
FREUDENTHAL SUSPENSION THEOREM

TENGREN ZHANG

Abstract. In this paper, I will prove the Freudenthal suspension theorem,

and use that to explain what stable homotopy groups are. All the results

stated in this paper can be found in Chapter 4 of Algebraic Topology by
Hatcher. The reader is expected to be familiar with basic group theory, such

as the definitions of group, group homomorphism and exactness, as well as

basic algebraic topology, which includes the notions of homotopy, homotopy
of pairs, homotopy equivalence, deformation retraction and CW complexes.

These can be found in Abstract Algebra by Dummit and Foote, and Algebraic

Topology by Hatcher.
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1. Homotopy Groups

Definition 1.1. Let (X,x0) be a based topological space. The nth homotopy
group of (X,x0) is the set of base point preserving homotopy classes of continuous
functions [f ], where f : (In, ∂In)→ (X,x0). We denote this set as πn(X,x0). Also,
we call X n-connected if for all i ≤ n, πi(X,x0) contains only one element.

As its name suggests, the nth homotopy group of any space X is a group when
n ≥ 1, and is in fact abelian when n ≥ 2. When n ≥ 1, we can define an operation
+ : πn(X,x0)× πn(X,x0)→ πn(X,x0) such that [f ] + [g] = [f + g], where

(f + g)(x1, x2, . . . , xn) =
{
f(2x1, x2, . . . , xn) if 0 ≤ x1 ≤ 1

2 ;
g(1− 2x1, x2, . . . , xn) if 1

2 ≤ x1 ≤ 1.

We will now check that this operation is well defined. First, observe that [f+g] is
in πn(X,x0). Also, if [f ] = [f ′] and [g] = [g′], let F,G be the base point preserving
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homotopies from f to f ′ and g to g′ respectively. One can then easily check that
H : In × I → X given by

H(x1, x2, . . . , xn, t) =
{
F (2x1, x2, . . . , xn, t) if 0 ≤ x1 ≤ 1

2 ;
G(1− 2x1, x2, . . . , xn, t) if 1

2 ≤ x2 ≤ 1

is a base point preserving homotopy from f + g to f ′+ g′. Hence, + is well defined.
Under this operation it is easy to check that the identity is the homotopy class of

the constant map to x0 and the inverse of [f ] is the homotopy class containing the
function −f , where −f(x1, x2, . . . , xn) := f(1 − x1, x2, . . . , xn). The associativity
of this operation is given by the straight line homotopy H described in the picture
below:

Figure 1. Proof of associativity

Also we can see the commutativity of this operation when n ≥ 2 via the homo-
topy that is the composition of the homotopies described in the following picture:

Figure 2. Proof of commutativity

The first homotopy shrinks the domain of f and g to proper subsets of In, the
second and third switches the positions of the domain of f with the domain of g,
and the last one enlarges the domains back to their original size. Note that the
second and third homotopies can only be defined when n ≥ 2 because the domains
of f and g need to remain disjoint throughout the entire homotopy.

Now that we have associated groups to topological spaces, it is interesting to
look at how the maps between topological spaces, i.e. continuous functions, relate to
group homomorphisms between their corresponding homotopy groups. Fortunately,
this relationship is very straightforward. For any continuous function f : X → Y ,
we can associate with it a group homomorphism f∗ : πn(X,x0)→ πn(Y, f(x0)) such
that f∗([g]) = [f◦g]. This holds for any n. In fact, we have an even nicer relationship
between f∗ and f : if f is a homotopy equivalence, then f∗ is an isomorphism for
any n. For brevity, we will use but not prove some of these facts.
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The definition of a homotopy groups is related to that of relative homotopy
groups. IfX is a topological space, A ⊂ X and x0 ∈ A, we can define πn(X,A, x0) to
be the set of homotopy classes of continuous functions [f ], where f : (In, ∂In, Jn−1)→
(X,A, x0) and the homotopy is via functions of this form. Here, and in the rest
of this paper, Jn−1 := ∂In \ (In−1 × {0}), where In−1 × {0} is seen as the face
of In with the last coordinate xn = 0. Note that if we take A = {x0}, then the
definitions of πn(X,A, x0) and πn(X,x0) coincide.

An alternative way to think about homotopy groups is to consider them as the
“different” ways to map spheres instead of cubes into X. This means that we
think of a representative from a homotopy class in πn(X,x0) to be of the form
f : (Dn, Sn−1) → (X,x0). Similarly, the corresponding representative for relative
homotopy groups is of the form f : (Dn, Sn−1, x0) → (X,A, x0). A little thought
will convince the reader that these two ways of defining homotopy groups are equiv-
alent. The upshot for using this definition is that when dealing with CW-complexes,
the representatives of homotopy classes in the relative homotopy groups look very
much like attaching cells to A.

Not surprisingly, the relative homotopy groups turn out to be groups as well.
However, the group multiplication in this case is a little trickier to define. Since
writing down an explicit formula is both unenlightening and similar to what we
have done above, we provide a pictorial definition instead. Although this is done
for π3(X,A, x0), this is true for the general case as well. For the cubes on the
left, the right face of the left cube and the left face of the right cube are both sent
to x0 by f and g respectively. Thus, we can define f + g to be the map whose
domain is the domain of f and g identified along the faces mentioned above and
reparamaterized into a cube. Using a similiar argument as that in the non-relative
case, we can check that + here is also well defined.

Figure 3. Definition of +

Using the proofs above, but with slight modifications, one can show that this
multiplication is well defined, and that the nth relative homotopy group of any
space is also a group when n ≥ 2, and is abelian when n ≥ 3.

One of the main advantages of looking at relative homotopy groups is that they
are related via a long exact sequence as shown in the next theorem. This turns out
to be a vital computational tool for higher homotopy groups. To prove the theorem
though, we need a useful lemma known as the compression criterion.
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Lemma 1.2 (Compression Criterion). A map f : (Dn, Sn−1, s0) → (X,A, x0)
represents the identity in πn(X,A, x0) if and only if it is homotopic relative Sn−1

to a map whose image is entirely contained in A.

Proof. First suppose that [f ] is the identity in πn(X,A, x0). This means that we
have a homotopy H : (Dn × I, Sn−1 × I, {s0} × I) → (X,A, x0) from f to the
constant map to x0, so we can define another homotopy G such that Gt maps Dn

into X starting with Gt|Sn−1 = f |Sn−1 , up along the sides of the cylinder defined
by H until the boundary of Ht, and ending with Ht. Observe that G1 is a map
whose image is H(Sn−1 × I)∪ {x0} ⊂ A, and Gt|Sn−1 = f |Sn−1 for all t ∈ I, and f
is homotopic to G1 via G.

Figure 4. Pictorial description of G

To prove the converse, suppose that f is homotopic to g relative Sn−1 and
g(Dn) ⊂ A. This means [h] = [g] in πn(X,A, x0). Now, Dn is contractible, so let
H be a deformation retract of Dn to s0. Then let G(x, t) := g(H(x, t)), and observe
that G is a homotopy from g to the trivial map, and Gt(Sn−1) ⊂ A for all t ∈ I.
Thus, [g] = 0 in πn(X,A, x0), and since [h] = [g], [h] = 0. �

Theorem 1.3 (Exact Sequence for Relative Homotopy Groups). Let i∗ and j∗
be the homomorphisms induced by the inclusions i : (A, x0) ↪→ (X,x0) and j :
(X,x0, x0) ↪→ (X,A, x0) respectively, and let ∂ : πn(X,A, x0) → πn−1(A, x0) be
given by ∂([f ]) := [f |In−1×{0}]. Then the sequence

. . . ∂ // πn(A, x0)
i∗ // πn(X,x0)

j∗ // πn(X,A, x0) ∂ // πn−1(A, x0)
i∗ // . . .

is exact.

Proof. First, we will show that ker(j∗) = im(i∗). Note that j∗ ◦ i∗ is induced by
j ◦ i, which, being a composition of two inclusion maps, is also an inclusion map.
Hence, for any map [f ] ∈ πn(A, x0), j∗ ◦ i∗([f ]) is represented by j ◦ i◦f = f , which
has image entirely in A, so j∗ ◦ i∗([f ]) = 0 by the compression criterion. This shows
that im(i∗) ⊂ ker(j∗). Now, pick any [f ] ∈ ker(j∗), and since j∗([f ]) = [j ◦ f ] is the
identity in πn(X,A, x0), the compression criterion tells us that j ◦ f is homotopic
relative Sn−1 to g′ for some g′ whose image is entirely in A. This homotopy between
f and g′ is constant on Sn−1, so it preserves x0, which means that [g′] ∈ πn(X,x0)
and [g′] = [f ] in πn(X,x0). Also, since g′ has image entirely in A, [g′] ∈ πn(A, x0),
and i∗ being induced by an inclusion map means i∗([g′]) = [g′] = [f ], so [f ] ∈ im(i∗).
Hence, ker(j∗) ⊂ im(i∗).
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Next, we will show that ker(∂) = im(j∗). For any [f ] ∈ πn(X,x0), f maps
In into X so that the boundary goes to x0. Since j∗ is induced by inclusion,
j∗([f ]) = [j ◦ f ] = [f ], so ∂ ◦ j∗([f ]) can be represented by the constant map to
x0. We thus have that im(j∗) ⊂ ker(∂). Choose any [f ] ∈ ker(∂), and ∂([f ]) = 0
in πn−1(A, x0) means that we have a base point preserving homotopy H from
f |In−1×{0} to the constant map, where the image of H is entirely in A. We can
thus define another homotopy G such that G0 = f , Gt|In−1 = Ht and the rest of the
image of Gt is f([In]) unioned with the images of Hs for 0 ≤ s ≤ t. The homotopy
G maps Sn−1 into A at all times, so [f ] = [G1] in πn(X,A, x0). Moreover, G1 maps
the boundary of In to x0, so [G1] ∈ πn(X,x0). Since j∗ is induced by inclusion,
this implies that j∗([G1]) = [G1] = [f ], so ker(∂) ⊂ im(j∗).

Finally, we need to show that ker(i∗) = im(∂). If [f ] ∈ πn(X,A, x0), then
i∗ ◦ ∂([f ]) is the homotopy class in πn−1(X,x0) represented by f |In−1 , and this is
homotopic relative to Jn−2 to the constant map to x0 via f viewed as a homotopy.
Hence, im(∂) ⊂ ker(i∗). Now, take [f ] ∈ ker(i∗), and since i∗([f ]) = 0 in πn(X,x0),
we can homotope f to the constant map, through a homotopy H that has image
in X and preserves x0. Since H0 = f has image in A and H1 has image {x0} and
Ht takes the boundary to {x0} for all t ∈ I, we see that [H] ∈ πn(X,A, x0), and
∂([H]) = [f ]. As such, [f ] ∈ im(∂), so ker(i∗) ⊂ im(∂). �

Equipped with this theorem, we now proceed to explore the homotopy groups
of CW complexes.

2. Cellular Approximation

We will start this section by proving an important lemma, a consequence of
which is that any map from a lower dimensional cell to a higher dimensional cell
can be homotoped to one that is not surjective. Note that non-surjectivity is not
automatic for a map from a lower dimensional cell to a higher dimensional cell
because of the existence of space filling curves.

Lemma 2.1. Let f : In → Z be a map, where Z is obtained from a subspace W by
attaching a cell ek. Then f is homotopic relative to f−1(W ) to a map g for which
there is a union of finitely many simplices

⋃
αKα ⊂ In such that

(a) g(
⋃
αKα) ⊂ ek and g|Kα is linear for all α, and

(b) there exists some nonempty open set U ⊂ ek such that g−1(U) ⊂
⋃
αKα.

Proof. By choosing an identification of ek to Rk, we have a metric on ek inherited
from the Euclidean metric on Rk. Pick a point x0 ∈ ek, and let B1, B2 be open
balls of radius 1 and 2 centered at x0, respectively. Then f−1(B1) and f−1(B2) are
closed and are subsets of a compact Hausdorff space In, so they are both compact.
This means that f |f−1(B2) is uniformly continuous, so there is some ε > 0 such that
for any x, y ∈ f−1(B2), if d(x, y) < ε then d(f(x), f(y)) < 1

100 . Also, In \ f−1(B2)
is closed and is disjoint from f−1(B1), so there is a minimum distance s between
them. Choose ε > 0 such that ε < s

100 and that the uniform continuity condition
above holds.

Now, partition In into n-cubes with diameter less than ε. Let C1 be the union
of the closure of the n-cubes in this partition that have nonempty intersection with
f−1(B1) and let C2 be the union of the closure of all the cubes that intersect C1,
including cubes in C1. Observe that C2 ⊂ f−1(B2) because we chose ε < s

100 . Since
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we can write cubes as a finite union of simplices1, C1 and C2 are both finite unions
of simplices. Let

⋃
αKα be C1, and we will show that C1 has the properties stated

in the theorem.
Define a function φ : In → I such that φ is 0 on In \C2, is 1 on C1, and increases

piecewise linearly on C2 \ C1. Define another function h : In → ek that takes the
vertices of the simplices in C2 to their image under f , but is linear on each of
these simplices, and is continuous everywhere else. Linearity here means that the
composition of h with the identification of ek with Rk is linear. Let H : In×I → ek

given by H(x, t) = (1−tφ(x))f(x)+tφ(x)g(x). It is easy to see that H is continuous,
H0 = f and H1 is linear on each of the simplices in C1, so if we choose g to be H1,
condition (a) is satisfied.

For each simplex ∆ that form the union C2 \C1, f(∆) is contained in a ball B∆

of radius 1
4 since for any x, y ∈ ∆, we have that d(f(x), f(y)) < 1

100 . The function
g is linear on ∆, and g agrees with f on the vertices of ∆, so the image of g is the
convex hull of the image of the vertices of ∆ under f . This means that g(∆) ⊂ B∆

because B∆ is convex and contains the vertices of ∆ under f . Moreover, B∆ is
not contained in B1 because f(∆) does not intersect B1, so x0 /∈ B∆ because the
radius of B∆ is less than half the radius of B1. This is true for every choice of
∆, and there are only finitely many simplices, so U := B1 \

⋃
∆B∆ is open and

nonempty since x0 ∈ U . Note that this implies U ∩ g(C2 \ C1) is empty because
g(C2 \C1) ⊂

⋃
∆B∆. Also, for all x ∈ In \C2, g(x) = f(x) /∈ B1, so U ∩ g(In \C2)

is empty. Hence, g−1(U) ⊂ C1, and condition (b) is also satisfied. �

Corollary 2.2. If n < k then any map f : In → Ik is homotopic relative ∂In to a
map that is not surjective.

Proof. Any n-dimensional cell is homeomorphic with In, so in the case where the
image of a lower dimensional cell under a map f lies in a higher dimensional cell,
we have n < k with W in the previous lemma being the boundary of ek. Since g
is linear on each Kα, g has to be piecewise linear on g−1(U) ⊂

⋃
αKα. Also, U is

nonempty, so g−1(U) has to have dimension at least k or g−1(U) = ∅. However,
g−1(U) ⊂

⋃
αKα and each Kα is of dimension n, so the former is impossible. Thus

g−1(U) is empty, which means that there is some point in ek that is not in the
image of en. �

We can now apply this fact to prove the next theorem, which is one of the
main tools used in analyzing homotopy groups of CW complexes. When looking
at πn(X,x0) for a CW complex X, instead of having to keep track of all possible
maps of In into X, this theorem tells us that we need only to consider the maps
that take In into the n-skeleton Xn. But first, we need a new definition.

Definition 2.3. A map of CW complexes f : X → Y is a cellular map if it takes
the nth skeleton of X to the nth skeleton of Y , i.e. f(Xn) ⊂ Y n for all n.

Theorem 2.4 (Cellular Approximation Theorem). Every map f : X → Y of CW
complexes is homotopic to a cellular map. More specifically, if f is already a cellular
map on a subcomplex A ⊂ X, then we can take the homotopy to be stationary on
A.

1The process through which this is done is called barycentric subdivision. See Hatcher’s Alge-
braic Topology, pg.103.
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Proof. We will prove this by induction on the skeletons of X. Suppose that f has
been homotoped such that f |Xn∪A is cellular. Pick any (n+ 1)-cell en+1 in Y \A.
Since the closure of en+1 is compact, f(en+1) has nonempty intersection with only
finitely many cells in Y . Let ek be the cell of highest dimension that has nonempty
intersection with f(en+1), and we can assume that k > n+ 1 since otherwise en+1

is already mapped into Y n+1 by h. By Corollary 2.2, we see that there exists some
point x0 ∈ ek that is not in the image of en+1 under h.

Now, ek \ {x0} is a punctured disk, so it deformation retracts onto its boundary
via a homotopy H. By composing f |en+1 with this deformation retract, we obtain a
homotopy between f |en+1 and a map h whose image is entirely in the boundary of
ek, and in particular, h is a map of en+1 into Y k−1. Performing this repeatedly, we
have a homotopy G from f |en+1 to a map whose image is entirely in Y n+1. Since
the boundary of en+1 is in Xn and we assumed that f is cellular on Xn, this means
that G is stationary on the boundary of en+1.

Because of the invariance of this homotopy on the boundary of en+1, we may
now use the pasting lemma to create a map H : (Xn+1 ∪A)× I → Y n+1 ∪ f(A) by
pasting the constant homotopy on (Xn∪A)× I with the homotopy constructed for
each (n+ 1)-cell not in A. Observe that H is a homotopy from f |Xn+1∪A to a map
g′ whose image is entirely in Y n+1 ∪ f(A). Since (X,A) is a CW pair, it satisfies
the homotopy extension property, which means that we can extend g′ to g, a map
from X to Y that is cellular on Xn+1 ∪ A and is homotopic to f . This completes
the inductive step.

The only place we used the inductive hypothesis is to claim that the homotopy
G is stationary on the boundary of en+1. However, e0 has no boundary, so this
same argument, with some trivial modifications, will also prove the base case.

This lets us make a new homotopy K : X × I → Y by partitioning I into
intervals [0, 1

2 ], [ 1
2 ,

3
4 ], [ 3

4 ,
7
8 ], . . . and reparameterizing the homotopies obtained from

the inductive process above so that the first homotopy occurs in the first interval,
the second homotopy in the second interval, and so on. This defines all of Kt

except when t = 1, but we can define K1 so that for every n, K1 takes a point in
Xn to where K1− 1

2n+1
takes it. Observe that this definition of K is continuous,

with K0 = f and K1 a cellular map. Also, the way that we defined K ensures that
for all t ∈ I, K(a, t) = K(a, 0) for all a ∈ A. �

3. Whitehead’s Theorem

As mentioned before, any two spaces that are homotopic have isomorphic homo-
topy groups. The converse is almost true for CW complexes, as we will prove in
this section.

Lemma 3.1 (Compression Lemma). Let (X,A) be a CW pair and let (Y,B) be
any pair (not necessarily CW) with B 6= ∅. Assume further that for each n such
that X \ A contains an n-cell, πn(Y,B, y0) is trivial for any choice of base point.
Then every map f : (X,A)→ (Y,B) is homotopic relative A to a map whose image
lies entirely in B.

Proof. We will prove this by induction on the skeleta Xn. Suppose that there is a
homotopy that is stationary on A which homotopes f to a map g that takes A∪Xn

into B. If there are no (n+1)-cells in X \A, then g trivially takes A∪Xn+1 into B.
Otherwise, πn+1(Y,B, y0) is trivial for any choice of y0. Choose any (n+1)-cell en+1
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in X \A. Then g|en+1 can be viewed as a representative of some homotopy class in
πn+1(Y,B, y0) because its boundary, being part of Xn, is assumed to be mapped
into B. Hence, [g|en+1 ] = 0 in πn+1(Y,B, y0), so by the compression lemma, there
is a homotopy G that is stationary on the boundary of en+1 and takes g|en+1 to a
map h whose image is entirely in B.

This can be done for every (n+1)-cell in X \A, so we can create a new homotopy
H : (A∪Xn+1)×I → Y by pasting the constant homotopy on A∪Xn to the above
homotopy for each (n + 1)-cell not in A. Observe that H is a homotopy from
g|Xn+1∪A to a map h′ whose image is entirely in B. Also, (X,Xn+1 ∪ A) is a CW
pair, so it satisfies the homotopy extension property, which means we can extend
h′ to a map h : X → Y . Note that h|Xn+1∪A has image entirely in B, and h is
homotopic to g via a homotopy that is stationary on A. Since g is also homtopic
to f via a homotopy that preserves A, this proves the inductive step.

For the same reason as that used to justify the base case in the proof of the
cellular approximation theorem, the base case is also true here. This inductive
process thus gives us a sequence of homotopies that take successive skeletons of X
into B. To complete the proof of this theorem, simply use the same construction
as in the last paragraph of the proof of the cellular approximation theorem. �

Theorem 3.2 (Whitehead’s Theorem). If a map f : X → Y between CW com-
plexes induces isomorphisms f∗ : πn(X,x0)→ πn(Y, f(x0)) for all n and for every
choice of x0 ∈ X, then f is a homotopy equivalence. In the case where f is the
inclusion of X as a subcomplex into Y , X is a deformation retract of Y .

Proof. First, we will prove the simple case where f is an injection that includes X
as a subcomplex into Y . Consider the map id : (Y,X)→ (Y,X), where X is viewed
as a subcomplex of Y via the injection f . By the hypothesis of this theorem, the
inclusion map f : X → Y induces isomorphisms f∗ : πn(X,x0) → πn(Y, x0) for
all n, so the long exact sequence of homotopy groups tells us that πn(Y,X, x0) is
trivial for all n. Thus, we can use the compression lemma to obtain a homotopy
that is stationary on X and homotopes f to a map g whose image is entirely in X.
It is easy to see that g deformation retracts Y to X.

To prove the more general case, we need to use Mf , the mapping cylinder2 of
f . We know that Y , as a subspace of Mf , is a deformation retract of Mf , so the
inclusion map i : Y ↪→ Mf induces isomorphisms i∗ : πn(Y, x0) → πn(Mf , x0).
Thus we can replace πn(Y, x0) with πn(Mf , x0) in the long exact sequence used in
the first paragraph and see that πn(Mf , X, x0) is trivial for all n. If f is a cellular
map then X includes as a subcomplex into Mf , so by what we proved in the first
paragraph, X is a deformation retract of Mf , which means that X is homotopy
equivalent to Mf . Thus the commuting diagram

X

  B
BB

BB
BB

B
f // Y

i~~}}
}}

}}
}}

Mf

tells us that f is a homotopy equivalence from X to Y . In the case where f is
not a cellular map, we can use the cellular approximation theorem to obtain a map

2This is defined in Hatcher’s Algebraic Topology pg.2.
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f ′ that is cellular and homotopic to f . The above proof then tells us that f ′ is a
homotopy equivalence, so f is also a homotopy equivalence. �

4. CW Approximation

By Whitehead’s theorem, if we know that a map between two CW complexes
induces isomorphisms between their homotopy groups, then we know that these two
CW complexes are homotopy equivalent. Thus, to study the topological properties
of a CW complex X that are invariant under homotopy equivalence, it is sufficient
to study any CW complex Y with a map f : Y → X such that f∗ is a homotopy
equivalence. Moreover, if we can choose Y to be simple enough, studying X can be
made much easier. This motivates the following definition and theorems.

Definition 4.1. Let A be a CW complex and X a space containing A. An n-
connected CW model for (X,A) is an n-connected CW pair3 (Z,A) and a map
f : Z → X such that f |A is the identity map and for any xγ ∈ A, f∗ : πi(Z, xγ)→
πi(X,xγ) is an isomorphism for all i > n and an injection when i = n.

Proposition 4.2. Let A be a CW complex and X a space containing A. If A 6= ∅,
then for all n ≥ 0, there exists an n-connected CW model (Z,A) of (X,A) with
the accompanying map g : Z → X. This model can be chosen with the additional
property that Z is obtained from A by attaching only cells of dimension greater than
n.

Proof. First, we shall inductively construct a chain of CW complexes A = Zn ⊂
Zn+1 ⊂ Zn+2 ⊂ · · · , where Zk+1 is obtained from Zk by attaching only (k+1)-cells.
Suppose that we already have a map f : Zk → X such that f |A is the identity on
A, f∗ : πi(Zk, xγ) → πi(X,xγ) is an injection when n ≤ i < k and is a surjection
when n < i ≤ k for all xγ ∈ A. Observe that this is trivially true by cellular
approximation when k = n, so we have the base case.

To prove the inductive step, choose cellular maps φα,γ : Sk → Zk to represent
generators of the kernel of f∗ : πk(Zk, xγ) → πk(X,xγ). Do this for all xγ ∈ A,
and create a new CW complex Yk+1 by attaching (k + 1)-cells to Zk, one for each
pair (α, γ), with boundary map φα,γ . Since f ◦ φα,γ represents zero in πk(X,xγ),
it is nullhomotopic. Moreover, (Yk+1, Z

k) is a CW pair, we can extend f to f ′ :
Yk+1 → X. The map f ′∗ : πi(Yk+1, xγ)→ πi(X,xγ) is still injective when n ≤ i < k
because we only added cells of dimension larger than k, and this does not affect the
homotopy groups of dimension less than k. It is also still surjective when n < i ≤ k
because the diagram

πi(Zk, xγ)

j∗

��

f∗ // // πi(X,xγ)

πi(Yk+1, xγ)
f ′∗

77 77pppppp

commutes, where j∗ is induced by the inclusion map. Moreover, the kernel of
f ′∗ : πk(Yk+1, xγ)→ πk(X,xγ) is trivial because the (k+ 1)-cells we attached act as
base point preserving homotopies between the representatives of homotopy classes
in the kernel of f∗. Hence, f ′∗ : πk(Yk+1, xγ)→ πk(X,xγ) is injective for all xγ ∈ A.

3This is defined in Hatcher’s Algebraic Topology pg.7
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Now, choose maps ψβ,γ : Sk+1 → X to represent generators of πk+1(X,xγ), and
do this for each xγ ∈ A. For each pair (β, γ), attach a sphere Sk+1

β,γ to Yk+1 at xγ ,
and call the resulting CW complex Zk+1. Extend f ′ to a map f ′′ : Zk+1 → X by
mapping each Sk+1

β,γ to X via ψβ,γ . The resulting map is continuous by the pasting
lemma, since ψβ,γ and f agree on xγ . The map f ′′∗ : πk+1(Zk+1, xγ)→ πk+1(X,xγ)
is surjective by construction, and for all n < i ≤ k, f ′′∗ : πi(Zk+1, xγ) → πi(X,xγ)
is surjective because the diagram

πi(Yk+1, xγ)

j∗

��

f ′∗ // // πi(X,xγ)

πi(Zk+1, xγ)
f ′′∗

77 77pppppp

commutes. Also, for all n ≤ i ≤ k, it is also injective because the diagram

πi(Yk+1, xγ)

j∗
����

� � f ′∗ // πi(X,xγ)

πi(Zk+1, xγ)
* 
 f ′′∗

77pppppp

commutes. The map j∗ here is surjective by the cellular approximation theorem.
Through this inductive process, we have thus constructed a nested sequence of

CW complexes, {Zi}i and a sequence of maps {fi : Zi → X}i. Let Z :=
⋃
i≥n Zi

and define g : Z → X so that g|Zi = fi. We know that Z is constructed from A
by using only cells of dimension larger than n and (Z,A) is n-connected because if
we look at the long exact sequence for (Z,A), the map i∗ : πi(A, xγ) → πi(Z, xγ)
is always a surjection by cellular approximation, and is an injection for i < n
because we only added cells of dimension larger than n. Moreover, since adding
higher dimensional cells do not affect lower homotopy groups, and for each i > n,
(fi)∗ : πi(Zk, xγ)→ πi(X,xγ) is an isomorphism for large enough k, we know that
g∗ : πi(Z, xγ)→ πi(X,xγ) is an isomorphism for i > n and an injection when i = n.
Furthermore, it is clear from construction that g|A is the identity map on A, so
g : Z → X is the n-connected CW model we are looking for. �

Corollary 4.3 (CW Approximation Theorem). If (X,A) is an n-connected CW
pair, then there exists a CW pair (Z,A) such that Z \ A only contain cells of
dimension greater than n and there exists a homotopy equivalence g : Z → X such
that g|A = id.

Proof. Let (Z,A) be the n-connected CW model of (X,A) constructed in the pre-
vious theorem, and let g : Z → X be the accompanying map. First, we need to
show that g∗ is an isomorphism for all i. By the definition of a CW model, for any
a0 ∈ A, we have that g∗ : πi(Z, a0) → πi(X, a0) is an isomorphism for i > n and
an injection when i = n, so we need to show that g∗ is an isomorphism when i < n
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and a surjection when i = n. The diagram

πi(Z, a0)
g∗ // πi(X, a0)

πi(A, a0)

j∗

OO

πi(A, a0)
id∗oo

j′∗

OO

commutes for all i, where j∗ and j′∗ here are induced by the natural inclusion
maps. When i ≤ n, πi(X,A, a0) and πi(Z,A, a0) are trivial, so by their long exact
sequences, we see that j∗ and j′∗ are isomorphisms when i < n and are surjections
when i = n. The map id∗ is also always an isomorphism, so by the above commuting
diagram, g∗ is an isomorphism when i < n and is a surjection when i = n.

This allows us to apply Whitehead’s theorem, so g : X → Z is a homotopy
equivalence. To finish the proof, we need only to show that g|A is the identity map
on A. By the cellular approximation theorem, we can assume that g is a cellular
map. Let W be Mg quotiented out by the relation ∼ defined such that (x1, t1) ∼
(x2, t2) iff x1 = x2 ∈ A. Note that since g|A = idA the usual deformation retraction
D : Mg × I → Mg from Mg to Z is such that for all a ∈ A, D(a, t, s) = (a, t′), so
this induces a deformation retraction D′ from W to Z. For the same reasons, we
have a deformation retraction from W to X. These two deformation retractions
are stationary on A, so X ' Z relative A. �

5. Freudenthal Suspension Theorem

To prove the Freudenthal suspension theorem, we need to know an elementary
but very useful algebraic fact known as the five-lemma.

Lemma 5.1 (Five-Lemma). In a commutative diagram of abelian groups

A
i //

α

��

B
j //

β

��

C
k //

γ

��

D
l //

δ

��

E

ε

��
A′

i′
// B′

j′
// C ′

k′
// D′

l′
// E′

if the rows are exact, then
(a) γ is surjective if β and δ are surjective and ε is injective, and
(b) γ is injective if β and δ are injective and α is surjective.

In particular, if α, β, δ, ε are isomorphisms, then γ is also an isomorphism.

Proof. First, we will prove (a). Choose any c′ ∈ C ′. Since δ is surjective, there is
some d ∈ D such that k′(c′) = δ(d), and by the commutativity of the rightmost
square, we know ε(l(d)) = l′(δ(d)) = l′(k′(c′)) = 0, with the last equality coming
from the exactness of the bottom row. Since we assumed that ε is injective, this
means l(d) = 0, so d ∈ ker(l) = im(k), which implies that there is some c ∈ C such
that k(c) = d. Now,

k′(γ(c)− c′) = k′(γ(c))− k′(c′)
= δ(k(c))− δ(d)
= δ(d)− δ(d)
= 0,
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so γ(c) − c′ = j′(b′) for some b′ ∈ B′ by the exactness of the bottom row. The
surjectivity of β tells us that there is some b ∈ B such that β(b) = b′. Therefore,

γ(c− j(b)) = γ(c)− γ(j(b))
= γ(c)− j′(β(b))
= γ(c)− j′(b′)
= γ(c)− γ(c) + c′

= c′.

This shows that γ is surjective.
Next, we will prove (b). Choose any c ∈ C such that γ(c) = 0. The commuta-

tivity of the second to right square tells us that δ(k(c)) = k′(γ(c)) = k′(0) = 0, and
since we assumed that δ is injective, this means k(c) = 0. Hence, by the exactness
of the top row, we know that c = j(b) for some b ∈ B. Now, the second to left
square gives us that j′(β(b)) = γ(j(b)) = γ(c) = 0, so the exactness of the bottom
row implies that there exists some a′ ∈ A′ such that i′(a′) = β(b). The mapα is
surjective, so there is some a ∈ A with α(a) = a′, and this lets us write

β(i(a)− b) = β(i(a))− β(b)
= i′(α(a))− β(b)
= i′(a′)− β(b)
= β(b)− β(b)
= 0.

Since β is assumed to be injective, i(a) = b, so c = j(b) = j(i(a)) = 0 by the
exactness of the top row. This shows that γ is injective. �

Now we are ready to tackle the Freudenthal suspension theorem. The bulk of
the work in proving the theorem will be done in the next proposition, of which
the theorem will be a simple corollary. This proposition is the equivalent of the
excision theorem for homotopy groups, but it works only with CW complexes that
have rather strong connectedness properties.

Proposition 5.2 (Homotopy Excision Theorem). Let X be a CW complex decom-
posed as the union of subcomplexes A and B such that A∩B =: C is connected and
nonempty. If (A,C) is m-connected, (B,C) is n-connected and j : (A,C)→ (X,B)
is the inclusion map, then for any x0 ∈ C, j∗ : πi(A,C, x0) → πi(X,B, x0) is an
isomorphism when i < m+ n and is a surjection when i = m+ n.

We will prove this proposition in several lemmas.

Lemma 5.3. Suppose that A is built from C by attaching (m+ 1)-cells, em+1
α , and

B is built from C by attaching a single (n+ 1)-cell, en+1. Then j∗ : πi(A,C, x0)→
πi(X,B, x0) is an isomorphism when i < m+n and is a surjection when i = m+n.

Proof. First, we need to show that j∗ : πi(A,C, x0) → πi(X,B, x0) is a surjection
when i ≤ n and an injection when i < n. Suppose i ≤ n and choose any map
f : (Di, Si−1) → (X,B) such that x0 ∈ f(Si−1). Since f |Si−1 is entirely in B, by
the cellular approximation theorem, we can homotope it to a cellular map via a
homotopy H, and the image of this cellular map has to be entirely in C because
B is constructed from C by adding en+1. By the homotopy extension property,
H extends to some H ′ : (Di × I, Si−1 × I) → (X,B). This allows us to assume
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that f |Si−1 is cellular, and by the cellular approximation theorem again, there is a
homotopy that is stationary on Si−1 taking f to a cellular map f ′. Note that f ′

has image in A and f ′|Si−1 has image in C, so f ′ represents a homotopy class in
πi(A,C, s0) as well, with j∗([f ′]) = [f ′] = [f ]. Hence, j∗ is surjective when i ≤ n.

To prove injectivity, suppose i < n and choose any [f0], [f1] ∈ πi(A,C, x0) such
that j∗([f0]) = j∗([f1]). This means that there is a homotopy H with H0 = f0,
H1 = f1 and such that the image of H is in X and the image of Ht|f−1(C) is in C

for all t ∈ I. Since i < n, H can be viewed as a map of (Di+1, Si) into (X,A), with
i + 1 ≤ n, so by the cellular approximation theorem, we can assume that H takes
(Di+1, Si) into (A,C) because both X \A and B \C are single (n+ 1)-cells. Thus,
[f0] = [f1], and this shows that j∗ : πi(A,C, x0) → πi(X,B, x0) is injective when
i < n.

To finish the proof of this simple case, we now need to show that j∗ : πi(A,C, x0)→
πi(X,B, x0) is an injection when n ≤ i < m+n and a surjection when n < i ≤ m+n.
For surjectivity, we choose any representative f of a homotopy class in πi(X,B, x0),
and show that there is some [g′] ∈ πi(A,C, x0) such that j∗([g′]) = [f ]. The map
f has compact image, so it intersects with only finitely many of em+1

α and en+1.
By Lemma 2.1, f is homotopic relative f−1(A) to a map g such that there are
simplices ∆m+1

α ⊂ em+1
α , ∆n+1 ⊂ en+1 where g−1(∆m+1

α ) and g−1(∆n+1) are finite
unions of complex polyhedra on which g is piecewise linear. A consequence of this
is that [f ] = [g] in πi(X,B, x0). If g does not surject onto ∆n+1 then there is some
y0 ∈ en+1 not in the image of g. This means that we have a deformation retrac-
tion of X \ {y0} onto A, which when composed with g gives a homotopy relative
g−1(X \ en+1) from g to a map g′ : (Di, Si−1) → (A,C), so [g′] ∈ πi(A,C, x0)
and j∗([g′]) = [g′] = [f ]. Hence, we need only consider the maps f where the
corresponding map g surjects onto en+1.

Also, if g does not surject onto ∆m+1
α , then by a similar argument as in the

previous three lines, g is homotopic relative g−1(X \ em+1
α ) to a map with image

entirely in X \em+1
α . This allows us to assume that if g does not surject onto ∆m+1

α ,
then the image of g does not intersect em+1

α . Thus, for the rest of this case, we can
assume that g surjects onto ∆n+1 and ∆m+1

α for all α.
We claim that if n < i ≤ m + n, then there exists points pα ∈ ∆m+1

α and
q ∈ ∆n+1, and a map φ : Ii−1 → [0, 1) such that

(a) g−1(q) lies below the graph of φ in Ii−1 × I = Ii,
(b) g−1(pα) lies above the graph of φ for each α with em+1

α having nonempty
intersection with the image of g, and

(c) φ = 0 on ∂Ii−1.

Before we prove this claim, we shall see how it helps us prove surjectivity of
j∗ when n < i ≤ m + n. Let H : Ii−1 × I × I → I be a homotopy given by
H(x, y, t) = g(x, y + (1− y)tφ(x)). Pictorially, H0 = g and H1 is the restriction of
g to the region above φ in the diagram below.

Since g−1(q) lies below the graph of φ, it is not in the domain of H1, so q is not
in the image of H1. Also, since g−1(pα) lies above the graph of φ for the finitely
many α’s that we are considering, all of these pα’s are in the image of Ht for all t.
Moreover, g|Si−1 has image in C and the pα’s are all in A \ C, so the pα’s are not
in the image of g|Si−1 . The way we defined H then ensures that the pα’s are not
in Ht|Si−1 for all t ∈ [0, 1].
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Figure 5. Excision

Let P =
⋃
α g
−1(pα), let Q = g−1(q) and observe that the diagram

πi(A,C, x0)
j∗ //

i′∗
∼=
��

πi(X,B, x0)

i∗∼=
��

πi(X \Q, (X \Q) \ P, x0)
i′′∗ // πi(X,X \ P, x0)

commutes, where i′∗, i∗ and i′′∗ are induced by the obvious inclusion maps. The
map i∗ is an isomorphism because B is a deformation retract of X \P and i′∗ is an
isomorphism because A and C are deformation retracts of X \Q and (X \Q) \ P
respectively. Now, [g] ∈ πi(X,B), when viewed as an element in πi(X,X \P, x0) is
equal to [H1] as argued in the preceding paragraph. Also, the image of H1 does not
intersect Q and the image of H1|∂Ii does not intersect P or Q, so H1 also represents
a homotopy class in πi(X\Q, (X\Q)\P, x0), with i′′∗([H1]) = [H1]. The isomorphism
i′∗ then implies that there is some [g′] ∈ πi(A,C, x0) such that i′∗([g

′]) = [H1], and
the commutativity of the above diagram implies that j∗([g′]) = [g] = [f ], so j∗ is a
surjection when n < i ≤ m+ n.

Now, we will prove the claim. Choose any q ∈ ∆n+1. Since g is a linear map
from an i dimensional object onto ∆n+1, an (n+ 1)-dimensional object, g−1(q) has
dimension at most i − (n + 1). Let T = π−1(π(g−1(q))), where π : Ii → Ii−1 is
the projection map. Observe that T has dimension at most i − n. Hence, for all
α, f(T ) ∩∆m+1

α is also of dimension at most i− n since T ∩ g−1(∆m+1
α ) is also of

dimension at most i− n, and g|T∩g−1(∆m+1
α ) is linear. Thus if i− n < m+ 1, there

is some pα ∈ ∆m+1
α that is not in g(T ), which implies that g−1(pα) ∩ T is empty.

Choose all the pα’s this way. Since T and g−1(pα) for all α are closed subspaces of
Ii, a compact Hausdorff space, they all have to be compact. Thus we can choose
an ε-neighborhood around T , call it T ′, that has empty intersection with f−1(pα)
for all α.

Since J i−1 is sent to the base point x0 by g and j being the inclusion map
preserves the basepoint, we know that g|Ji−1 has image in C, and in particular,
g|Ii−1×{1} has image in C. Thus g−1(q)∩(Ii−1×{1}) is empty. Moreover, Ii−1×{1}
and g−1(q) are closed subsets of a compact Hausdorff space, and therefore are
compact, so there is an ε-neighbourhood around Ii−1 × {1} that has non-empty
intersection with g−1(q). Define φ : Ii−1 → [0, 1) by letting φ be zero outside of T ′,
1− ε on T and linear on T ′ \ T . It is easy to that φ has the required properties.
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We have thus proven that j∗ is surjective in this simple case, so now we need to
show that it is also injective when n ≤ i < m + n. Suppose j∗([f0]) = j∗([f1])
for some [f0], [f1] ∈ πi(A,C, x0). This means that there is a homotopy H :
(Ii, ∂Ii, JIi) × I → (X,B, x0) such that H0 = f0 and H1 = f1. Replacing f
in the injectivity proof with H, we can repeat the same arguments, obtaining a
map H ′ that is homotopic to H relative to H−1(A) such that there are simplices
∆m+1
α ⊂ em+1

α , ∆n+1 ⊂ en+1 onto which H ′ surjects, and where H ′−1(∆m+1
α ) and

H ′−1(∆n+1) are finite unions of complex polyhedra on which H is piecewise linear.
In the same way as before, we can create a homotopy G such that the image of

G1 does not intersect q ∈ en+1 and G0 = H ′. Also, as before, Gt is stationary on
∂Ii+1 for all t ∈ I. This means that G1 is also a homotopy between H0 = f0 and
H1 = f1, and the image of G1 can be assumed to be entirely in A via a deformation
retraction of X \ {q} onto A, so [f0] = [f1]. In the surjectivity proof, the domain of
f is the i-cube, while the domain of H is the (i+1)-cube, so since surjectivity holds
when n < i ≤ m+n, injectivity holds when n < i+1 ≤ m+n, i.e. n ≤ i < m+n. �

Lemma 5.4. Suppose that A is still built from C by attaching (m+ 1)-cells, em+1
α ,

but B is built from C by adding cells of dimension at least n + 1. Then j∗ :
πi(A,C, x0)→ πi(X,B, x0) is an isomorphism when i < m+ n and is a surjection
when i = m+ n.

Proof. For any f : (Ii, ∂Ii, J i−1) → (X,B, x0) the image of f is compact, so it
intersects only finitely many of the cells in B\C. Since these cells all have dimension
at least n + 1, if i ≤ m + n, we can repeat the proof for surjectivity in lemma 5.3
finitely many times, one for each cell in B \A, to show that f is homotopic relative
f−1(A) to a map f ′ : (Ii, ∂Ii, J i−1)→ (A,C, x0). Thus, f ′ represents a homotopy
class in πi(A,C, x0) and [f ] = [f ′] = j∗([f ′]), which shows that j∗ is surjective.
Similarly, if j∗([f0]) = j∗([f1]) for some [f0], [f1] ∈ πi(A,C, x0), then the image of
the homotopy H : (Ii, ∂Ii, JIi) × I → (X,B, x0) such that H0 = f0 and H1 = f1

is compact, so it too intersects only finitely many cells in B \C. When i < m+ n,
we can repeat the proof for injectivity in lemma 5.3 finitely many times, to get a
homotopy that is stationary on ∂Ii from H to H ′ : (Ii, ∂Ii, JIi) × I → (A,C, x0).
This shows that [f0] = [f1] in πi(A,C, x0), because H ′ is a homotopy from f0 to
f1, which proves the injectivity of j∗. �

Lemma 5.5. Suppose that A is constructed from C by attaching cells of dimension
at least (m + 1) instead of only (m + 1)-cells and B is constructed from C in the
same way as in the previous lemma.Then j∗ : πi(A,C, x0) → πi(X,B, x0) is an
isomorphism when i < m+ n and is a surjection when i = m+ n.

Proof. Before we start, note that we may assume the cells in A \C have dimension
at most m + n + 1 because adding cells of dimension greater than m + n + 1 will
have no effect on πi for i ≤ m+ n+ 1.

Let Ak ⊂ A be the union of C with the all cells in A that are at most k-
dimensional and let Xk = Ak ∪ B. We will prove by induction on k that (j|Ak)∗ :
πi(Ak, C) → πi(Xk, B) is an injection when i < m + n and a surjection when
i ≤ m+n. Since we can assume that A\C contains only cells of dimension at most
m+ n+ 1, this inductive prove is sufficient to prove this case.

By our assumptions in this case, k ≥ m + 1 so our base case of k = m + 1 is
exactly lemma 5.4. We thus need only to prove the inductive step, and this will be



16 TENGREN ZHANG

done by applying the five-lemma. Consider the diagram

πi+1(Ak, Ak−1) //

(i1)∗

��

πi(Ak−1, C) //

(j|Ak−1 )∗

��

πi(Ak, C) //

(j|Ak )∗

��

πi(Ak, Ak−1) //

(i4)∗

��

πi−1(Ak−1, C)

(j|Ak−1 )∗

��
πi+1(Xk, Xk−1) // πi(Xk−1, B) // πi(Xk, B) // πi(Xk, Xk−1) // πi−1(Xk−1, B)

where (i1)∗ and (i4)∗ are induced by the obvious inclusion maps, and the rows
of this diagram come from the exact sequence of the homotopy groups of CW
subcomplexes C ⊂ Ak ⊂ Ak+1 and B ⊂ Xk ⊂ Xk+1 for all k. In this diagram,
I have also excluded the basepoints because it is clear what they are. That these
sequences are exact can be proven using the proof we gave in theorem 1.3, but with
slight modifications. It is also clear that this is a commutative diagram.

Now, if we take C to be Ak−1, A to be Ak and B to be Xk−1, by lemma 5.4,
we see that (i1)∗ and (i2)∗ are isomorphisms when i+ 1 < k+ n. Since k ≥ m+ 1,
this means that the first and fourth maps counting from the left are isomorphisms
when i+ 1 < m+ 1 +n, or when i < m+n. Also, by the inductive hypothesis, the
second and fifth maps from the left are also isomorphisms when i < m + n, so by
the five-lemma, the middle map is an isomorphism when i < m + n. This proves
that (j|Ak)∗ : πi(Ak, C, x0) → πi(Xk, B, x0) is an injection when i < m + n, and
to prove that it is a surjection when i ≤ m = n, we need now only to show it for
i = m + n. When i = m + n, the second map from the left is a surjection by the
inductive hypothesis. Also, i = m+ n implies i− 1 < m+ n, so the fifth map from
the left is an isomorphism by the inductive hypothesis. Moreover, taking C to be
Ak−1, A to be Ak and B to be Xk−1, lemma 5.4 tells us that the fourth map from
the left is a surjection when i = m + n, so the five lemma again gives us that the
middle map is a surjection when i = m+ n. This proves the inductive step.

Note that when i = 2, we cannot apply the five-lemma as stated, because the
six groups in the middle of the commutative above might not be abelian, and
πi−1(Ak−1, C, x0) and πi−1(Xk−1, B, x0) are not groups. However, if we go through
the proof of the five-lemma, it is easy to see that it holds in this more general case
with trivial modifications. When i = 0, 1, the five-lemma does not work as well, but
we can directly prove that j∗ : π1(A,C, x0)→ π1(X,B, x0) and j∗ : π0(A,C, x0)→
π0(X,B, x0) satisfy the conditions of the proposition. For j∗ : π1(A,C, x0) →
π1(X,B, x0), if n ≥ 1, then we can apply the argument used to deal with the
situation where i ≤ n in lemma 5.3 to obtain the desired result. On the other
hand, if n = 0, it is trivial that j∗ : π1(A,C, x0)→ π1(X,B, x0) is an isomorphism.
The map j∗ : π0(A,C, x0) → π0(X,B, x0) is also clearly an isomorphism because
(A,C) and (X,B) are at least 0-connected. �

Proof of proposition 5.2. Now, all we need to do is to reduce the proposition to
what we proved in lemma 5.5. Since we are assuming that (A,C) is m-connected
and (B,C) is n-connected, by corollary 4.3, we have homotopy equivalences of CW
pairs gA : (ZA, C)→ (A,C) relative C and gB : (ZB , C)→ (B,C) relative C, where
ZA \ C contains only cells of dimension at least m + 1 and ZB \ C contains only
cells of dimension at least n + 1. Since both of these homotopy equivalences are
relative C = A ∩ B, by the pasting lemma we can create a homotopy equivalence
f : (ZA ∪ ZB , ZB) → (A ∪ B,B), so f∗ : πi(ZA ∪ ZB , ZB) → πi(A ∪ B,B) is an
isomorphism for all i. Lemma 5.5 tells us that j′∗ : πi(ZA, C) → πi(ZA ∪ ZB , ZB),
induced by the natural inclusion map, is an injection when i < m+n and a surjection
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when i ≤ m+ n, so the same has to be true for j∗ : πi(A,C, x0)→ πi(X,B, x0) by
the following commuting diagram:

πi(ZA, C, x0)

j′∗
��

(gA)∗

∼= // πi(A,C, x0)

j∗

��
πi(ZA ∪ ZB , ZB , x0)

f∗

∼= // πi(A ∪B,B, x0)

�

Corollary 5.6 (Freudenthal Suspension Theorem). Let X be an (n− 1)-connected
CW complex. Then there is a map j : πi(X,x0)→ πi+1(SX, x0) that is an isomor-
phism when i < 2n− 1 and is a surjection when i = 2n− 1.

Proof. First, observe for any X, CX := (X × I)/(X × {0}) is contractible by the
homotopy H : CX × I → CX given by H([x, s], t) = [x, (1 − t)s], so πi(CX) is
trivial for all i.

We can think of SX as two copies of CX, which we call C+X and C−X, identified
along their bases. Define j to be the composition of the following three maps drawn
in the diagram below, each of which is induced by the obvious inclusion maps.

πi(X,x0)
∼= // πi+1(C+X,X, x0) // πi+1(SX,C−X,x0)

∼= // πi+1(SX, x0)

For any i, the left most map and right most maps are isomorphisms because of
the long exact sequences of the CW pairs (C+X,X) and (SX,C−X), respectively,
since πi(C±X) is always trivial. Also, when X is (n − 1)-connected, the CW pair
(C±X,X) is n-connected by the long exact sequence of the pair (C±X,X). This
allows us to apply the previous proposition, so the middle map in the diagram
above is an isomorphism when i+ 1 < n+ n and a surjection when i+ 1 = n+ n.
Hence, j is an isomorphism when i < 2n− 1 and a surjection when i = 2n− 1. �

The map j here is also known as the suspension map.

6. Stable Homotopy Groups

One of the most important implications of the Freudenthal Suspension Theorem
is that it proves the existence of stable homotopy groups for all CW complexes.

Suppose we have an n-connected CW complex X. Choose any i ∈ N, and
consider the chain of suspension maps

πi(X,x0) // πi+1(SX, x0) // πi+2(S2X,x0) // . . .

Since X is an n-connected CW complex, the Freudenthal suspension theorem tells
us that the map πi(X,x0) → πi+1(SX, x0) is an isomorphism when i < 2n + 1.
In particular, the suspension map is an isomorphism when i ≤ n, so πi(SX, x0) is
trivial when 0 < i ≤ n + 1. Moreover, X is 0-connected means that SX also has
to be 0-connected, so X being n-connected implies that SX is (n + 1)-connected.
Repeating this argument, we have that SkX is (n+k)-connected for any k. Now, let
N(n, i) = i−1−2n, and observe that when k > N(n, i) we have i+k < 2(n+k)+1,
so πi+k(SkX) are isomorphic for all k > N(n, i). Let N = N(n, i), and we call
πi+N (SNX,x0) the ith stable homotopy group of the space X. Observe that since
SX is always connected, we do not actually need X to be connected, so every space
X has ith stable homotopy groups for all i.
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More formally, we have the following definition.

Definition 6.1. The ith stable homotopy group of a space X,

πsi (X) := lim−→q
πq+i(SqX,x0).

The Freudenthal suspension theorem proves that for any space X, this colimit
is realized after finitely many elements along the sequence {πq+i(SqX,x0)}i.
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