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ABSTRACT: Following [2] and [3], we introduce a combinatorial analog of
topological Morse theory, and show how the introduction of a discrete Morse
function on a simplicial complex gives rise to a discrete vector field. We then
move to from the combinatorial setting to the topological setting, and interpret
our work in the language of homotopy classes of CW complexes. We conclude
by showing the power of discrete Morse theory in analyzing a complicated sim-
plicial complex.
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PART 1: SIMPLICIAL COMPLEXES

We begin by introducing the notion of an abstract simplicial complex. It
should be noted that, while the following definition is purely combinatorial, it
carries a natural geometric interpretation fundamental to the study of such ob-
jects.

Definition 1.1 An abstract simplicial complex is a finite set V and a col-
lection K of subsets such that if A ∈ K and B ⊂ A, B ∈ K.

The elements of V are referred to as ”vertices,” while elements of K are
denoted ”simplicies.” Specifically, an element of K containing d + 1 vertices is
called a ”d-simplex.” By slight abuse of notation, we can refer to the simplicial
complex simply using the letter K. (Note that, in all but one case, ∅ ∈ K. For
the rest of this paper, unless explicitly stated, whenever we write ”simplex” we
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mean ”nonempty simplex”).

Geometrically, we can view a simplicial complex as a structure made up of
points, lines, triangles, etc. Specifically, a 1-simplex can be viewed as a line con-
necting 2 points, a 2-simplex is a triangle with 3 points as vertices, a 3-simplex
is a tetrahedron spanned by its 4 points, and so on. With this in mind, the
number d (in d−simplex) is called the dimension of a simplex. Below are two
straightforward examples of simplicial complexes, including the sets V and K
and the geometric interpretation.

Another definition before we proceed:

Definition 1.2 If K is a simplicial complex, with α, β ∈ K, we say α is a
face of β if α ⊂ β. α is a free face of β if α is a face of β, but not a face of any
other simplex in K.

We next define some basic combinatorial ”moves” or ”operations” on sim-
plices:

Definition 1.2 If K is a simplicial complex, an elementary simplicial re-
moval is the act of removing a maximal simplex (a simplex which is not a face
of any other simplex in K. More specifically, an elementary d-removal is the
act of removing a d−simplex from K.

Definition 1.3 If K is a simplicial complex, an elementary simplicial col-
lapse is the act removing a maximal simplex β and another simplex α such that
α is a free face of β.

If K2 ⊂ K1 are simplicial complexes, then we write K1 ↘ K2 if K2 is the
result of an elementary simplicial collapse on K1. We can equivalently write
K2 ↗ K1, and say that K1 is the result of an elementary simplicial expansion
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on K2.

For a straightforward example, consider the simplicial collapse below ob-
tained from deleting α = {2, 3} and β = {1, 2, 3} from the simplicial complex
K1:

The topic of elementary collapse deserves a little more attention. In fact,
as we will see later, elementary collapse is related to the topological notion of
homotopy. This idea motivates the following definition:

Definition 1.4 Simple homotopy equivalence is the equivalence relation gen-
erated by elementary collapse. Stated otherwise, we have K ∼ K ′ if we can
obtain K ′ from K by a series of elementary collapses and expansions.

We have one final definition:

Definition 1.5 A complete reduction of a simplicial complex K is a sequence
of elementary collapses and elementary removals that transform K into the null
simplicial complex (The complex containing only ∅).

It turns out that, as we will see in section 4, we can potentially learn a lot
about K by examining the elementary removals in a complete reduction. In
particular, the simplices we remove indicate what K is really ”built” of, while
the elementary collapses just induce homotopy equivalence (as we mentioned
above). Of course, one can undergo a complete reduction solely with elemen-
tary removals by removing each simplex one by one, but in the following sections
we show how to refine this process so that it gives us meaningful results about
our space.

PART 2: DISCRETE MORSE FUNCTIONS

Let K be a simplicial complex and consider a function f : K → N. (In
addition, we let f(∅) = 0 and ignore it for the majority of the paper). We might
hope that if α, β ∈ K and α is a face of β then f(α) < f(β). (We can accom-
plish this result easily by setting f(α) = d for α a d − simplex.) A discrete
Morse function is a function that almost satisfies this property, in particular it
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has only one ”mistake” locally. This notion is formalized in the following defini-
tion (to simplify notation from here forward, we will write a d−simplex α as α(d).

Definition 2.1 K a simplicial complex. f : K → N is a discrete Morse
function if for all α(d) ∈ K:

• f(β(d+1)) ≤ f(α(d)) for at most one β(d+1) ⊃ α(d).

• f(β(d−1)) ≥ f(α(d)) for at most one β(d−1) ⊂ α(d).

As a simple example, consider the picture below, where the points (0-
simplicies) and lines (1-simplicies) are labeled (by their value under a discrete
Morse function f . Notice that, at the top line and the bottom vertex there are
no ”mistakes.” However there is a line labeled 3 containing a point labeled 4
and a line labeled 1 containing a point labeled 2.

One more definition will serve us well:

Definition 2.2 For a discrete Morse function f , α(d) ∈ K is a critical point
of f if:

• For all β(d+1) ⊃ α(d), f(β(d+1)) > f(α(d))

• For all β(d−1) ⊂ α(d), f(β(d−1)) < f(α(d)).

Definition 2.3 If f : K → N is a discrete Morse function we can filter K
by N as follows: Let K(n) = {α ∈ K|∃β ∈ K with α ⊆ β and f(β) ≤ n}. In
other words, take all simplices that are mapped to a value ≤ n, and then take
all subsets of those simplices.

Note that K(n) is a simplicial complex. Furthermore, {∅} = K(0) ⊆ K(1) ⊆
· · · , and for n big enough K(n) = K. We proceed with a lemma:

Lemma 2.3 If α(d) ∈ K is a simplex, there do not exist simplices γ(d−1) ⊂
α(d) ⊂ β(d+1) such that f(γ(d−1)) ≥ f(α(d)) ≥ f(β(d+1)).

Proof: Assume for the sake of contradiction such simplices exist. Then
there is a vertex v ∈ β(d+1) such that v /∈ α(d). Let χ(d) = γ(d−1) ∪ {v}. If
f(χ(d)) ≤ f(γ(d−1)), then χ(d) and α(d) are distinct d − simplices containing
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γ(d−1) which are mapped to equal or smaller values than γ(d−1), a contradiction.
If f(χ(d)) > f(γ(d−1)) ≥ f(β(d+1)), then χ(d) and α(d) are distinct d−simplices
contained in β(d+1) which are mapped to equal or larger values than β(d+1), also
a contradiction.

Lemma 2.4 If α(d) ∈ K is critical and α(d) ⊂ β(d+r), f(α(d)) < β(d+r).

Proof. We proceed by induction on r. The case r = 1 is given by the definition.
Now suppose it is true for r = k, and suppose α(d) ⊂ β(d+k+1). Then there
exist at least two simplices γ(d+k), χ(d+k) such that α(d) ⊂ γ(d+k), χ(d+k) ⊂
β(d+k+1) (simply remove a vertex from β(d+k+1) that is not in α(d)). It fol-
lows that, since f is a Morse function , either f(β(d+k+1)) > f(γ(d+k)) or
f(β(d+k+1)) > f(χ(d+k)). WLOG we assume the former. Then by induction we
have f(β(d+k+1)) > f(γ(d+k)) > f(α(d)).

To conclude this section, we prove two big (and very closely related) the-
orems regarding discrete Morse functions and critical points. The following
proofs are involved, but worthwhile.

Theorem 2.5 If there do not exist critical simplices α ∈ K such that
f(α) = n, K(n)↘ K(n− 1).

Proof. First notice that K(n) satisfies three properties:

1) For all α ∈ K(n), there exists β ∈ K(n) such that α ⊆ β and f(β) ≤ n.

2) K(n− 1) ⊆ K(n).

3) If f(α) = n, α is not critical in K(n).

The first and second properties follow immediately from the definition. There
is a subtlety in the third property: We know that if f(α) = n α is not criti-
cal in K, but it might be in K(n). We show that it isn’t: If α(d) ∈ K(n)
with f(α(d)) = n, either there exists β(d−1) ⊂ α(d) with f(β(d−1)) ≥ α(d) or
β(d+1) ⊃ α(d) with f(γ(d+1)) ≤ α(d). In the first case, since K(n) is a simplex we
must have β(d−1) ∈ K(n). In the second case, f(γ(d+1)) ≤ n, so γ(d+1) ∈ K(n).

Now suppose M is any simplicial complex that satisfies those three prop-
erties. If M 6= K(n − 1), we will construct a simplicial complex M ′ that also
satisfies those three properties, and is a simplicial collapse of M . Then, starting
from K and repeating this process, we must eventually reach a stopping point.
At this time we must have K(n − 1). Hence once we construct the above sim-
plicial collapse we are done.
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The construction is simple: Out of all the maximal simplicies in M , pick the
one, say α(d), such that f(α(d)) is maximized. If f(α(d)) ≤ n− 1 then we must
have M = K(n − 1), by property 2 and the fact that every simplex in M is a
face of some maximal simplex of M . If f(α(d)) > n then α(d) violates property
1. Hence f(α(d)) = n, so by property 3 it is not critical in M .

Then there exists β(d−1) ⊂ α(d) such that f(β(d−1)) ≥ f(α(d)). β(d−1) is a
free face of α(d): if not, pick another face γ ⊃ β(d−1). Then there exists χ ⊇ γ
such that f(χ) ≤ n. But, by lemma 2.3, if we delete simplex α(d), β(d−1) be-
comes a critical simplex. Hence lemma 2.4 gives us the following contradictory
chain of inequalities: n ≥ f(χ) > f(β(d−1)) ≥ f(α(d)) = n. So we can delete
α(d) and β(d−1) to get a simplicial collapse to a new simplicial complex M ′.

It remains to show that M ′ satisfies the three properties above. For property
one, the only potentially problematic simplices are faces of α(d) or β(d−1), but
each of those are a face of (or equal to) some other (d − 1)−simplex γ(d−1) ⊂
α(d). Since f is a Morse function, f(γ(d−1)) < f(α(d)) = n. For property 2,
note that α(d) and β(d−1) were not faces of (or equal to) any simplex γ with
f(γ) = n− 1, hence neither of them are in K(n− 1). For property 3, our only
potential problems are faces γ(d−1) ⊂ α(d) with f(γ(d−1)) = n or χ(d−2) ∈ β(d−1)

with f(χ(d−2)) = n. However the first case is impossible because f is a Morse
function. Inn the second case, if χ(d−2) was critical in M ′, we would have
f(χ(d−2)) ≥ f(β(d−1)), contradicting lemma 2.3.

Theorem 2.6 K(n) can be transformed into K(n−1) by a series of elemen-
tary collapses and elementary removals, with exactly one elementary d−removal
for each critical d−simplex α(d) with f(α(d)) = n.

Proof. Suppose f(α) = n, and α is critical in K. Then α is maximal in K(n).
To see why, assume there exists β ∈ K(n) with β ⊃ α. Then there exists
γ ⊇ β such that f(γ) ≤ n. Then lemma 2.4 gives us the contradictory chain
of inequalities n = f(α) < f(γ) ≤ n. This means we can take out each critical
simplex α with f(α) = n using a series of elementary removals, one per simplex.
Call the resultant simplicial complex M . We are done if we can show that M
yields K(n − 1) through a series of simplicial collapses. Then we only need to
show that M satisfies the three properties from the previous proof (remember
that K(n) satisfies all three).

1) For all α ∈ M , there exists β ∈ M such that α ⊆ β and f(β) ≤ n. This
still holds after removing the critical simplices. Every simplex that is a face
of one of the removed simplexes α(d) is also a face (or equal to) some simplex
β(d−1) ⊆ α(d). But since α(d) is critical, f(β(d−1)) < f(α(d)) = n.

2) K(n− 1) ⊆M . This also still holds after removing the critical simplices,
because all of them were maximal in K(n), so none of them were in K(n− 1).
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3) If f(α) = n, α is not critical in M . We explicitly removed all the critical
faces α with f(α) = n when we constructed M . The only possible faces whose
criticality/non-criticality we might have changed in the removing are those faces
β(d−1) ⊂ α(d) where α(d) is a removed face. But then f(β(d−1)) < n, so there is
no problem.

Corollary 2.7 If K is a simplicial complex and f : K → N is a discrete
Morse function, then there exists a complete reduction of K with exactly one
elementary d−removal for each critical d−simplex in K.

The above corollary is a very powerful result about discrete Morse functions,
and it will play a big role in directing the flow of the paper. Part 3 will provide
a tool for constructing discrete Morse functions, parts 4 and 5 work to inter-
pret corollary 2.7 from a topological viewpoint, and part 6 uses the techniques
of part 3 and the interpretation of parts 4 and 5 to establish a rather interest-
ing result. Through all of this, however, corollary 2.7 is absolutely fundamental.

PART 3: DISCRETE VECTOR FIELDS

Writing a discrete Morse function is not exceptionally difficult (again we
have the easy example of f(α(d)) = d). Writing a discrete Morse function that
gives us interesting results proves to be more challenging. Specifically, corol-
lary 2.7 suggests that we can learn more about our simplicial complex when
we have less critical simplices. Note that non-critical simplices occur in pairs,
α(d) ⊂ β(d+1) where f(α(d)) ≥ f(β(d+1)). We can illustrate by drawing in an
”arrow” from α(d) to β(d+1). This is illustrated below for the discrete Morse
function from the previous part:

Note that by Lemma 2.3, no simplex can be at both the head and the tail
of an arrow. Also, the points that are not the heads or tails of any arrow are
exactly the critical simplices. Now suppose we have a simplicial complex, and
draw in arrows. One would hope that we could find a discrete Morse function
which gives us those arrows, in other words that Morse functions and sets of
arrows are effectively the same thing. In order to properly address this question
we introduce the definition of a ”discrete vector field.”
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Definition 3.1 A discrete vector field on a simplicial complex K is a set of
pairs {α(d) ⊂ β(d+1)} such that each simplex is in at most one pair.

The pairs {α(d) ⊂ β(d+1)} are thought of as ”arrows” or ”vectors” with a
tail at α(d) and a head a β(d+1). Thus the discrete vector field for the diagram
above would be: {f−1(2) ⊂ f−1(1)}, {f−1(4) ⊂ f−1(3)}. Some discrete vector
fields are shown pictorially below:

By an unfortunate notation standard, we shall refer to a discrete vector field
as V (the same letter for the vertices of K). However, this will hopefully not
cause confusion.

Now if f : K → N is a discrete Morse function, we can construct a discrete
vector field as above: Put in the pairs {α(d) ⊂ β(d+1)} when f(α(d)) ≥ f(β(d+1)).
We call this the gradient vector field of f . Then we can re-ask the question above
using our new terminology: ”When is a discrete vector field on a simplicial com-
plex K the gradient vector field of some discrete Morse function on K?” In order
to properly answer this question, we introduce the notion of a V−path:

Definition 3.2 If V is a discrete vector field, a V−path is a set of sim-
plices α(d)

0 , β
(d+1)
0 , α

(d)
1 , β

(d+1)
1 , . . . , β

(d+1)
r , α

(d)
r+1 such that {α(d)

i ⊂ β
(d+1)
i } ∈ V

for 0 ≤ i ≤ r and βi ⊃ αi+1 6= αi.

An example of a V−path is illustrated below: (α1,α2,α3 are not labeled, to
save space, but they are the intermediate line segments).

We say a V−path is closed if α0 = αr+1. In particular, a non-trivial closed
V−path is a closed V−path with r > 0 (a trivial closed V−path would be just
the simplex α0). The reason for this definition is the following result, which is
the main theorem of this section:
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Theorem 3.3 If V is a discrete vector field on a simplicial complex K, V
is the gradient vector field of some discrete Morse function on K if and only if
there are no non-trivial closed V−paths (We say V is acyclic).

Proof. We prove ”only if” here, and postpone the proof of ”if” to the end of the
section. Assume that V is the gradient vector field of a discrete Morse function
f : K → N, and α

(d)
0 , β

(d+1)
0 , . . . , α

(d)
r+1 is a non-trivial V−path. Then, since

{α(d)
i ⊂ β

(d+1)
i } ∈ V we have f(α(d)

i ) ≥ f(β(d+1)
i ). Then, since f is a discrete

Morse function and α
(d)
i+1 6= α

(d)
i we must have f(α(d)

i+1) < f(β(d+1)
i ). So we get

the chain of inequalities:

f(α(d)
0 ) ≥ f(β(d+1)

0 ) > f(α(d)
1 ) ≥ f(β(d+1)

1 ) > · · · > f(α(d)
r+1)

From which we conclude f(α(d)
0 ) > f(α(d)

r+1), hence α
(d)
0 6= α

(d)
r+1. So no

non-trivial V−path is closed.

Note that in the proof we discovered something stronger: If V is the gradient
vector field of a discrete Morse function on K, the V−paths are ”continuous”
paths along which f is decreasing.

The remainder of this section will be devoted to exploring a different way of
looking at discrete vector fields which will give us the tools to finish the proof
of theorem 4.3.

First, consider a simplicial complex K. We can ”draw” K by represent-
ing each simplex as a point, and drawing an arrow from β(d+1) to α(d) when
β(d+1) ⊃ α(d). This is called the Hasse diagram of K. This process is illustrated
below for a triangle:

Now suppose V is a discrete vector field on K. We modify the Hasse
diagram by reversing the direction of the arrow from β(d+1) to α(d) when
{α(d) ⊂ β(d+1)} ∈ V . Again, we show the process:
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So for every simplicial complex K with a discrete vector field V , we have a
corresponding Hasse diagram, which is a finite directed graph. Ie it is a finite
amount of points with arrows between certain pairs of points. Then we have
the notion of a ”cycle” in the directed graph, which is simply a set of vertices
in the graph a1, a2, . . . , an such that there is an arrow from ai to ai+1 and from
an to a1. We have the following result:

Theorem 3.4 If V is a discrete vector field on a simplicial complex K, if
there are no closed V−paths then the corresponding directed graph has no cy-
cles.

Proof. We will show that if we have a cycle in the directed graph, we have a
closed V−path. Note first that in a cycle in the directed graph, the dimension
of adjacent simplices differs by 1, hence we know that the cycle must have an
even number of elements. Let’s call them α0, β0, . . . , αr, βr. Without loss of
generality we can assume α(d)

0 ⊂ β(d+1)
0 , since if not we can just shift the cycle.

(The dimension must increase at some point if we want to get back to where we
started).

Now suppose we are at some simplex ai in the cycle (I use ”a” to differentiate
from α and β). Then ai+2 cannot have a bigger dimension, otherwise there
would be an arrow from ai to ai+1 increasing dimension, and from ai+1 to ai+2

increasing dimension which contradicts Lemma 2.3. But since we have a cycle,
this implies that ai+2 cannot have a smaller dimension either (otherwise there
would be no way to get back to ai when we come around). This means all the α
simplices and all the β simplices have the same dimension, in particular the αs
are d−simplices and βs are d+1−simplices. So our cycle gives us a V−path.

This is the key result connecting discrete vector fields to directed graphs.
We can now use the following result from graph theory:

Theorem 3.5 (Topological Sort) If G is a finite directed graph, there
exists a function f on the vertices of G (mapping into N) such that f(a) > f(b)
whenever there is an arrow from a to b if and only if G has no cycle.
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Proof. ”Only if” is clear, since if we had a cycle such that we decrease along
each arrow it would follow that the starting point must have a label less than
its label, a clear contradiction.

For ”if”, we have the following method: Call each point that is not the tail
of any arrow a node. Then, since G is finite and acyclic, a path starting from
any vertex must eventually hit a node. In particular, there are a non-zero, finite
number of such paths. Then for a vertex a, let f(a) be the greatest number
of vertices in a path from a to a node. (Note: this means f(a) = 1 iff a is a
node). Then if there is an arrow from a to b, any path from a to a node can be
appended to the arrow from a to b to make that path one vertex longer. Hence
f(a) > f(b) as desired.

The topological sort is illustrated for the directed graph below. Notice that
the top left and bottom right vertices have more than one possible path to the
upper right node point, so we have to choose the longest one. In addition, no
paths to the bottom left node point are maximal.

This result gives us what we need to finish theorem 3.3. We proceed in the
natural way: Given a discrete vector field V with no V−paths, the correspond-
ing directed graph has no cycles. Then we can make a function f such that
f(a) > f(b) whenever there is an arrow from a to b, which is easily seen to be
a Morse function whose gradient vector field is V . This gives us the final result
of this section, which is the appropriate analog of corollary 2.7 using our new
language:

Theorem 3.6 Suppose K is a simplicial complex and V is an acyclic dis-
crete vector field on K. Then there exists a complete reduction of K consisting
of exactly one elementary d−removal for each unpaired d−simplex in V .

Proof: This follows immediately from corollary 2.7 and theorem 3.3.

PART 4: GEOMETRIC REALIZATION OF SIMPLICES

We now attempt to move our discussion of simplicial complexes into the topo-
logical realm. Here we return to the standard geometric picture of a d−simplex
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as a d−dimensional ”triangle”. We formalize this notion as follows:

Definition 4.1 The standard d-simplex ∆d is the set {(t0, t1, . . . , td) ∈
Rd+1|

∑
i ti = 1 and ti ≥ 0 ∀i}.

Now we have written ∆d as a subset of Rd+1, and it inherits a topology from
Rd+1. We can also talk about the boundary, δ∆d as the subspace of ∆d such
that at least one coordinate is 0. Now we proceed to the main definition of this
section:

Definition 4.2 IfK is a simplicial complex over the vertex set V = {v0, v2, . . . , vn},
then the geometric realization of K is a topological space [K] ⊆ Rn+1. Explic-
itly, [K] = ∆n+1 ∩ {(t0, t1, . . . , tn)|{vi|ti 6= 0} ∈ K}.

This definition effectively identifies the ith coordinate with the ith vertex vi.
The definition states that , if a set of coordinates is nonzero, those vertices must
be a simplex in K. With this formalism, we can state the two main results of
this section:

Theorem 4.3 If K1 and K2 are simplicial complexes with K1 ↘ K2, then
[K1] is homotopy equivalent to [K2].

Theorem 4.4 If K1 and K2 are simplicial complexes with K2 = K1 − α(d),
then [K1] is homeomorphic to a gluing of [K2] to ∆d along δ∆d.

The remainder of this section is devoted to proving these two theorems.

We begin with theorem 4.3. First, let V = {v0, v1, . . . , vn}, K1 be a sim-
plicial complex over V and K2 be an elementary collapse of K1 obtained by
removing simplices α(d) and β(d−1), where β(d−1) is a free face of α(d) (note
that this implies α(d) is maximal). Without loss of generality, we can assume
α(d) = {v0, v1, . . . , vd} and β(d−1) = {v0, v1, . . . , vd−1}. Note that [K2] ⊆ [K1] ⊆
∆n.

Now consider the vector v = (−1, . . . ,−1, d, 0, . . . , 0), where the first d co-
ordinates equal −1. We will collapse [K1] to [K2] along lines parallel to v. For
each t ∈ [K1], let φ be the projection map defined by φ(t) = t +mtv, where mt

is the minimum of the first d coordinates of t. Now we are done if we can show
the following three things:

1. φ maps [K1] into [K2]

2. φ restricts to the identity on [K2]

3. φ is homotopic to the identity on [K1]
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For item 1: First notice that, since the sum of the coordinates in v is zero,
the sum of the coordinates in φ(t) is 1. In addition, only the first d + 1
coordinates of t change. If t = (t0, . . . , td−1, td, td+1 . . . , tn), then φ(t) =
(t0 − mt, . . . , td−1 − mt, td + mtd, td+1, . . . , tn). We see immediately that all
coordinates must be nonnegative, so φ(t) ∈ ∆n.

Now, if mt = 0 then φ(t) = t, and t ∈ [K2]. In particular, the set {vi|ti 6= 0}
must be a simplex γ ∈ K1, and since mt = 0⇒ one of the first d coordinates is 0
we have γ 6= α, β, ie γ was not removed. If mt 6= 0 we must have all of the first d
coordinates nonzero, ie β(d−1) ⊆ {vi|ti 6= 0}. But this implies {vi|ti 6= 0} = α(d)

or β(d−1). Then, φ(t) must have one of the first d coordinates equal to zero
(the smallest one, which is equal to mt), hence {vi|φ(t)i 6= 0} is some simplex
γ ⊂ α(d) not equal to α(d) or β(d−1), hence γ ∈ [K2] so φ(t) ∈ [K2].

For item 2: If t ∈ [K2], it means that β * {vi|ti 6= 0}, ie one of the first d
coordinates must be 0. Then mt = 0, so φ(t) = t.

For item 3: For (t, θ) ∈ [K1] × [0, 1], let Γ(t, θ) = t + θmtv. Then, since
in an ε neighborhood of t mt cannot vary by more than ε, Γ is continuous. In
addition, Γ(t, θ) ∈ [K1], since mt 6= 0⇒ {vi|ti 6= 0} = β(d−1) or α(d), hence its
image under Γ must also have nonzero coordinates from either β(d−1) or α(d).
Lastly, Γ equals the identity at θ = 0 and φ at θ = 1, hence φ is homotopic to
the identity. This completes the proof.

Now we proceed to Theorem 4.4 and the notion of gluing. Informally, if we
have two topological spaces A and B and a continuous function f from a subset
B0 ⊆ B to A, we can glue B to A by identifying each point in B0 with its image
under f . To state this formally, we build up a set of elementary topological ideas:

Definition 4.5 If X is a topological space and A ⊆ X, there exists an inclu-
sion map iA : A→ X, taking the set A to itself in X. The subspace topology on
A is as follows: U is open in A iff there exists V open in X such that i−1

A (V ) = U .

Definition 4.6 If A and B are topological spaces, their disjoint union AtB
is a topological space X which is the (setwise) disjoint union of the sets A and
B. There is a canonical injection ϕA : A → X, taking A to itself in X (resp.
B). Then U is open in X iff ϕ−1

A (U) is open in A (resp. B).

Note that it is not totally correct to say A ⊂ AtB (there is a problem if A
and B are not disjoint initially), it is better to say A is equivalent to a subset
of A t B, or ϕA(A) ⊂ A t B. This is the reason why we have differentiated
the terms ”inclusion map” and ”canonical injection”, and it will prevent the
following proofs from seeming tautological.

Definition 4.7 If X is a topological space and ∼ is an equivalence relation
on X, the quotient space X/ ∼ is the set of equivalence classes in X. There

13



exists a quotient map q : X → X/ ∼ which takes x ∈ X to its equivalence class.
A set U ∈ X/ ∼ is open iff q−1(U) is open in X.

Remark: Inclusion maps, canonical injections, and quotient maps are contin-
uous, as easily seen by the definition. Now we are ready for our main definition:

Definition 4.8 If A and B are topological spaces, a gluing map is a contin-
uous function f : B0 → A where B0 ⊆ B. We then say A ∪f B = A t B/ ∼,
where each element of B0 is glued to its image. Explicitly, if f(b) = a, we have
ϕB(b) ∼ ϕA(a).

Note that, while these definitions seem technical, they all do exactly what
they ”should do.” Ie, the disjoint union of two spaces is exactly those two spaces
with their separate topologies. A quotient space just takes a bunch of points and
makes them ”the same.” The following lemma shows that subspace topologies
are consistent:

Lemma 4.9 If X is a topological space and A ⊆ B ⊆ X, then the subspace
topology induced on A is the same regardless of whether A is considered a sub-
space of X or of B (with the subspace topology).

Proof. Let iA : A → X, iB : B → X, jA : A → B be the inclusion maps. Note
iA = iB◦jA. Let τ1 be the subspace topology on A as a subspace of X, and τ2 be
the subspace topology on A as a subspace of B. Then U ∈ τ1 ⇒ ∃V open in X
such that i−1

A (V ) = U ⇒ i−1
B (V ) open in B ⇒ j−1

A (i−1
B (V )) = i−1

A (V ) = U ∈ τ2.
Similarly, U ∈ τ2 ⇒ ∃V open in B such that j−1

A (V ) = U ⇒ ∃V ′ open in X
such that i−1

B (V ′) = V ⇒ i−1
A (V ′) = j−1

A (i−1
B (V ′)) = U ∈ τ1.

Now we introduce another lemma, whose truth seems obvious, but whose
proof is worth going through:

Lemma 4.10 If A,B ⊆ X are topological spaces (A,B closed) let i : A∩B →
A be the inclusion map. Then X is homeomorphic to A ∪i B.

Note that, if i is a gluing map, then A ∩ B is regarded as a subspace of
B. However by lemma 4.9 this is irrelevant, hence i is continuous (being an
inclusion map).

Now let q : A t B → A ∪i B be the quotient map, ϕA : A → A t B be the
canonical injection and iA : A → X be the inclusion map (resp ϕB , iB). For
[x] ∈ A ∪i B, define f as follows:

f([x]) =
{
iA(y) y ∈ A and ϕA(y)) ∈ [x]
iB(y) y ∈ B and ϕB(y)) ∈ [x]
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Note that when [x] is a singleton set, there is exactly one y that meets these
criteria, since the images of ϕA and ϕB are disjoint and cover A t B. If [x]
contains two points, ϕB(b) and ϕA(a) such that i(b) = a, then we have a = b
since i is an inclusion map. This means iA(a) = iB(b), so f is well-defined.
Furthermore, f is an injection, since iA and iB are injections, so if [x] 6= [x′] and
f([x]) = f([x′]) we would have y ∈ A, φA(y) ∈ [x] and y′ ∈ B, φB(y′) ∈ [x′], and
iA(y) = iB(y′). But this means y = y′ ∈ A ∩B, hence i(y′) = y, so [x] = [x′], a
contradiction.

Now consider f as a map of sets. For U ∈ A ∪i B, we can write f(U) =
fA(U) ∪ fB(U) where fA(U) = (iA ◦ ϕ−1

A ◦ q−1)(U) and fB(U) = (iB ◦ ϕ−1
A ◦

q−1)(U). Note that: fA(A∪iB) = A, fB(A∪iB) = B, so f(A∪iB) = A∪B = X,
hence f is surjective. Also, for any U ⊂ A ∪i B, fA(U) = f(U) ∩ A and
fB(U) = f(U) ∩B.

So we have: U ∈ A ∪i B open ⇔ q−1(U) open in A t B ⇔ ϕ−1
A (q−1(U)) is

open in A (resp. B)⇔ ∃VA open in X such that i−1
A (VA) = ϕ−1

A (q−1(U)), equiv-
alently fA(U) = VA∩A (resp. B). Now if f(U) is open in X, we can simply take
VA = VB = f(U). On the other hand, if U is open in A∪iB, we have f(U)∩A =
VA∩A and f(U)∩B = VB ∩B, hence f(U) = (VA−B)∪ (VB−A)∪ (VA∩VB),
which is open. This means f is a homeomorphism.

SECTION 5: CW COMPLEXES

In this section, we present an array of results (mostly without proof) con-
cerning cell complexes. This section rewrites results of the previous section into
statements which are perhaps more aesthetically pleasing.

To begin, we define the n− ball Bn = {x ∈ Rn|||x|| ≤ 1} where || · || denotes
the Euclidean norm. Then, the n− sphere is Sn = {x ∈ Rn+1|||x|| = 1}. Note
Sn ⊆ Bn+1.

Now, the construction of a cell complex is as follows: One begins with a
finite number of points (B0). Then one adds higher dimensional balls Bn by
”gluing” along the boundary. For example, suppose we begin with two points,
a and b. Then notice the boundary of B1 is S0: 2 points. Hence we can glue on
a B1 (which is simply a line segment) by attaching one endpoint to a and the
other to b. Then, if we do this again, we will have two segments between a and
b which form a sort of loop (that looks a lot like S1). Then we can glue a B2

along that loop. The process is illustrated below:
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For a different sort of example, suppose we just start with one point a. If we
glue on a B1 with both endpoints at a we get a circle. If instead we glue on a
B2, we are forced to glue the entire boundary (S1) to one point. It is not hard
to see that the result of this is S2.

We have the following definition:

Definition 5.1 X is a CW complex if we have a finite chain of topological
spaces ∅ ⊂ X0 ⊂ · · · ⊂ Xn = X, such that Xi+1 = Xi ∪f B

n for some n, where
f : Sn−1 → Xi+1.

We now have the following important results:

Theorem 5.3 Bn is homeomorphic to ∆n, with Sn−1 mapped to δ∆n.

Proof Sketch: Embed ∆n in Bn, then expand ∆n to Bn. This is illustrated
below with n = 2.
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Theorem 5.4 Let h : X → X ′ denote a homotopy equivalence, and f1 :
Sn−1 → X and f2 : Sn−1 → X ′ continuous maps. If h ◦ f1 is homotopy equiva-
lent to f2, then X ∪f1 B

n is homotopy equivalent to X ′ ∪f2 B
n.

Corollary 5.6 If K is a simplicial complex with a complete reduction, then
[K] is homotopy equivalent to a CW complex involving one d−ball for each
elementary d−removal in the reduction.

Proof. We construct a CW complex by reading the reduction in reverse. In par-
ticular, the null simplex space is homotopy equivalent to the empty topological
space. Then, by theorems 4.4 and 5.3, encountering a d−removal prompts the
gluing of a d−simplex, which is homeomorphic to Bn. By theorem 4.3, encoun-
tering an elementary collapse signifies a homotopy equivalence, and by theorem
5.4 this won’t affect the homotopy class of later gluings.

We are now in a position to state corollary 2.7 in its most refined form:
Corollary 5.7 Suppose K is a simplicial complex, and V an acyclic discrete

vector field on K. Then [K] is homotopy equivalent to a CW complex involving
one Bd for each unpaired d−simplex in V .

Proof. This follows immediately from corollary 5.6 and theorem 3.6.

We now proceed to demonstrate a special case of corollary 5.7.

Theorem 5.8 The CW complex B0 ∪f B
n, where f : Sn−1 → B0 is the

constant map (the only possible choice), is homeomorphic to Sn.

Proof Sketch: Show Bn − Sn−1 is homeomorphic to Rn is homeomorphic to
Sn−B0, using in the first case the map x 7→ x/(1−||x||) and in the second case
a projection from the removed point (1, 0, 0, . . . , 0). Then, since all of Sn−1 is
glued to a point, adding Sn−1 to Bn − Sn−1 becomes adding B0 to Sn − B0,
which is Sn.

This implies that, if our only unpaired simplices are a 0-simplex and an
n−simplex, our simplicial complex is homotopy equivalent to an n−sphere.
We can extend this result further to a wedge of n−spheres, ie a collection of
n−spheres glued together at one common point.

Theorem 5.9 If X is a finite wedge of n−spheres, any continuous function
f : Sn−1 → X is nullhomotopic.

Corollary 5.10 If K is a simplical complex, V is an acyclic discrete vector
field on K, and the only unpaired simplices are a 0−simplex and k d−simplices,
then K is homotopy equivalent to the wedge of k d−spheres.
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Proof. By theorems 5.9 and 5.4, gluing Bn onto a wedge of k n−spheres results
in a space homotopy equivalent to a wedge of k+ 1 n−spheres, no matter what
the gluing map is. Then we apply corollary 5.7.

This last result is the ”aesthetically pleasing” statement we were looking for.
We can now proceed to the final section.

PART 6: THE COMPLEX OF DISCONNECTED GRAPHS

In this section we use the results established in this paper to find the ho-
motopy type of a class of simplicial complexes. To begin, we have the following
definition:

Definition 6.1 Consider all graphs on n vertices. A monotone graph prop-
erty is some collection P of those graphs such that if G ∈ P and G′ ⊂ G, we
have G′ ∈ P . That is, we can remove edges without losing the ”property.”

For example, the collection of disconnected graphs on n vertices is a mono-
tone graph property, since if we remove an edge from a disconnected graph it
will remain disconnected. Other examples are: 2-colorable, sub i-regular (each
vertex has ≤ i edges incident to it), acyclic.

From a monotone graph property P we can make a simplicial complex in the
following way: let V , the vertex set, be the set of all

(
n
2

)
edges on our n vertices.

Then if some collection of edges form a graph G ∈ P , the set of those edges is
a simplex in K, our simplicial complex. We can now ask questions about the
topology of a simplicial complex of a monotone graph property.

Since the sets V and K are fairly large, it may seem like an unweildy sim-
plicial complex to analyze. DIscrete Morse theory proves to be a useful tool
in studying such spaces. We will illustrate this with the simplicial complex of
disconnected graphs: If a set of edges form a disconnected graph on n vertices,
that set is a simplex. Our goal is to construct an acyclic discrete vector field
on this simplicial complex. We begin as follows: Take every nonempty simplex
α ∈ K, such that α does not contain the edge (1, 2). Then, if β = α + (1, 2) is
also a simplex, draw an arrow {α ⊂ β}. Call the resulting discrete vector field
V12.

Now we ask: which simplices are unpaired? First, we have {(1, 2)} itself
(since we don’t draw arrows from the empty simplex). Suppose some other sim-
plex α is unpaired. If (1, 2) ∈ α, then α is paired with α − (1, 2). If (1, 2) /∈ α,
then it is possible that α + (1, 2) is connected. This is true when the graph
of α has two connected components, one containing the vertex 1 and the other
containing the vertex 2.
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Now, suppose α is some unpaired simplex in V12. Then suppose the vertex
3 is contained in the connected component of vertex 1. If α does not have the
edge (1, 3), then we can draw an arrow from α to α+ (1, 3). If α does have the
edge (1, 3), and α− (1, 3) is unpaired in V12, draw an arrow from α− (1, 3) to α.
It may be the case that α− (1, 3) is paired in V12, this happens when α− (1, 3)
is the union of three connected components, one containing vertex 1, one with
vertex 2, and the last with vertex 3.

If the vertex 3 is instead in the connected component of vertex 2, we can do
an analogous treatment. Call the resulting discrete vector field V3. Then the
only (nonempty) unpaired simplices in V3 are {(1, 2)} and any simplex whose
graph G satisfies G − (1, 3) has three connected components or G − (2, 3) has
three connected components.

Now we look at the vertex 4. If α is unpaired in V3, assume (1, 3) ∈ α, so
α− (1, 3) has three connected components. Then the vertex 4 is in the compo-
nent with 1, 2 or 3. Then we can do the same analysis with the edge (1, 4), (2, 4)
or (3, 4), whichever is applicable. Once we have exhausted these possibilities,
we are left with V4, and the unpaired simplices have graphs that are formed
of four connected components, then edges added in between 1, 2, 3, 4 to form
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a tree with those vertices. Two possibilities are below (circles are connected
components):

Repeating this process, we will eventually have a discrete vector field V
on the simplicial complex such that the only unpaired simplices are the point
{(1, 2)} and the union of two connected trees, one tree having root 1, the other
having root 2, and labels increasing along rays. There are (n − 1)! such trees,
and each has (n− 2) edges (points), so they correspond to (n− 3)-simplices.

Lastly, we have to check that our discrete vector field V is acyclic. Suppose
α0, β0, α1, β1, . . . , αr+1 is a closed V−path. Then there is an arrow from α0 to
β0. Suppose they are paired for the first time in Vi, i ≥ 3. Then α1 must either
be the head of an arrow in Vi, or the tail of an arrow in Vi−1, and since the
V−path continues it must be the latter. This means αr+1 is the tail of an arrow
in Vi−(r+1), hence it cannot be equal to α.

This means we can define a discrete Morse function on the simplex of dis-
connected graphs such that the only critical simplices are a point ant (n − 1)!
(n− 3)-simplices. Hence:

Theorem 6.2 The simplex of disconnected graphs is homotopy equivalent
to the wedge of (n− 1)! (n− 3)−spheres.

Using discrete Morse theory, many other similar results are possible. This
is discussed in depth in [4]. To conclude this paper, we present some of the
results below. Discrete Morse theory plays a prominent role in the discovery of
the homotopy classes of these graph properties.
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Graph Property Homotopy Type
Forest

∨
Sn−2

Bipartite
∨
Sn−2

Disconnected
∨

(n−1)! S
n−3

Not 2-connected
∨

n−2)! S
2n−5

Not 3-connected
∨

(n−3)
(n−2)!

2
S2n−4

This concludes our investigation of discrete Morse theory.
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