. □

Theorem 8.3. The temperature of any sum is no more than the largest temperature
of any component in the sum.

Proof. The right and left boundaries of the compound thermograph meet when the
maximal width, Wt, is zero. □

Corollary 8.4. When playing the sum of a large number of games, the difference
between the stopping position recommended by the thermostatic strategy and the
optimal strategy is bounded by the largest temperature.

Proof. This follows from the previous two theorems. □

Theorem 8.5. The mean value of a sum of games is equal to the sum of the mean
values of the games.
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Proof. We have

(A+B + C + ⋅ ⋅ ⋅ )t = At +Bt + Ct + ⋅ ⋅ ⋅

so for t > max{t(A), t(B), t(C), . . .} we have

(A+B + C + ⋅ ⋅ ⋅ )t = m(A) +m(B) +m(C) + ⋅ ⋅ ⋅ .

□

Theorem 8.6 (The Thermostatic Strategy). Given a sum of games A+B+C+⋅ ⋅ ⋅ ,
suppose Left moves in the widest component at the ambient temperature. Then for
any given temperature t, he is guaranteed a stopping position that is at least rt(A)+
rt(B) + rt(C) + ⋅ ⋅ ⋅ − t if Right starts, and at least rt(A) + rt(B) + rt(C) + ⋅ ⋅ ⋅+Wt

if he starts himself.

Proof. Suppose Right starts, and let him move from A+B+C + ⋅ ⋅ ⋅ to AR +B+
C+ ⋅ ⋅ ⋅ . Left is then inductively guaranteed at least rt(A

R) + rt(B) + rt(C) + ⋅ ⋅ ⋅+
Wt(A

R).

Using the illustration, we can see that no matter the temperature t, we have
rt(A

R)+Wt(A
R) ≥ rt(A)− t. This is because if t < t(A), then rt(A

R)+Wt(A
R) =

lt(A
R) = rt(A)− t through the process of taxing we have defined. If t ≥ t(A), then

we have rt(A
R) + Wt(A

R) ≥ rt(A) − t due to the fact that the distance between
rt(A) and rt(A

R) +Wt(A
R) has stopped growing after rt(A) = m(A).

If Left starts, he will play at the ambient temperature t, at which some com-
ponent of the sum will have the maximal width, Wt. Such a component has a
temperature that is greater than t.

Suppose the component mentioned is B, and Left moves from A+B+C+ ⋅ ⋅ ⋅ to
A+BL+C+⋅ ⋅ ⋅ He is inductively guaranteed at least rt(A)+rt(B

L)+rt(C)+⋅ ⋅ ⋅−t.
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Since we made sure to move at a temperature t < t(B), we have rt(B
L) − t =

rt(B) +Wt. □
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