
ISOMETRIES OF THE HYPERBOLIC PLANE

ALBERT CHANG

Abstract. In this paper, I will explore basic properties of the group PSL(2,R).
These include the relationship between isometries of H2, Möbius transforma-
tions, and matrix multiplication. In addition, this paper will explain a method
of characterizing the aforementioned transformations by the trace of their ma-
trices through looking at the number of �xed points of a transformation.
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1. Introduction

A main focus of this paper will be the projective special linear group PSL(2,R).
The special linear group SL(2,R), the group of 2× 2 matrices with determinant 1
under multiplication, is associated with the set of transformations of the complex
upper half-plane z 7−→ az+b

cz+d , called Möbius transformations, where all the variables

except z are on the real line and ad − bc = 1. The group PSL(2,R) is SL(2,R)

quotiented out by the subgroup

{[
1 0
0 1

]
,

[
−1 0
0 −1

]}
, so that

[
a b
c d

]
and[

−a −b
−c −d

]
are considered equivalent. Not only do these types of transforma-

tions preserve hyperbolic lengths in the upper half-plane but also all orientation
preserving isometries in the upper-half plane take this form. Furthermore, these
transformations can be represented by matrices, and the traces of these matrices
can be used to characterize them. As will be shown in the paper, the absolute
value of the traces will either be less than, equal to, or greater than 2, and the cor-
responding transformations will be denoted as elliptic, parabolic, and hyperbolic,
respectively.
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2. Background

We will start out by giving by some basic de�nitions and properties relating to
hyperbolic geometry.

De�nition 2.1. A Möbius transformation is an invertible map on C of the form
z 7−→ az+b

cz+d . Although the coe�cients a, b, c, d can generally be complex numbers,
here we will only be concerned with real coe�cients such that ad− bc = 1.

De�nition 2.2. The upper half-plane is the set of complex numbers with positive
imaginary parts. It is denoted as H2 = {x+ iy | y > 0; x, y ∈ R}.
De�nition 2.3. The hyperbolic distance on the upper half-plane, d(z1, z2), where

zj = xj + iyj , is given by the in�mum of

ˆ t2

t1

√
x′(t)2+y′(t)2

y dt taken over all paths

γ(t) with γ(tj) = zj = x(tj) + iy(tj).

A computation shows that this implies that the geodesic between points (x0, y1)
and (x0, y2) with y1 < y2 on the vertical line x = x0 has length ln(

y2
y1
). The geodesic

between any two points not on a vertical line is a circular arc where the center is
on the real axis. There are no other types of geodesics.

De�nition 2.4. A transformation A : H2 → H2 is an isometry if for any points
P,Q ∈ H2, the hyperbolic distance d(P,Q) = d(A(P ), A(Q)).

Now we will show that Möbius transformations are isometries of the hyperbolic
plane.

Theorem 2.5. Möbius transformations with coe�cients in R preserve hyperbolic

lengths.

Proof. Given a point z ∈ H2, let the Möbius transformation A(z) be denoted as

A(z) = w = az+b
cz+d . We need to show that |dw|

Im(w)
= |dz|

Im(z)
, where z = x + iy

and |dz| =
√
dx2 + dy2, with the analogous de�nition for |dw|. This comes from

the de�nition of hyperbolic distance. The equality is equivalent to showing that
|dw|
|dz| =

Im(w)

Im(z)
. Starting with the left-hand side, we get∣∣∣∣ (cz + d)a− (az + b)c

(cz + d)2

∣∣∣∣ = ∣∣∣∣ ad− bc(cz + d)2

∣∣∣∣
=

1

|cz + d|2
.

We also know that

w =
az + b

cz + d
· cz + d

cz + d

=
(az + b)(cz + d)

|cz + d|2

=
ac|z|2 + bd+ adz + bcz

|cz + d|2

so Im(w) = y
|cz+d|2 . Note that we use the fact that all coe�cients are in R to �nd

Im(w). Therefore, the right-hand side is Im(w)

Im(z)
= 1
|cz+d|2 , which is equal to the

left-hand side. �
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Now we will see that there exist Möbius transformations that map a given ge-
odesic to another given geodesic and a point on that geodesic to another given
point.

Theorem 2.6. Given geodesics in the hyperbolic plane m1,m2 and points p1, p2
on those geosdesics, there exists a Möbius transformation A such that A(m1) = m2

and A(p1) = p2.

Proof. We start with the special case where m1 is a circular arc with endpoints
x1, x2 in R, and m2 is the imaginary axis. There exists a transformation A = az+b

cz+d

where ax1 + b = 0 and cx2 + d = 0 by setting b = −ax1 and d = −cx2. This
means that A(x1) = 0 and A(x2) = ∞ so the endpoints of m1 are mapped onto
the endpoints of m2. We know that geodesics are taken to geodesics because of
the existence of a unique geodesic between any two points in H2 ∪R∪ {∞}, which
comes from the fact that geodesics in the hyperbolic plane must be either straight
lines or circular arcs. Since the transformation takes the endpoints of one geodesic
to the endpoints of the other and A preserves lengths, it must map the unique
distance-minimizing curvem1 between x1 and x2 to the unique distance-minimizing
curve between 0 and ∞. Mapping m2 to m1 can be done through inverting the
transformation A. The argument where m1 is a vertical line is similar.

We now know that A(p1) = q for some point p1 in m1 and some point q in m2.
However, it is possible to take q to any desired point p2 in m2 through the trans-

formation A1(q) =
λ1/2q+0
0q+λ−1/2 = λq for some λ ∈ R. These �ndings can be further

generalized to arbitrary m1,m2 and p1, p2. Both geodesics can be mapped to the
positive imaginary axis by the above argument. Denoting these as transformations
B and C, we can take one geodesic to another by the composition C−1 ◦B, which
takes one geodesic �rst to the positive imaginary axis and then to the other geo-
desic. An analogous argument shows that a given point p1 can be taken to a given
point p2. As shown above, there exist transformations taking both points to any
desired point on the positive imaginary axis, which we will denote as r1 and r2.
Therefore, it is possible to take p1 to r1, multiply it by some positive scalar to get
to r2, and take the inverse map to get from r2 to p2. �

This implies the following:

Corollary 2.7. Given points {z1, z2} and {w1, w2} such that d (z1, z2) = d (w1, w2)
on the hyperbolic plane, there exists a Möbius transformation taking one set of points

to the other.

Proof. Any points w1, w2 lie on a geodesic which we will denote asm, so by theorem
2.6 we can �nd a Mobius transformation taking z1 to w1 and the geodesic between
z1 and z2 to m. From theorem 2.5, transformations preserve hyperbolic lengths, so
z2 must map to either w2 or the point on m that is the same distance from w1 in
the opposite direction. In the latter case, composing with an appropriate rotation
about w1 will take the image of z2 to w2, giving the transformation we want. �

3. Orientation-preserving isometries of the upper half-plane

We will now see how orientation-preserving isometries in H2 are related to
PSL(2,R). First, we will de�ne orientation-preserving isometry.
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De�nition 3.1. An orientation-preserving isometry is an isometry where, given
three noncollinear points a, b, c and their transformations A,B,C, the angles abc
and ABC will be equal and have the same sign.

Lemma 3.2. Matrix multiplication in SL(2,R) is equivalent to the composition of

Möbius transformations.

Proof. Let f(z) = az+b
cz+d and g(z) = Az+B

Cz+D , with all coe�cients in R. Then

g(f(z)) =
A(f(z)) +B

C(f(z)) +D

=
Aaz +Ab+Bcz +Bd

cz + d
· cz + d

Caz + Cb+Dcz +Dd

=
(Aa+Bc)z + (Ab+Bd)

(Ca+Dc)z + (Cb+Dd)
.

By matrix multiplication,[
A B
C D

] [
a b
c d

]
=

[
Aa+Bc Ab+Bd
Ca+Dc Cb+Dd

]
.

The coe�cents of the above composition are the same as the product of matrix
multiplication. �

Lemma 3.3. For z1, z2 ∈ H2, sinh( 12 · d(z1, z2)) =
|z1−z2|

2(Imz1)1/2(Imz2)1/2
.

Proof. Under Möbius transformations, the left hand side of the equation is invariant
since distances are preserved, and the right hand side can be seen to be invariant
through a computation. Therefore, if the equation holds for two points on a vertical
line, then it will hold for any two points in H2 since transformations preserve
distances and take geodesics to geodesics, which we know from theorems 2.5 and
2.6. Because a vertical line is a geodesic, we can apply a transformation to take
the geodesic between any two points to a vertical geodesic. So, without loss of
generality, let z1 = x+ iλy and z2 = x+ iy, where λ ≥ 1, λ ∈ R. Starting with the
left hand side,

sinh

(
1

2
· d(z1, z2)

)
= sinh

(
ln(λ)

2

)
=
eln
√
λ − e− ln

√
λ

2

=

√
λ− 1√

λ

2

=
λ− 1

2
√
λ
.

Now looking at the right hand side,
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| z1 − z2 |
2(Imz1)1/2(Imz2)1/2

=
| (λy − y)i |

2
√
λy2

=
| (λy − y)i |

2y
√
λ

=
| (λ− 1)i |

2
√
λ

=
(λ− 1)

2
√
λ
.

Since λ ≥ 1, both the right and the left hand side are equal. In the second line
above, note that the y can be pulled out of the absolute value sign since this is in
H2 and the y would always be positive. �

Theorem 3.4. All orientation-preserving isometries of H2 are of the form z 7→
az+b
cz+d , where z ∈ H2 and

[
a b
c d

]
∈ SL(2,R).

Proof. Let T be an orientation preserving isometry of H2.
Consider the point j in H2 and k ∈ R.
Consider A ∈ SL(2,R) such that A ◦ T (j) = j and A ◦ T (kj) = kj. Such an

A exists from theorem 2.6 since a given point can be taken to another given point
and here we are taking T (j) and T (kj) to j and kj, respectively. A ◦ T thus �xes
two points on the imaginary axis. Since an isometry that �xes any two points
on a geodesic �xes the whole geodesic, and the imaginary axis is a geodesic, the
imaginary axis is �xed by A ◦ T . Therefore, for any z = x + iy and any t ∈ R,
d(z, it) = d(A ◦ T (z), it), so sinh( 12 · d(z, it)) = sinh( 12 · d(A ◦ T (z), it)). Denote
A ◦ T (z) as u+ iv. Applying lemma 3.3 results in

| z − it |2

4yt
=
| u+ iv − it |2

4vt
.

Therefore,

| z − it |2 v =| u+ iv − it |2 y
so

(x2 + (y − t)2)v = (u2 + (v − t)2)y.
Dividing both sides by t2 and letting t → ∞ gives v = y. Therefore, x2 = u2 so
x = ±u. However, since we are only considering orientation preserving isometries,
x = u because otherwise the map would be z 7−→ −z, a re�ection over the imaginary
axis that reverses the sign of the angle and thus the orientation. As a result, A ◦ T
is the identity so T = A−1 and therefore T ∈ SL(2,R) by the properties of groups.
This implies that every orientation preserving isometry is of the form az+b

cz+d . �

Theorem 3.5. Two matrices in SL(2,R) induce the same isometry if and only if

their matrices di�er by a factor of ±1.

Proof. Assume two matrices

[
A B
C D

]
and

[
a b
c d

]
representing Möbius trans-

formations di�er by a factor of ±1. In other words,

[
A B
C D

]
= λ

[
a b
c d

]
where
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λ = ±1. If λ = 1, then A = a, B = b, C = c ,D = d, implying that for all complex

numbers z, Az+bCz+d = az+b
cz+d . If λ = −1, then λ

[
a b
c d

]
represents the transformation

Az +B

Cz +D
=
−az − b
−cz − d

=
(−1)(az + b)

(−1)(cz + d)

=
az + b

cz + d
.

Therefore, these two isometries are the same.
Now assume that two isometries are the same. Therefore, Az+B

Cz+D = az+b
cz+d for

all z ∈ H2. This can also be written as (Az + B)(cz + d) = (az + b)(Cz + D).
Multiplying this out results in

Acz2 +Adz +Bcz +Bd = aCz2 + aDz + bCz + bD.

Since these polynomials are equal, monomials of the same degree have the same
coe�cients. This implies that Ac = aC, or A

a = C
c , which we denote λ1, Bd = bD

so B
b = D

d , which we denote λ2, and Ad+Bc = aD + bC.
Therefore,

λ1ad+ λ2bc = aD + bC = λ2ad+ λ1bc.

This can be rewritten as

λ1(ad− bc) = λ2(ad− bc)

so λ1 = λ2 since ad− bc = 1 in SL(2,Z). Therefore, there is a λ such that

A

a
=
C

c
=
B

b
=
D

d
= λ.

This can be represented by the matrix

[
A B
C D

]
= λ

[
a b
c d

]
. Since the deter-

minant of the right hand side, λ2 · (ad − bc), equals 1 and ad − bc = 1, λ2 = 1 so
λ = ±1. �

From the de�nition of PSL(2,R) and theorems 3.4 and 3.5, it follows that
PSL(2,R) is isomorphic to the group of orientation-preserving isometries of H2.

4. Characterization of isometries

Now, we will see how Möbius transformations can be characterized by the trace of
their matrices. One method is through the Jordan normal form of a real 2 by 2 ma-

trix, which implies that all matrices of SL(2,R) are conjugate to
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
for θ ∈ [0, 2π),

[
a 0
0 b

]
where a, b ∈ R, or

[
a b
0 a

]
for a, b ∈ R [1]. Since the

determinants of these matrices must equal 1, we can see that the absolute value
of the traces of the matrices will be respectively less than 2, called elliptic, greater
than 2, called hyperbolic, and equal to 2, called parabolic if it is not the identity
transformation. However, another way to reach this same conclusion is through the
use of �xed points.
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Lemma 4.1. Any Möbius transformation A ∈ PSL(2,R) has at least one �xed

point in C ∪ {∞}.

Proof. For a �xed point z ∈ C ∪ {∞}, the transformation can be expressed as
A(z) = az+b

cz+d = z. This can be rewritten as

az + b = cz2 + dz

so

cz2 + (d− a)z − b = 0.

From the quadratic formula, the roots of this expression are

−(d− a)±
√

(d− a)2 + 4bc

2c

if c 6= 0. If the determinant (d − a)2 − 4bc is greater than 0, there will be 2 real
�xed points, if it is less than 0 then there will be 2 complex �xed points, and if it
equals 0, there will be 1 real �xed point. In the case that c = 0, then let az+b

d = z

so (a− d) · z + b = 0. If a 6= d, then −b
a−d will be a �xed point, as will ∞. If a = d,

then ∞ will be the only �xed point. �

Lemma 4.2. If a Möbius transformation �xes three or more points, then it is the

identity transformation.

Proof. From the previous lemma, we see that the �xed points of a Möbius transfor-
mation can be expressed as the roots of a quadratic equation. If there are three or
more roots of the quadratic, then this implies that all coe�cients of the quadratic
are 0. In particular, c = b = 0 and d− a = 0 so d = a. The Möbius transformation
then becomes az

d = z, which is the identity transformation. �

Lemma 4.3. It is possible to move any point on R ∪ {∞} to 0 or ∞ and it is

possible to move any point on H2 to the point i with Möbius transformations.

Proof. Given a point p on R ∪ {∞}, we want to �nd a Möbius transformation A
such that A(p) = wp+x

yp+z = ∞ where all the variables are real numbers. This is

true only if the denominator, yp + z, equals 0. Therefore, z = −yp. Let y = 1

which implies that z = −p. This can be represented by the matrix

[
w x
1 −p

]
.

Since the determinant of this matrix, −wp − x, must equal 1, we can let w = 0,

so that x = −1. This Möbius transformation, represented by

[
0 −1
1 −p

]
, takes

p to ∞. Using similar steps, you can take a point p on R ∪ {∞} to 0 through a

transformation such as

[
1 −p
0 1

]
or a point c = a+ bi in C ∪ {∞} to the point i

through a transformation such as

[
1 −a
0 b

]
. �

Given a Möbius transformation A with one or two �xed points in H2 ∪R∪{∞},
it follows from the preceding lemma that we may assume these points are {∞},
{0,∞}, or {i} by conjugating A. Note that matrices that conjugate to one another
retain the same trace.
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Theorem 4.4. If the Möbius transformation A ∈ PSL(2,R) has one �xed point

in R ∪ {∞}, then the absolute value of the trace of its matrix is 2.

Proof. First, note that if there is one �xed point, it must be the case that the �xed
point is on R ∪ {∞}. Otherwise, in C, the conjugate of the �xed point would also

be a root of A(z) = az+b
cz+d = z because the roots take the form

−(d−a)±
√

(d−a)2+4bc

2c .
From the preceding lemma, without loss of generality, let the �xed point be the
point at ∞. Since A(z) = az+b

cz+d = z for z = ∞, this implies that c = 0, because

otherwise A(z) = a
c 6= ∞, since a, b, c, d ∈ R. The equation az+b

d = z can be
rewritten as

dz = az + b,

which implies

z =
b

d− a
.

Since z = ∞, d = a. This transformation can be represented by the matrix[
a b
0 a

]
, where a2 = 1, so a = ±1. Therefore, |tr(A)| = 2. �

Theorem 4.5. If the Möbius transformation A ∈ PSL(2,R) has two �xed points

on R ∪ {∞}, then |tr(A)| > 2.

Proof. Without loss of generality, let the two �xed points be ∞ and 0. From the
preceding theorem, having a �xed point at in�nity implies that for a transformation
A(z) = az+b

cz+d = z, c = 0. Now consider a �xed point at 0. This implies

A(z) =
az + b

cz + d
=
b

d
= 0,

which implies b = 0. This transformation can therefore be represented as

[
a 0
0 d

]
where

ad = 1, so d = a−1. The matrix can then be rewritten as

[
a 0
0 a−1

]
. Therefore,

|tr(A)| > 2 except if a = ±1, in which case this becomes the identity map. We can
ignore this case when considering only two �xed points. �

Note that it is impossible to �x exactly two points in H2 since given one �xed
point in H2, the other �xed point in C would be its conjugate, which is not in H2.

Theorem 4.6. If the Möbius transformation A ∈ PSL(2,R) has one �xed point

in H2, then |tr(A)| < 2.

Proof. Without loss of generality, let the point i be the �xed point. Then

A(i) =
ai+ b

ci+ d
= i.

This can be written as

ai+ b = ci2 + di = di− c,
which implies

b+ c+ (a− d)i = 0.

This means that a − d = 0 or a = d, and b + c = 0 or b = −c. Since ad − bc =
a2+ b2 = 1, a = cos(θ) and b = sin(θ) for some θ ∈ [0, 2π). This can be represented
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by the matrix

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. Therefore, |tr(A)| < 2 except if θ = kπ for

k ∈ Z. In that case, the matrix becomes the identity transformation in PSL(2,R),
which we can ignore here for the same reason given in the previous proof. �

5. Concluding Remarks

We have now seen the connections between Möbius transformations, isometries
of the hyperbolic plane, and PSL(2,R). Additionally, by equating the group oper-
ation of matrix multiplication with the group operation of composition of Möbius
transformations, we have developed a way to characterize such transformation by
the traces of their matrices.
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