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Abstract. In this paper, we discuss the basic theory of algebraic geometry,

and in doing so begin to develop an intimate relationship between algebraic

and geometric objects and concepts.
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1. Introduction and Preliminaries: The zero-set of an ideal; the
ideal of a set of points.

In this paper, we begin a discussion of algebraic geometry: specifically, we will
develop a correspondence between ideals in a polynomial ring and subsets of n-
dimensional space, which will suggest an analogy between algebraic and geometric
objects and concepts. Throughout the paper, we will attempt to emphasize this
analogy.

In this first section, we give the basic definitions that are essential to the theory
of algebraic geometry: the zero-set of an ideal in a polynomial ring over a field, the
ideal of a set of points in affine space, algebraic sets, and the like. In the second
section, we prove the Hilbert Basis Theorem and apply it to a finiteness property
of algebraic sets. In the third section, we consider specific types of algebraic sets:
first, irreducible algebraic sets, or affine varieties, which serve as a sort of basis
for algebraic sets, and second, algebraic sets in the affine plane, which are more
familiar. In the fourth section, we prove the Nullstellensatz, and with it solidify
the correspondence which we will develop throughout the paper between algebraic
and geometric objects. In the fifth section, we consider maps from and between
irreducible algebraic sets.

We give the preliminary definitions and properties as indicated above. Knowl-
edge of basic commutative algebra is assumed in this paper, including concepts and
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basic results about rings and homomorphisms of rings, polynomial rings, prime
ideals of rings, and fields. Let k be a field.

Definition 1.1. Denote by An(k) the n-fold Cartesian product of k with itself,
which we will call n-dimensional affine space over k. If the field k is understood by
context, we will simply write An. We will call an element x = (a1, a2, . . . , an) ∈ An
a point in affine space. We will call A1(k) the affine line and A2(k) the affine plane.

Definition 1.2. For a polynomial F ∈ k[X1, X2, . . . , Xn], a point P = (a1, . . . , an)
is a zero of F if F (a1, . . . , an) = 0. If F is not a constant polynomial, then the set
of zeros of F is called the hypersurface in An defined by F , and this will be denoted
by V (F ). We may also denote V (F ) as the zero-set of the polynomial F . If the
degree of F is one, we will call V (F ) a hyperplane in An.

Definition 1.3. Generally, if S ⊆ k[X1, X2, . . . , Xn], the zero-set of S will be
V (S) = {P ∈ An | F (P ) = 0 for all F ∈ S}. Note that V (S) =

⋂
F∈S V (F ). If S =

{F1, F2, . . . , Fm}, we will write V (F1, F2, . . . , Fm) instead of V ({F1, F2, . . . , Fm}).

Definition 1.4. A subset V ⊆ An is an affine algebraic set, or more simply an
algebraic set, if V = V (S) for some S ⊆ k[X1, X2, . . . , Xn].

Examples 1.5. Any conic section R2 is an algebraic set. The unit sphere Sn ⊂
An+1(R) is an algebraic set. The set {(x, y) | y = sin(x)} ⊂ A2(R) is not algebraic.

The following are the first basic properties of these objects. These properties are
easy to verify.

(1) If I = (S) ⊆ k[X1, X2, . . . , Xn] is the ideal generated by a subset S of the
polynomial ring, then V (I) = V (S). Thus, any algebraic set is equal to
V (I) for some ideal I. For this reason, we will almost exclusively talk about
ideals of the polynomial ring.

(2) If {Iα}α is a collection of ideals in k[X1, X2, . . . , Xn], then V (
∑
α Iα) =⋂

α V (Iα). Thus, the arbitrary intersection of algebraic sets in An is itself
an algebraic set.

(3) If I ⊂ J , then V (I) ⊃ V (J), so this correspondence is inclusion-reversing.
(4) For any polynomials F, G ∈ k[X1, X2, . . . , Xn], we have V (FG) = V (F ) ∪

V (G). For any two ideals I, J ⊂ k[X1, X2, . . . , Xn], we have V (I)∪V (J) =
V (I ∩ J), so that a finite union of algebraic sets is itself an algebraic set.

(5) V (0) = An. V (k[X1, X2, . . . , Xn]) = ∅. In An, we have V (X1 − a1, X2 −
a2, . . . , Xn − an) = {(a1, a2, . . . , an)} for all ai ∈ k. Thus, any finite set in
An is an algebraic set.

The size of these algebraic sets is another basic property to consider. We have
the following results:

Proposition 1.6. Any proper algebraic subset of A1(k) is finite.

Proof. If k is a field, then k[X] is a PID. Any algebraic set in A1(k) has the form
X = V (I) for an ideal I ⊆ k[X]; if I = k[X], then X = ∅; otherwise, I = (F )
for some polynomial F . But F has finite degree, so F has finitely many roots (if
any). �

Proposition 1.7. Let k be algebraically closed, and F ∈ k[X1, X2, . . . , Xn] be
irreducible. Then, An(k) \V (F ) is infinite, and for n ≥ 2, V (F ) is infinite as well.
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Proof. Since k is algebraically closed, the polynomial F (1, 1, . . . , Xn) has only
finitely many roots in XN , so the subset

{(1, 1, . . . , an) | an is not a root of F (1, 1, . . . , Xn)} ⊂ An(k) \ V (F )

is infinite. The first statement of the proposition follows.
For n ≥ 2, for each a1, a2, . . . an−1 ∈ k, the polynomial F (a1, a2, . . . , an−1, Xn)

has at least one root, since k is algebraically closed. Thus, since k is infinite, V (F )
is infinite. �

We have considered a correspondence from ideals in the a polynomial ring to
subsets of An; we now develop the correspondence in the opposite direction.

Definition 1.8. For a subset X ⊂ An(k), we consider the set of polynomials that
vanish on the set X, and denote this by

I(X) = {F ∈ k[X1, X2, . . . , Xn] | F (P ) = 0 ∀P ∈ X} .
Clearly, I(X) is an ideal for any X ⊆ An; we will call it the ideal of the set X.

The following are the first basic properties of these objects, and these properties
are easy to verify.

(1) If X ⊂ Y , then I(X) ⊃ I(Y ), so this correspondence is inclusion-reversing.
Moreover, I(X) = I(Y ) ⇐⇒ X = Y .

(2) I(∅) = k[X1, X2, . . . , Xn]. If k is infinite, I(An(k)) = (0). For a1, . . . , an ∈
k, I((a1, . . . , an)) = (X1 − a1, . . . , Xn − an).

(3) I(V (S)) ⊇ S for any set S of polynomials.
(4) If V is an algebraic set in An, then V = V (I(V )).
(5) For any X ⊆ An, I(X) is a radical ideal. That is, if a polynomial F has a

power FN vanishing on X, then F must as well vanish on X. Moreover,
for any ideal I ⊂ k[X1, X2, . . . , Xn], Rad(I) ⊆ I(V (I)).

We give a construction which will be useful later:

Proposition 1.9. Let P1, P2, . . . , Pn be distinct points in An. Then, there exist

polynomials Fi ∈ k[X1, X2, . . . , Xn] such that Fi(Pj) = δij =

{
0 if i 6= j

1 if i = j.

Proof. For each i, let Vi = {P1, . . . , Pi−1, Pi+1, . . . , Pn}. Then, from the first
property above, Vi ( Vi ∪ {Pi} implies I(Vi) ) I (Vi ∪ {Pi}). Pick Gi ∈
I (Vi ∪ {Pi}) \ I(Vi). Gi is zero on Vi, but is non-zero on Pi. Thus, our desired

polynomials are Fi =
(

1
Gi(Pi)

)
Gi. �

2. Hilbert Basis Theorem and its application.

We defined algebraic sets in terms of an arbitrary set of polynomials, and al-
though we can clearly restrict our attention to ideals of polynomials, we will
see that the situation is even simpler. In other terms, an algebraic set can be
thought of as the intersection of an arbitrary collection of hypersurfaces, since
V (S) =

⋂
F∈S V (F ). However, we will see that even just finite intersections of

hypersurfaces will be enough:

Theorem 2.1. Any algebraic set in An is a finite intersection of hypersurfaces.

For the proof of this theorem, we will need the following lemma:
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Lemma 2.2 (Hilbert Basis Theorem). If R is a Noetherian ring, then
R[X1, X2, . . . , Xn] is a Noetherian ring as well.

Proof. We will induct. The inductive step is clear, since R[X1, X2, . . . , Xi] ∼=(
R[X1, X2, . . . , Xi−1]

)
[Xi].

So, assume R is Noetherian; we will show that R[X] is Noetherian by showing
that any proper ideal I ⊂ R[X] is finitely generated.

Let J be the set of leading coefficients of elements in I. Clearly, J is an ideal
of R, so J is finitely generated. Let F1, . . . , Fr ∈ I be polynomails whose leading
coefficients generate J . Take N > max {deg(Fi)}.

For each m ≤ N , let Jm be the ideal in R consisting of all leading coefficients of
all polynomials in I of degree less than or equal to m. Let {Fmj}j be a finite set of

polynomials of degree less than or equal to m whose leading coefficients generate

Jm. Let I ′ =
(
{Fi}i , {Fmj}m,j

)
. We wish to show that I ′ = I.

Suppose I ′ ( I. Let G ∈ I \ I ′ be an element of lowest degree in I \ I ′.
If deg(G) > N , we can find polynomials Qi ∈ R[X] such that

∑
iQiFi and G

have the same leading term, since {Fi} generates J and the leading coefficient of G
is in J . Then, subtracting off, deg(G−

∑
iQiFi) < deg(G). Since G is of minimal

degree, G−
∑
iQiFi ∈ I ′. But this implies G ∈ I ′, a contradiction.

Similarly, if deg(G) = m ≤ N , we can lower the degree of G by subtracting∑
j QjFmj for some polynomials Qj ∈ R[X], again contradicting minimality of

degree.

Thus, I = I ′ =
(
{Fi}i , {Fmj}m,j

)
, so I is finitely generated. �

Proof. (of 2.1): We are to show that any algebraic set is the finite intersection of
hypersurfaces. Let V = V (I) be an algebraic set in An(k). k is a field, and is thus
a Noetherian ring, so by Lemma (2.2), k[X1, X2, . . . , Xn] is a Noetherian ring as
well. Thus, I ⊆ k[X1, X2, . . . , Xn] is finitely generated; say I = (F1, . . . , Fm). If
I = k[X1, X2, . . . , Xn], then V (I) = ∅ = V (1). Otherwise,

V = V (I) = V
(

(F1, . . . , Fm)
)

= V (F1) ∩ · · · ∩ V (Fm).

�

3. Irreducible algebraic sets, and properties of the affine plane.

We now restrict our attention to two particulars: a certain type of algebraic set,
and A2(k), the affine plane.

Definition 3.1. An algebraic set V ⊆ An is reducible if V = V1 ∪ V2 for some
non-trivial (i.e. non-empty) algebraic sets V1, V2 ⊂ An, with V 6= V1 and V 6= V2.
Otherwise, V is irreducible.

Ireducible algebraic sets will play a major role in the basic theory we are devel-
oping. Following are a few important theorems.

Theorem 3.2. An algebraic set V is irreducible if and only if I(V ) is a prime
ideal.

Proof. (=⇒): If I(V ) is not prime, suppose F1F2 ∈ I(V ) but Fi /∈ I(V ) for each i.
Then,

V =
(
V ∩ V (F1)

)⋃(
V ∩ V (F2)

)
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since for all P ∈ V , if F1(P )F2(P ) = 0, then either F1(P ) = 0 or F2(P ) = 0, so
either P ∈ V (F1) or P ∈ V (F2). But clearly, Fi /∈ I(V ) implies V (Fi) 6= V for each
i.

(⇐=): Suppose V = V1 ∪ V2 is reducible. Then, Vi ( V implies I(Vi) ) I(V ) for
each i. Let Fi ∈ I(Vi) \ I(V ). Then, Fi /∈ I(V ) for each i, but F1F2 ∈ I(V ) since
for all P ∈ V , either F1(P ) = 0 or F2(P ) = 0. Thus, I(V ) is not prime. �

Theorem 3.3. Let V be an algebraic set in An(k). Then, there exist unique irre-
ducible algebraic sets V1, . . . , Vm such that V = V1 ∪ · · · ∪ Vm and Vi * Vj.

We first need the following lemma:

Lemma 3.4. Let D be a non-empty collection of ideals of a Noetherian ring R.
Then, D has a maximal member.

Proof. Suppose we have a infinite chain of ideals in D:

I0 ⊂ I1 ⊂ I2 ⊂ . . .

Then,
⋃∞
i=0 Ii is an ideal of R, so it generated by a1, . . . , an. Then, ai ∈ If(i) for

some f(i) ∈ N. Take N = max{f(i)}. Then, ai ∈ IN for all i. Thus,
⋃∞
i=0 Ii = IN ,

so the chain has an upper bound. Thus, by Zorn’s Lemma, D has a maximal
member. �

Proof. (of 3.3): Define the set

D = {algebraic sets V ⊆ An | V is not the union of a

finite number of irreducible algebraic sets in An}.

We want to show D is empty. Suppose not. Let V be a minimal member of
D. (This exists by a similar argument as in the proof of the above lemma.) Since
V ∈ D, V is not irreducible, so let V = V1 ∪ V2 for some Vi ( V . Then, Vi /∈ D
by minimality. Thus, V1 and V2 are finite unions of irreducible algebraic sets, so
V =

(
V1,1 ∪ · · · ∪ V1,r

)⋃ (
V2,1 ∪ · · · ∪ V2,s

)
, and thus V /∈ D, contradiction.

Thus, any algebraic set can be written as V = V1∪· · ·∪Vm for some irreducibles
Vi. The second condition (Vi * Vj) can be obtains by simply throwing away any
such Vi contained in another irreducible algebraic set in the list.

For uniqueness, suppose

V = V1 ∪ · · · ∪ Vm = W1 ∪ · · · ∪Wm

is two distinct unions of irreducible algebraic sets with the given conditions. Then,
for each i, we have Vi =

⋃
i(Vi ∩Wj). But each Vi is irreducible, so only one of the

terms of the union can be non-empty, i.e. there exists a function σ on the subscripts
such that Vi ⊆Wσ(i). Similarly, there exists a function τ such that Wσ(i) ⊆ Vτ(σ(i)).
Then, Vi ⊆ Vτ(σ(i)) implies Vi = Vτ(σ(i)) implies Vi = Wσ(i). Similarly, Wj = Vτ(j).
Thus, the decompositions are the same. �

This leads us to the following general definition, which simplifies algebraic sets
and allows us to talk about different ”parts” of an algebraic set:

Definition 3.5. If V is an affine algebraic set, and V = V1 ∪ · · · ∪ Vm as above,
each Vi is called an irreducible component of V , and the expression of the union is
the decomposition of V into irreducible components.
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We now study a particular affine space and its corresponding polynomial ring:
the affine plane A2(k), and the polnomial ring k[X,Y ]. Examples of familiar hyper-
surfaces in A2(R) are the parabola Y −X2, which we will sometimes write Y = X2,
and the unit circle X2 + Y 2 − 1.

We give a few properties of affine algebraic sets in the plane, and then classify
all the irreducible algebraic sets in the plane.

Proposition 3.6. Let F,G ∈ k[X,Y ] have no common factors. Then, V (F,G) =
V (F ) ∩ V (G) is a finite set of points.

Proof. The polynomials F and G have no common factors in k[X][Y ], so neither
do they have common factors in k(X)[Y ]. Since k(X) is a field, k(X)[Y ] is a PID,
and so (F,G) = (1) in k(X)[Y ], so there exist polynomials R,S ∈ k(X)[Y ] such
that FR+GS = 1.

Then, there exists a non-zero D ∈ k[X] such that RD,SD ∈ k[X][Y ]. (Clear
denominators.) Then, F ·RD+G ·SD = D. Then, for P ∈ V (F )∩V (G), we have
F (P ) = G(P ) = 0, so D(Px) = 0, where Px is the X-coordinate of P . Thus, there
are only finitely many choices ofX-coordinate for P . Similarly for the Y -coordinate.
Thus, we must have that V (F ) ∩ V (G) is finite. �

Corollary 3.7. If F ∈ k[X,Y ] is irreducible and V (F ) is infinite, then I(V (F )) =
(F ), and V (F ) is irreducible.

Proof. If G ∈ I(V (F )), then G(P ) = 0 for all P ∈ V (F ), so V (F )∩V (G) is infinite.
Thus, by Proposition (3.6), F and G have common factors. But F is irreducible,
so F |G implies G ∈ (F ) implies I(V (F )) ⊆ (F ). But clearly, (F ) ⊆ I(V (F )), so
indeed I(V (F )) = (F ).

Now, since F is irreducible, (F ) is prime. By Proposition (3.2), V (F ) is thus
irreducible. �

Corollary 3.8. Suppose k is infinite. Then, the irreducible algebraic subsets of
A2(k) are the following: A2(k), ∅, points, and irreducible plane curves V (F ) for
F ∈ k[X,Y ] irreducible and V (F ) infinite.

Proof. Let V ⊆ A2(k) be an irreducible algebraic set.
If V is finite, then V must clearly be a single point. If I(V ) = 0, then V = A2(k).

If I(V ) = k[X,Y ], then V = ∅.
Otherwise, I(V ) contains a non-constant polynomial F . Since I(V ) is prime,

one of the irreducible factors of F is in I(V ); so, we can assume F is irreducible.
Then, I(V ) = (F ) by Cor. (3.7), since V (F ) is infinite. Thus, since V is algebraic,
V = V (I(V )) = V (F ), as desired. �

With this classification, we can now decompose hypersurfaces in the affine plane
into their irreducible components. We assume that k is algebraically closed, which
will mean that k is infinite. This is a stronger assumption, which we will continue
to use in the paper, for reasons which will be clear in the next section.

Corollary 3.9. Assume k is algebraically closed and F ∈ k[X,Y ] is a non-constant
polynomial. Let F = Fn1

1 Fn2
2 · · ·Fnr

r be the decomposition of F into irreducible
factors. Then, V (F ) = V (F1) ∪ V (F2) ∪ · · · ∪ V (Fr) is the decomposition of V (F )
into irreducible components, and I(V (F )) = (F1F2 · · ·Fr).
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Proof. Since gcd(Fi, Fj) = 1 for all i 6= j, we have V (Fi) * V (Fj) for i 6= j.
Then, since each Fi is irreducible,

I
( r⋃
i=1

V (Fi)
)

=
⋂
i

I(V (Fi)) =
⋂
i

(Fi).

Since the Fi’s share no common factors, any polynomial divisible by each Fi is
divisible by F1F2 · · ·Fr, so

⋂
i(Fi) = (F1F2 · · ·Fr). Clearly, then,

V (F ) = V (Fn1
1 Fn2

2 · · ·Fnr
r ) = V (F1F2 · · ·Fr) =

⋃
i

V (Fi),

so I(V (F )) = (F1F2 · · ·Fr), and

V (I(V (F ))) = V (F ) = V (F1F2 · · ·Fr) = V (F1) ∪ V (F2) ∪ · · · ∪ V (Fr).

�

4. Hilbert’s Nullstellensatz

From the above discussion of algebraic sets in the plane, the following ques-
tion arises: generally, what is I(V (I)) for an ideal I ⊂ k[X1, X2, . . . , Xn]? For
irreducible polynomials F , we have that I(V (Fm)) = (F ), and for polynomials in
k[X,Y ], we have I(V (Fn1

1 Fn2
2 · · ·Fnr

r )) = (F1F2 · · ·Fr). These suggest that what
we are looking at is the radical of the original ideal I. Hilbert’s Nullstellensatz
Theorem will confirm this.

Since the scope of this paper is mostly to show the connection that algebraic
geometry makes between the two areas, we will omit the proof of the following
lemma which will be necessary to prove Hilbert’s Nullstellensatz.

Lemma 4.1. Let k be an algebraically closed field k that is a subfield of a field L.

Suppose there is a surjective ring homomorphism k[X1, X2, . . . , Xn]
φ
� L such that

φ is the identity on k. Then k = L.

We now prove what is known as the ”Weak Nullstellensatz”, which will be a
lemma for the Nullstellensatz.

Lemma 4.2 (Weak Nullstellensatz). Suppose k is an algebraically closed field. If
I ⊂ k[X1, X2, . . . , Xn] is a proper ideal, then V (I) 6= ∅.

Proof. By Zorn’s Lemma, there exists a maximal ideal J containing I, so V (J) ⊆
V (I). We will show V (J) is non-empty.

The quotient k[X1, X2, . . . , Xn] /J = L is a field, since J is maximal, and k may
be regarded as a subfield of L, since the composition k ↪→ k[X1, X2, . . . , Xn] � L
is non-trivial (1 7→ 1 ), and is thus injective.

By Lemma (4.1), k = L = k[X1, X2, . . . , Xn] /J . Then,

Xi = ai ∈ k =⇒ Xi − ai = 0 =⇒ Xi − ai ∈ J
=⇒ (X1 − a1, X2 − a2, . . . , Xn − an) ⊆ J.

But
(
X1−a1, X2−a2, . . . , Xn−an

)
is a maximal ideal of k[X1, X2, . . . , Xn]. Thus,

J = (X1− a1, X2− a2, . . . , Xn− an). But P = (a1, a2, . . . , an) ∈ V (J) ⊆ V (I). �

We now proceed with the main theorem of this section:

Theorem 4.3 (Nullstellensatz). Let k be an algebraically closed field. Let I be an
ideal of k[X1, X2, . . . , Xn]. Then, I(V (I)) = rad(I).
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Proof. (⊇): That I(V (I)) ⊇ rad(I) is easy: if Fr ∈ I, then F r(P ) =
(
F (P )

)r
= 0

for all P ∈ V (I). Since k is a field, F (P ) = 0 for all P ∈ V (I).

(⊆): We show I(V (I)) ⊆ rad(I). Suppose G ∈ I(V (F1, . . . , Fr)), with
Fi ∈ k[X1, X2, . . . , Xn]. Let J = (F1, . . . , Fr, Xn+1G − 1) ⊆ k[X1, X2, . . . , Xn+1].
Since G vanishes wherever all the Fi’s vanish, V (J) = ∅. Thus, by Lemma (4.2),
J is not a proper ideal, i.e. J = k[X1, X2, . . . , Xn+1]. In particular, 1 ∈ J . Then,
there exist polynomials Ai, B ∈ k[X1, X2, . . . , Xn+1] such that

1 =
∑
i

(
Ai(X1, . . . , Xn+1)Fi

)
+B(X1, . . . , Xn+1)(Xn+1G− 1).

Formally, setting Xn+1 = 1
G , we have

1 =
∑
i

(
Ai(X1, . . . ,

1

G
)Fi
)
+B(X1, . . . , Xn+1)(

1

G
·G−1) =

∑
i

(
Ai(X1, . . . ,

1

G
)Fi
)
.

Then, each summand has a finite degree in 1
G . Let N be the highest such degree.

Then, setting A′i = GNAi ∈ k[X1, X2, . . . , Xn] and multiplying through,

GN =
∑
i

A′iFi ∈ (F1, F2, . . . , Fn) = I

so that G ∈ rad(I). �

With this powerful theorem, we are now able to solidify the correspondence we
began to establish earlier:

Corollary 4.4. Let k be an algebraically closed field. Then, there are natural
correspondences as follows:

{radical ideals in k[X1, X2, . . . , Xn]} ←→ {algebraic sets in An(k)}
{prime ideals in k[X1, X2, . . . , Xn]} ←→ {irreducible algebraic sets in An(k)}

{maximal ideals in k[X1, X2, . . . , Xn]} ←→ {points in An(k)}
{irreducible F ∈ k[X1, X2, . . . , Xn]

up to associates} ←→ {irreducible hypersurfaces in An(k)}

We also have the following relationship between V (I) and the quotient field
modulo I:

Corollary 4.5. Let I be an ideal in k[X1, X2, . . . , Xn]. Then, V (I) is
finiteifandonlyifk [X1, X2, . . . , Xn] /I is a finite-dimensional vector space over k.
If this is true, then |V (I)| ≤ dimk (k[X1, X2, . . . , Xn] /I).

Proof. (⇐): Assume k[X1, X2, . . . , Xn] /I is finite-dimensional over k. Let
P1, . . . , Pr ∈ V (I). Choose F1, . . . , Fr ∈ k[X1, X2, . . . , Xn] such that

Fi(Pj) =

{
1 if i = j

0 if i 6= j

This is possible by Proposition (1.9). Let Fi be the residue modulo I of Fi.
Then, if

∑
i λiFi = 0 for some λi ∈ k, then

∑
i λiFi ∈ I, so for each j,

(
∑
i λiFi) (Pj) = 0. By the choice of Fi we made, λj = (

∑
i λiFi) (Pj) = 0.

Thus, all of the λjs are zero, and thus
{
F1, . . . , Fr

}
is linearly independent. But

this means r ≤ dimk (k[X1, X2, . . . , Xn] /I), so that V (I) can contain at most
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dimk (k[X1, X2, . . . , Xn] /I) many points.

(⇒): Suppose V (I) = {P1, . . . , Pr} is finite. Let each P = (ai,1, ai,2, . . . , ai,n).
Define Fj =

∏r
i=1(Xj−ai,j) for j = 1, . . . , n. Then, Fj(Pi) = 0 for each Pi ∈ V (I),

so that Fj ∈ I(V (I)) implies Fj ∈ rad(I), and thus F
Nj

j ∈ I for some Nj > 0.
Take N > maxNj .

Then, taking I-residues, FNj = 0, so for each j, XrN
j is a k-linear combina-

tion of elements in {1, Xj , . . . , X
rN−1
j }. By induction on the exponent, Xs

j is a

k-linear combination of those same elements, for each j. Thus, k[X1, X2, . . . , Xn] /I
is generated as a vector space by the set{ n∏

j=1

X
mj

j

∣∣∣∣mj < rN for each j

}
,

which is finite. �

5. Affine varieties, coordinate rings, and polynomial maps.

We will now choose to work primarily on irreducible algebraic sets in An(k),
where k is an algebraically closed field, since they are the ”smallest” algebraic sets,
as it were, and any algebraic set has a decomposition into a union of irreducible
algebraic sets. We will call these ireducible algebraic sets affine varieties, or simply
varieties, from now on. According to our correspondence in Corollary (4.4), we will
be working also primarily with prime ideals.

We wish to study the different functions on a variety V , in particular the different
functions which arise as polynomials of the coordinates X1, . . . , Xn. We have the
following definitions:

Definition 5.1. Let V ∈ An be a non-empty affine variety. Then, I(V ) is prime,
so Γ(V ) = k[X1, X2, . . . , Xn] /I(V ) is a domain. Call Γ(V ) the coordinate ring of
V .

Definition 5.2. Let V be a variety and f ∈ F(V, k), where F(V, k) is the ring of
functions from V to k. We will say that f is a polynomial function if there exists
F ∈ k[X1, X2, . . . , Xn] such that f = F on V , i.e., f(a1, . . . , an) = F (a1, . . . , an)
for all (a1, . . . , an) ∈ V .

Note that two polynomials F,G ∈ k[X1, X2, . . . , Xn] correspond to the same
f ∈ F(V, k) if and only if F (P ) = G(P ) for all P ∈ V if and only if F −G ∈ I(V ).
We may thus identify as follows:

Γ(V ) = k[X1, X2, . . . , Xn] /I(V ) ∼= {polynomial functions on V } ⊆ F(V, k)

Our correspondence from Corollary (4.4) extends to Γ(V ) because of the correspon-
dence of ideals in a ring and its quotient:

Proposition 5.3. Let V ⊆ An be a variety. Then, there are natural correspon-
dences:

{radical ideals in Γ(V )} ←→ {algebraic subsets of V }
{prime ideals in Γ(V )} ←→ {subvarieties of V }

{maximal ideals in Γ(V )} ←→ {points of V }



10 SAMUEL BLOOM

Proposition 5.4. Let V ⊆ An be a variety, and W ⊆ V a subvariety. Define
IV (W ) ⊆ Γ(V ) be the ideal corresponding to W ; that is, IV (W ) is the ideal of
polynomial functions on V that vanish on W . Then, the following are true:

(a) Every polynomial function on V restricts to a polynomial function on W .
(b) The map φ : Γ(V )→ Γ(W ) defined in part (a) is surjective homomorphism

with ker(φ) = IV (W ), so that Γ(W ) ∼= Γ(V )/IV (W ).

The above proposition is clear; mapping an element of Γ(V ) to Γ(W ) can be
thought of as disregarding the behavior of the polynomial function outside of V , so
that two polynomial functions on V are the same in Γ(W ) if they agree on W , i.e.
if their difference is in IV (W ).

Proposition 5.5. Let V ⊆ An(k) be a non-empty variety. Then, the following are
equivalent:

(i) V is a point;
(ii) Γ(V ) ∼= k;

(iii) dimk(Γ(V )) <∞.

Proof. (i) =⇒ (ii): V = {P} is a point, so any polynomial function V → k is
determined solely by its value at P . Thus, Γ(V ) = k.

(ii) =⇒ (iii): Clear.
(iii) =⇒ (i): By Corollary (4.5), if Γ(V ) is finite-dimensional over k, then V is

a finite set. But V is irreducible, so V is a point. �

We will now study maps between varieties, and the relationship of these to the
coordinate ring.

Definition 5.6. Let V ⊆ An, W ⊆ Am be varietes. A mapping ϕ : V → W is a
polynomial mapping if there are polynomials T1, . . . , Tm ∈ k[X1, X2, . . . , Xn] such
that ϕ(a1, . . . , an) = (T1(a1, . . . , an), . . . , Tm(a1, . . . , an)) for all (a1, . . . , an) ∈ V .

Note that any map ϕ : V →W induces a homomorphism ϕ̃ : F(W,k)→ F(V, k)
by ϕ̃(f) = f ◦ ϕ. If ϕ is a polynomial map, then ϕ̃ restricts to a homomorphism
Γ(W ) → Γ(V ). This is true because if f ∈ Γ(W ) is the I(W )-residue of a polyno-
mial F , then ϕ̃(f) = f ◦ ϕ is the I(V )-residue of the polynomial F (T1, . . . , Tm).

Note also that if V = An and W = An, and if T1, . . . , Tm ∈ k[X1, X2, . . . , Xn]
determine a polynomial map T : An → Am, then the Ti are uniquely determined
by T , so we write T = (T1, . . . , Tm).

We give two basic properties without proof:

Proposition 5.7. (a) If ϕ : V → W and ψ : W → Z are polynomial maps,

then ψ̃ ◦ ϕ = ϕ̃ ◦ ψ̃.
(b) The composition of two polynomial maps is also a polynomial map.

We now have the following correspondence:

Proposition 5.8. Let V ⊆ An, W ⊆ Am be varieties. There is a natural bijective
correspondence between polynomial maps ϕ : V → W and homomorphisms ϕ̃ :
Γ(W )→ Γ(V ). Any such ϕ is the restriction of a polynomial map An → Am.

Proof. We will use the following notation: capital-lettered maps will exist in a poly-
nomial ring, and the corresponding lowercase-lettered maps will be the appropriate
residue of those maps in the appropriate coordinate ring.
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Suppose α : Γ(W )→ Γ(V ) is a homomorphism. Choose Ti ∈ k[X1, X2, . . . , Xn]
such that α(xi) = ti for i = 1, . . . ,m. Then, T = (T1, . . . , Tm) : An → Am

is a polynomial map, inducing a homomorphism T̃ : Γ(Am) → Γ(An); that is,

T̃ : k[X1, X2, . . . , Xm]→ k[X1, X2, . . . , Xn].

Clearly, T̃ (I(W )) ⊆ I(V ). This is because, for each G ∈ I(W ), g = 0 implies
α(g) = 0; then, considered as polynomial functions on V , α(g) and G ◦ T agree on
V by definition of T , so that G ◦ T vanishes on V implies G ◦ T ∈ I(V ) implies
T (V ) ⊆ W . Thus, T restricts to a polynomial map ϕ : V → W , as desired. It is
not difficult to verify that ϕ̃ = α. �

Definition 5.9. A polynomial map ϕ : V → W is an isomorphism if there exists
a polynomial map ψ : W → V such that ϕ ◦ ψ = idW and ψ ◦ ϕ = idV .

By Proposition (5.8), then, V and W are isomorphic varieties if and only if their
coordinate rings are isomorphic over k.

An interesting thing to note is that we are able to define a topology on An,
known as the Zariski topology, in which a set is closed if and only if it is algebraic,
and in which a closed set is irreducible if and only if it is an affine variety. From the
basic properties in the first section of this paper, it is not hard to check that this is
a topology. Then, polynomial maps between varieties act as continuous functions
in this topology:

Proposition 5.10. If ϕ : V → W is a polynomial map, and X is an algebraic
subset of W , then ϕ−1 is an algebraic subset of V . Also, if ϕ−1 is irreducible and
X ⊂ ϕV , then X is irreducible.

Because of the scope of this paper, we will omit the proof of this proposition.
This proposition suggests a connection between algebraic geometry and topology,

which has been developed further by Fulton and other authors. What is interesting,
however, is that all of these connections exist, and that they are quite solid.
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