
SUMS OF SQUARES

JOSHUA BOSSHARDT

Abstract. This paper develops the structure of the multiplicative groups of

units and quadratic residues for prime moduli to the end of investigating the

representability of positive integers as sums of squares. It is shown that while
some numbers can be written as a sum of two squares, all can be written as a

sum of four squares.
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1. Introduction

Beginning with an orientation in modular arithmetic, this paper first examines
the collection of units for a given modulus as a multiplicative group, culminating
in a demonstration of the cyclic structure of the unit group for prime moduli.
This segues into an investigation of the group of quadratic residues, directed in
particular towards determining for which primes is -1 a quadratic residue. With
all the requisite tools developed, it ends by demonstrating which integers can be
written as a sum of two squares while concluding that all can be written as a sum
of four squares.

2. The Algebraic Structure of the Unit Group Up

We begin constructing the basics of modular arithmetic.

Definition 2.1. If n is a positive integer and a and b are integers, we say that a
and b are congruent modulo n if n divides a− b. We denote congruence modulo n
by a ≡ b mod n.

Theorem 2.2. Congruence mod n is an equivalence relation on Z.

Proof. Since n | (a−a) = 0 for all n, it follows a ≡ a. If a ≡ b, then n | (a−b), which
implies n | (b− a). Therefore b ≡ a. If a ≡ b and b ≡ c, then n | (a− b) + (b− c) =
(a− c), which means a ≡ c.

�
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The congruence relation thereby partitions Z into n equivalence classes, and we
denote by Zn the set of these equivalence classes. Denoting [a] as the congruence
class containing the integer a, we define [a] + [b] = [a+ b] and [a][b] = [ab].

Theorem 2.3. The additive and multiplicative operations on Zn are well-defined.

Proof. Let a and a′ ∈ [a] and b and b′ ∈ [b]. Then there exist integers y and z such
that a − a′ = ny and b − b′ = nz. Thus a + b − (a′ + b′) = n(y + z), and hence
a+ b ≡ a′ + b′. Also, ab− a′b′ = n(nzy + a′z + b′y), so ab ≡ a′b′. �

I will henceforth abbreviate references to equivalence classes by omitting brackets
around a representative element except when otherwise ambiguous. While it is
obvious Zn is closed under addition, subtraction, and multiplication, it remains
unclear when an element possesses a multiplicative inverse. To answer this question,
the following proof invokes Bezout’s identity, which states that if gcd(a, b) = d then
there exist integers x and y such that ax + by = d. This is easily proven from the
division algorithm.

Lemma 2.4. If gcd(a, b) = d then d is the least positive integer for which there
exist integers x and y such that ax+ by = d.

Proof. Let e = df . If gcd(a, b) = d, then there exist integers x and y such that
ax + by = d, which implies axf + bxf = df = e. Conversely, if there exist x and
y such that ax + by = c, then since d | a and d | b, it follows that d | c. Thus
ax + by = c if and only if d | c. Since d is the least positive multiple of d, the
conclusion follows. �

Theorem 2.5. An element a ∈ Zn has a multiplicative inverse if and only if
gcd(a, n) = 1.

Proof. By Lemma 2.4, there exist integers x and y such that ax + ny = 1 if and
only if gcd(a, n) = 1. Thus, ax ≡ 1 mod n, which means x ≡ a−1. �

Definition 2.6. If an element in Zn has an inverse, we call it a unit. We denote
the set of units in Zn as Un.

It follows from Theorem 2.5 that the set of units in Zn forms a group under
multiplication. Noting that the order of a group G, denoted by |G|, is the number
of elements in G, observe that when the modulus is a prime p, (Up, ·) is a group of
order p− 1, since every integer less than p other than 0 is coprime to p.

The group structure of Up gives rise to a useful identity in modular exponenti-
ation we will later refer back to called Fermat’s Little Theorem. In order to prove
Fermat’s Little Theorem we first prove Lagrange’s Theorem.

Definition 2.7. The order of an element x in a group is defined as the smallest
integer n such that xn = 1. If there is no such n, we say the order is infinity.

Lemma 2.8. Let x ∈ Up. If the order of x is n, then x0, x1, ..., xn−1 are distinct.

Proof. Suppose there exist k and r where 0 ≤ r < k < n such that xk = xr. Then
xk−r = 1. Since k − r < n, this contradicts the minimality of n. �

Definition 2.9. If G is a group with subgroup H and element x, then we say
the left coset of H generated by x is the subset {xh | h ∈ H}, denoted more
conveniently by xH.
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Theorem 2.10. (Lagrange’s Theorem) If x is an element of the group G, then the
order of x divides the order of G.

Proof. Let H be the subgroup generated by x. By Lemma 2.8, the order of this
subgroup is the same as the order of x. First we show that every element of
G belongs to a unique left coset of H. Suppose there exists an element y ∈ G
that belongs to two cosets z1H and z2H. Then there exist h1 and h2 such that
z1h1 = y = z2h2. We then have z1h1h

−1
2 = z2, implying z2H = z1H, which is a

contradiction; thus, the left coset of any element of G is unique.
Also, every element of G is in a left coset of H since the map f : G→ G defined

by f(x) = xh for a given fixed h ∈ H is easily shown to be a bijection: since h−1

exists in the group, xh = x′h implies x = x′, and since the domain and codomain
are finite and have the same cardinality, the injectivity of f implies surjectivity
and, consequently, bijectivity. Thus the left cosets of H partition G.

Now, the left cosets of H all contain |H| elements. To prove this, suppose for a
contradiction that the left coset generated by an element z contained less than |H|
elements. Then for some distinct h1 and h2 ∈ H we have zh1 = zh2, which means
zh1(h2)−1 = z. Since this is only true if h1 = h2, a contradiction results. Thus, if
we denote the number of left cosets of H by |G : H|, then |G| = |H| · |G : H|, which
proves that the order of x divides the order of G. �

Theorem 2.11. (Fermat’s Little Theorem) Let a ∈ Up. Then ap−1 ≡ 1 mod p.

Proof. Let n be the order of x ∈ Up. By Lagrange’s Theorem (Theorem 2.10), the
order of an element of any group divides the order of the group. As a result, we
have n | p− 1. Let r = p−1

n . Then we get ap−1 ≡ (an)r ≡ 1r ≡ 1 mod p. �

It follows that if the order of x in Up is equal to p − 1, then x generates the
entire group of p− 1 elements. We say that a group is cyclic if it contains such an
element. In order to understand the structure of the quadratic residues of Up, we
now work towards proving that the group Up is cyclic.

A useful arithmetic function for studying the organization of the unit group is
the Euler totient function φ(n).

Definition 2.12. The Euler function φ(n) is defined to be the number of positive
integers a less than n such that gcd(a, n) = 1.

In particular, φ(n) specifices the number of elements in the group Un. We now
work towards developing a formula for φ(n).

Theorem 2.13. Let pk be a power of a prime p. Then φ(pk) = pk − pk−1.

Proof. Since p is prime, an integer a ∈ Zpk \ {0} is coprime to pk unless p | a. Thus
every a is a unit except for multiples of p, of which there are pk−1. �

Theorem 2.14. If a and b are coprime, then φ(ab) = φ(a)φ(b).

Proof. We can list all the elements in Zab as follows:

1 2 ... a
a+ 1 a+ 2 ... 2a
... ... ... ...

(b− 1)a+ 1 (b− 1)a+ 2 ... ab
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It is clear that every column consists of integers which are congruent modulo a
and that each row provides a complete set of residues of a.

Now, consider the map f : Zb → Zb defined by f(r) = ra + c mod b. If ka +
c ≡ k′a + c mod n, then subtracting c and multiplying by a−1, which exists since
gcd(a, b) = 1, we have k ≡ k′; since the domain and codomain are finite and have
the same cardinality, the injectivity of the function implies surjectivity and thus
bijectivity.

Thus, each column contains a complete set of residues of b. Since φ(a) is the
number of columns whose congruence class is coprime to a and φ(b) is the number
of rows whose congruence class is coprime to b, the number of integers coprime to
ab is φ(a)φ(b). �

Putting these two together, we arrive at an explicit enumeration of the totient
function.

Theorem 2.15. Let n = pk11 · ... · pkmm , where p1, ..., pm are primes. Then φ(n) =∏m
i=1(pkii − p

ki−1
i ).

Proof. The proof is by induction on m. If m = 1, then by Theorem 2.13 the formula
is true. Now, suppose by the inductive hypothesis that the theorem is true for m.
Then if we take n = pk11 ...p

km+1
m+1 , by Theorem 2.14 we have

φ(n) = φ(pk11 ...p
km
m )φ(pkm+1

m+1 )

= (
m∏
i=1

pkii − p
ki−1
i )(pkm+1

m+1 − p
km
m+1)

=
m+1∏
i=1

pkii − p
ki−1
i .

�

The following corollary will be useful in the upcoming discussion on quadratic
residues.

Corollary 2.16. If n > 2, then φ(n) is even.

Proof. From Theorem 2.15, we have φ(n) =
∏m
i=1(pkii − p

ki−1
i ). It follows from the

well-definedness of modular multiplication that the parity of r is preserved under
exponentiation. Also, since n is greater than 2 and the difference between two
numbers of the same parity is even, at least one factor of φ(n) is even, rendering
the entire product even. �

Having developed the Euler function, we continue to the theorems needed to
prove that Up is cyclic.

Theorem 2.17. Let f(x) = a0 + a1x+ ...+ anx
d be a polynomial of degree d over

Zp where ai 6= 0 mod p for some i. Then f has at most d roots.

Proof. We prove this theorem by induction on d. If d = 0 then f(x) = a0 where
a0 is not divisible by p; this equation has 0 roots, satisfying the desired conclusion.
Now consider a polynomial f of degree d in which at least one coefficient is not
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divisible by p. If f has no roots, then we are done. If f has a root c, then

f(x)− f(c) =
d∑
i=1

ai(xi−ai) =
d∑
i=1

(x− c)ai(xi−1 + cxi−2 + ...+ ci−1) = (x− c)g(x),

where g(x) is a polynomial of degree d− 1. If all the coefficients of g are divisible
by p, then p | (x − c)g(x) + f(c) = f(x), which contradicts the fact that f has at
least one coefficient not divisible by p. Thus by the inductive hypothesis suppose
that g has at most d − 1 roots. Let b be a root of f . Then f(b) ≡ mod p if and
only if (b − c)g(b) ≡ 0. Since g has at most d − 1 roots, the maximum number of
roots of f is 1 + (d− 1) = d. �

Theorem 2.18. If n ≥ 1, then
∑
d|n φ(d) = n.

Proof. Let Td = {m ∈ Zn | m < n and gcd(m,n) = d}. It is clear that the sets
Td for every d dividing n partition Zn since gcd(m,n) is unique for every m. It
follows directly from Bezout’s identity that if gcd(m,n) = d, then gcd(md ,

n
d ) = 1,

which means if we let Rd = {m | m < n and gcd(md ,
n
d ) = 1}, then |Rd| = |Td|

and the sets Rd form a partition of Zn. Based on its definition, |Rd| = φ(nd ). Thus∑
d|n φ(nd ) = n. However,

∑
d|n φ(nd ) =

∑
d|n φ(d) since n

d is a factor of n, which
means

∑
d|n φ(d) = n. �

Theorem 2.19. If p is prime, then Up has φ(d) many elements of order d for each
d dividing p− 1.

Proof. Let Td = {r ∈ Up | m has order d}, where d is a factor of p−1. By Lagrange’s
Theorem (Theorem 2.10), the order of an element in Up divides p−1, and since the
order of an element is unique, the sets Td for all d dividing p−1 partition Up. Thus,∑
d|n |Td| = p − 1. From Theorem 2.18, this implies

∑
d|n(φ(d) − |Td|) = 0, which

means if each term is nonnegative, or if φ(d) ≥ |Td| for all d, then φ(d) = |Td|.
Let r ∈ Td. The set R = {ri | i ∈ Z such that 0 < i ≤ d} consists of d roots

of the polynomial f(x) = xd − 1 in Zp. Since the coefficients are coprime to p, the
polynomial has at most d roots by Theorem 2.17, which means R is a complete
set of roots of f . As a result, if m ∈ Td, then m = rk for some integer k. Let
gcd(k, d) = y. Then we have

m
d
y = r

kd
y = (rd)

k
y = 1

k
y = 1.

Since d is the order of m, it follows that y = 1. Thus every element m ∈ Td can be
written as rk for k such that 0 < k ≤ d and gcd(k, d) = 1, which means the number
of such elements cannot exceed φ(d) for any d. Hence φ(d)−|Td| is nonnegative for
every d, which implies |Td| = φ(d) for all d dividing p− 1. �

Theorem 2.20. The group Up is cyclic.

Proof. By Theorem 2.19, Up has φ(p−1) elements of order p−1. Since φ(p−1) 6= 0
and p− 1 is the order of the group, Up is cyclic. �

Example 2.21. Let p = 5. Listing the powers of 2 mod 5 we have 2,4,3, and 1.
Thus U5 is a cyclic group in which 2 is a primitive root.
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3. Determining Quadratic Residues of Up

Definition 3.1. An element a ∈ Un is a quadratic residue of n if there exists t ∈ Un
such that t2 ≡ a mod n. Denote the set of quadratic residues as Qn.

It is clear that Qn forms a group under multiplication. We now work towards
determining whether −1 ∈ Qp for a given odd prime p.

Theorem 3.2. Let n > 2 and g be a primitive root for Up. Then Qp forms a cyclic
group of order φ(n)

2 generated by g2.

Proof. Let a ∈ Up. Then there exists i ∈ Z such that a = gi. If i is even, gi = (g
i
2 )2,

which means a ∈ Qp. Note also that a = (g2)(
i
2 ) and is consequently a multiple

of g2. If a ∈ Qp, then there exists s ∈ Up such that a = s2, where s = gj for
some integer j. This means a = s2 = (gj)2 = (g2)j . Thus Qp is the subgroup of
Up generated by g2. Since φ(n) is even from Corollary 2.16, we have (g2)

φ(n)
2 ≡ 1,

which means g2 generates a subgroup of order φ(n)
2 . �

It quickly follows from Theorem 3.2 that if a = gi for a primitive root g, then
a ∈ Qp if and only if i ≡ 0 mod 2. We now develop a general formula, the Euler
criterion, for determining whether an element is in Qp.

Theorem 3.3. If p is an odd prime and a is in Up, then a ∈ Qp if and only if
a
p−1
2 ≡ 1 mod p.

Proof. Let g be a primitive root of Up. First consider g
p−1
2 . Since (g

p−1
2 )2 ≡ 1

by Fermat’s Little Theorem (Theorem 2.11), we have p | (g
p−1
2 − 1)(g

p−1
2 + 1),

which implies one of the factors must be a multiple of p; this implies g
p−1
2 = ±1.

However, if g
p−1
2 ≡ 1, this would contradict the fact that the order of g is p − 1.

Thus g
p−1
2 ≡ −1 mod p Let a = gi. Then we have

a
p−1
2 ≡ (gi)

p−1
2 ≡ (g

p−1
2 )i ≡ (−1)i.

Since a ∈ Qp if and only if i ≡ 0 mod 2, it follows that a ∈ Qp if and only if
a
p−1
2 ≡ 1 mod p. �

This brings us to the desired result.

Theorem 3.4. −1 ∈ Qp if and only if p ≡ 1 mod 4.

Proof. (−1)
p−1
2 mod p = (−1)

p−1
2 . From Theorem 3.3, −1 ∈ Qp if and only if p−1

2
is even, which is true if and only if p ≡ 1 mod 4. �

Having proven for which primes −1 is a quadratic residue, we have everything
needed to determine which numbers can be written as a sum of two squares.

4. Sums of Two Squares

Definition 4.1. For each integer k ≥ 1, denote Sk = {n | n = x2
1 + ... + x2

k for
some x1, ..., xk ∈ Z}. This is the set of sums of k squares.

Lemma 4.2. S2 is closed under multiplication.
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Proof. Let a1,b1,a2,b2 ∈ Z. The theorem follows immediately from the identity:

(a2
1 + b21)(a2

2 + b22) = (a1a2 + b1b2)2 + (a1b2 − a2b1)2.

�

Theorem 4.3. Each prime p ≡ 1 mod 4 is a sum of two squares.

Proof. Since p ≡ 1 mod 4, we have −1 ∈ Qp. Thus there exists x ∈ Up such that
x2 ≡ −1. It follows that 1 + x2 = mp, with m ∈ Z. Since we can choose x such
that x ≤ p− 1, we have

1 + x2 ≤ 1 + (p− 1)2 ≤ p2 − 2p+ 2 < p2.

This means 0 < r < p. Now, consider the set R = {r ∈ Z | rp ∈ S2}. By the
Well-Ordering principle R has a least element t, where

tp = a2
1 + b21

with a1,b1 ∈ Z. If t = 1, the theorem is already true, so assume t > 1. Choose
a2,b2 ∈ Z such that a2 ≡ a1 mod t and b2 ≡ b1 mod t, where a2 and b2 are the
least absolute residues of a1 and b1 modulo t. Then there exists s such that

st = a2
2 + b22.

Given that a2 and b2 are the least absolute residues of t, we have

st = a2
2 + b22 ≤ 2

(
t

2

)2

=
t2

2
< t2,

which implies s < t. We also know s 6= 0 since if s = 0 then a1, b1 ≡ 0 mod t,
which means t2 | a2

1 + b21. Since a2
1 + b21 = tp, we have t | p, contradicting the fact

that p is prime and that 0 < t < p. By Lemma 4.2,

pst2 = (a2
1 + b21)(a2

2 + b22) = (a1a2 + b1b2)2 + (a1b2 − a2b1)2.

If we can show that a1a2 + b1b2 and a1b2 − a2b1 are divisible by t, then

ps =
(
a1a2 + b1b2

t

)2

+
(
a1b2 − a2b1

t

)2

.

Examining the two terms, we have the following:

a1a2 + b1b2 ≡ a2
1 + b21 ≡ 0 mod t

a1b2 − a2b1 ≡ a1b1 − a1b1 ≡ 0 mod t.

Both terms are divisible by t and hence form a sum of two squares to a multiple
of p less than t, contradicting the fact that t is the minimal element of R. Thus,
t = 1, which completes the proof. �

We can generalize this result to arbitrary n ∈ N.

Theorem 4.4. Let p1, ..., pk be primes congruent to 1 modulo 4 and q1, ..., qr be
primes congruent to 3 modulo 4. A positive integer n is a sum of squares if and
only if n is of the form n = 2e(pe11 · ... · p

ek
k )((q21)f1 · ... · (q2r)fr ), where ei, fi ∈ Z.
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Proof. Since 2 is a sum of two squares, it is clear from the closure of S2 (Lemma
4.2) that any n of the form n = 2e(pe11 · ... · p

ek
k )((q21)f1 · ... · (q2r)fr is a sum of two

squares.
Now suppose, for a contradiction, that there exists n ∈ S2 divisible by q2f+1,

where 2f + 1 ≥ 0 is the greatest integer power of q which divides n. Since n ∈ S2,
there exist x and y such that n = x2 + y2. Since q2f+1 | n, there exists r ∈ Z such
that x2 + y2 = qfr. Now, let gcd(x, y) = d. Let e be the greatest power of q which
divides d so that there exists k ∈ Z such that qek = d, which means q2ek2 = d2.
Then we have q2f+1r

d2 = q2(f−e)+1 r
k2 =

(
x
d

)2+
(
y
d

)2. Since 2(f−e)+1 ≡ 1 mod 2 6= 0
we have q |

(
x
d

)2 +
(
y
d

)2, which implies
(
x
d

)2 ≡ − (yd)2 mod q. If either x
d or y

d is
congruent to 0 modulo q, then so is the other. Since gcd(xd ,

y
d ) = 1, neither is

congruent to 0. Consequently, x
d ,

y
d ∈ Uq, so there exists

(
y
d

)−1 ∈ Uq. Thus(
x
d

)2 ≡ − (yd)2 implies (xd
(
y
d

)−1)2 ≡ −1 mod q, which by Theorem 3.4 contradicts
the fact that q is congruent to 3 modulo 4. �

Example 4.5. Consider n = 30 andm = 490. It is easy to check that n is not a sum
of two squares. The prime factorization of n gives n = 2 · 3 · 5, where 3 ≡ 3 mod 4
and is raised to an odd power. However, the prime factorization of m is m = 2·5·72,
where every prime congruent to 3 modulo 4 is raised to an even power, so we would
expect to find that m is a sum of two squares. Lemma 4.2 provides the method for
finding two integers whose sum of squares sums to 490. We first note 2 = 12 + 12

and 5 = 12 + 22, so Lemma 4.2 gives 2 · 5 = (1 + 1)(1 + 22) = 32 + 12. Applying
the lemma again we have (2 · 5) · 72 = (32 + 1)(72 + 0) = 212 + 72 = 490.

5. Sums of Four Squares

The strategy of the proof for showing that any integer is a sum of four squares
closely mirrors the earlier proof regarding sums of two squares. Hence we begin
with a similar lemma.

Lemma 5.1. S4 is closed under multiplication.

Proof. Let a1,a2,b1,b2,c1,c2,d1,d2 ∈ Z. Then the following identity proves the the-
orem:

(a2
1 + b21 + c21 + d2

1)(a2
2 + b22 + c22 + d2

2) =(a1a2 + b1b2 + c1c2 + d1d2)2+

(a1b2 − b1a2 + c1d2 − c2d1)2+

(a1c2 + b1d2 − a2c1 − b2d1)2+

(a1d2 − d1a2 + c1b2 − c2b1)2.

�

Since 2 and any prime p ≡ 1 mod 4 is a sum of two non-zero squares and thus
a sum of four squares, to prove that any positive integer n is a sum of four squares
it suffices to show, by Lemma 5.1, that any prime q congruent to 3 modulo 4 is a
sum of four squares.

Theorem 5.2. Any prime q ≡ 3 mod 4 is a sum of four squares.

Proof. First we need to show that a multiple of q is a sum of four squares. To this
end, consider the following sets:

R = {z ∈ Zq | z ≡ k2, k ∈ Uq}
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S = {y ∈ Zq | y ≡ −1− r2, r ∈ Uq}.

From Theorem 3.2, Qq contains q−1
2 elements, which means the total number of

squares in Zq is q+1
2 , the cardinality of the set Qq ∪ {0}. Since q+1

2 >
|Zq|
2 , we have

R∩S 6= ∅, which means there exists an element z ∈ Qq such that z ≡ k2 ≡ −1−r2.
This implies k2 + r2 + 1 ≡ 0 mod q, which means that a multiple of any prime is
a sum of four squares. To generalize, we can say there exist a1,b1,c1,d1 ∈ Z such
that a2

1 + a2
2 + a2

3 + a2
4 = mp, where m ∈ Z. Choosing the least absolute residues

for a1,b1,c1,d1 mod p, we have

mp = a2
1 + b21 + c21 + d2

1 ≤ 4
(
p− 1

2

)2

≤ (p− 1)2 < p2,

which means 0 < m < p. Consider the set R = {m ∈ Zq | mp ∈ S4}. By the
Well-Ordering principle R has a least element t, where

tp = a2
1 + b1 + c21 + d2

1

with a1,b1,c1,d1 ∈ Z. If t = 1, the theorem is already true, so assume t > 1.
Choose a2,b2,c2,d2 ∈ Z such that a2 ≡ a1 mod t and b2 ≡ b1 mod t, c2 ≡ c1 mod t,
and d2 ≡ d1 mod t, where a2, b2,c2,d2 are the least absolute residues of a1,b1,c1,d1

modulo t. Then there exists s such that

st = a2
2 + b22 + c22 + d2

2.

If t is odd, then since a2, b2, c2, and d2 are less than t
2 , we have st = a2

2+b22+c22+d2
2 <

4
(
t
2

)2 = t2, which implies s < t. If t is even, however, then any given least absolute
residue is less than or equal to t

2 , which only implies s ≤ t. However, suppose t
is even. Then, since parity is preserved under exponentiation, out of a2, b2,c2,
and d2 there must be two pairs of numbers with the same parity. Without loss of
generality, assume a2 and b2 have the same parity and c2 and d2 have the same
parity. Then(
a2 + b2

2

)2

+
(
a2 − b2

2

)2

+
(
c2 + d2

2

)2

+
(
c2 − d2

2

)2

=
(
a2
2 + b22 + c22 + d2

2

2

)2

=
tp

2
,

contradicting the minimality of t. Thus, s < t. Now, if s = 0 then, by a similar
argument as Theorem 4.3, we would have t | p, contradicting the fact that p is
prime and that 0 < t < p. Consider

t2sp = (a2
2 + b22 + c22 + d2

2)(a2
1 + b21 + c21 + d2

1)

= (a1a2 + b1b2 + c1c2 + d1d2)2 + (a1b2 − b1a2 + c1d2 − c2d1)2+

(a1c2 + b1d2 − a2c1 − b2d1)2 + (a1d2 − d1a2 + c1b2 − c2b1)2.

Thus, if we show t divides each squared integer on the right hand side, then

sp =
(
a1a2 + b1b2 + c1c2 + d1d2

t

)2

+
(
a1b2 − b1a2 + c1d2 − c2d1

t

)2

+(
a1c2 + b1d2 − a2c1 − b2d1

t

)2

+
(
a1d2 − d1a2 + c1b2 − c2b1

t

)2

.
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Analyzing each equation for its divisibility by t, we have:

a1a2 + b1b2 + c1c2 + d1d2 ≡ a2
1 + b21 + c21 + d2

1 ≡ 0 mod t

a1b2 − b1a2 + c1d2 − c2d1 ≡ a1b1 − a1b1 + c1d1 − c1d1 ≡ 0 mod t

a1c2 + b1d2 − a2c1 − b2d1 ≡ a1c1 + b1d1 − a1c1 − b1d1 ≡ 0 mod t

a1d2 − d1a2 + c1b2 − c2b1 ≡ a1d1 − d1a1 + c1b1 − c1b1 ≡ 0 mod t.

Since s < t, this contradicts the minimality of t; therefore t = 1. Hence, any
positive integer is representable as a sum of four squares. �

Example 5.3. While in Example 4.5 we showed that 30 is not representable as a
sum of two squares, we now show that it is representable as a sum of four squares.
Recall that the prime factorization of 30 is 30 = 2 ·3 ·5 = (1 + 1 + 0 + 0)(1 + 1 + 1 +
0)(22+1+0+0). Using Lemma 5.1, (1+1+0+0)(1+1+1+0) = 22+0+12+(−1)2.
Using the lemma again, (22 + 1 + 1 + 0)(22 + 1 + 0 + 0) = 52 + 0 + 22 + 12 = 30.
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