
THE REPRESENTATIONS OF THE SYMMETRIC GROUP

JE-OK CHOI

Abstract. Young tableau is a combinatorial object which provides a conve-

nient way to describe the group representations of the symmetric group, Sn.

In this paper, we prove several facts about the symmetric group, group repre-
sentations, and Young tableaux. We then present the construction of Specht

modules which are irreducible representations of Sn.

Contents

1. The Symmetric Group. Sn

Definitions 1.1. The symmetric group, SΩ, is a group of all bijections from Ω to
itself under function composition. The elements π ∈ SΩ are called permutations.
In particular, for Ω = {1, 2, 3, . . . , n}, SΩ is the symmetric group of degree n,
denoted by Sn.

Example 1.2. σ ∈ S7 given by
i 1 2 3 4 5 6 7
σ(i) 2 5 6 4 7 3 1

is a permutation.

Definition 1.3. A cycle is a string of integers which represents the element of
Sn that cyclically permutes these integers. The cycle (a1 a2 a3 . . . am) is the
permutation which sends ai to ai+1 for 1 ≤ i ≤ m− 1 and sends am to a1.

Proposition 1.4. Every permutation in Sn can be written as a product of disjoint
cycles.

Proof. Consider π ∈ Sn. Given i ∈ {1, 2.3, . . . , n}, the elements of the sequence
i, π(i), π2(i), π3(i), . . . cannot all be distinct. Taking the first power p such that
πp(i) = i, we have the cycle (i π(i) π2(i) . . . πp−1(i)). Iterate this process with an
element that is not in any of the previously generated cycles until each element of
{1, 2, 3, ..., n} belongs to exactly one of the cycles generated. Then, π is the product
of the generated cycles. �

Definition 1.5. If π ∈ Sn is the product of disjoint cycles of lengths n1, n2, . . . , nr
such that n1 ≤ n2 ≤ . . . ≤ nr, then the integers n1, n2, . . . , nr are called the cycle
type of π.

For instance, σ in Example 1.2. can be expressed as σ = (4)(3 6)(1 2 5 7) and its
cycle type is 1, 2, 4. A 1-cycle of a permutation, such as (4) of σ, is called a fixed
point and usually omitted from the cycle notation. Another way to represent the
cycle type is as a partition:
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Definition 1.6. A partition of n is a sequence λ = (λ1, λ2, . . . , λl) where the λi
are weakly decreasing and

∑l
i=1 λi = n. If λ = (λ1, λ2, . . . , λl) is a partition of n,

we write λ ` n.

σ corresponds to the partition λ = (4, 2, 1).

Definitions 1.7. In any group G, elements g and h are conjugates if g = khk−1

for some k ∈ G. The set of all elements conjugate to a given g is called the
conjugacy class of g and is denoted by Kg.

Proposition 1.8. Conjugacy is an equivalence relation. Thus, the distinct conju-
gacy classes partition G.

Proof. Let a ∼ b if a and b are conjugates. Since a = εaε−1 where ε is the identity
element of G, a ∼ a for all a ∈ G, and conjugacy is reflexive. Suppose a ∼ b. Then,
a = kbk−1 ⇔ b = (k−1)a(k−1)−1. Hence, b ∼ a, and conjugacy is symmetric. If
a ∼ b and b ∼ c, a = kbk−1 = k(lcl−1)k−1 = (kl)c(kl)−1 for some k, l ∈ G, and
a ∼ c. Thus, conjugacy is transitive. �

Proposition 1.9. In Sn, two permutations are in the same conjugacy class if
and only if they have the same cycle type. Thus, there is a natural one-to-one
correspondence between partitions of n and conjugacy classes of Sn.

Proof. Consider π = (a1 a2 . . . al) · · · (am am+1 . . . an) ∈ Sn. For σ ∈ Sn,

σπσ−1 = (σ(a1) σ(a2) . . . σ(al)) · · · (σ(am) σ(am+1) . . . σ(an)).

Hence, conjugation does not change the cycle type. �

Definition 1.10. A 2-cycle is called a transposition.

Proposition 1.11. Every element of Sn can be written as a product of transposi-
tions

Proof. For (a1 a2 . . . am) ∈ Sn,

(a1 a2 . . . am) = (a1 am)(a1 am−1) · · · (a1 a2)

Since every cycle can be written as a product of transpositions, by Proposition 1.4.,
every permutation can be expressed as a product of transpositions. �

Definition 1.12. If π = τ1τ2...τk, where the τi are transpositions, then the sign
of π is sgn(π) = (−1)k.

Proposition 1.13. The map sgn : Sn → {±1} is a well-defined homomorphism.
In other words, sgn(πσ) = sgn(π)sgn(σ).

The proof of Proposition 1.13 may be found in [1].

2. Group Representations

Definitions 2.1. Matd, the full complex matrix algebra of degree d, is the
set of all d× d matrices with entries in C, and GLd, the complex general linear
group of degree d, is the group of all X = (xi,j)d×d ∈ Matd that are invertible
with respect to multiplication.

Definition 2.2. A matrix representation of a group G is a group homomor-
phism X : G→ GLd.
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Definition 2.3. For V a vector space, GL(V), the general linear group of V is
the set of all invertible linear transformations of V to itself.

In this study, all vector spaces will be over C and of finite dimension.
Since GL(V ) and GLd are isomorphic as groups if dim V = d, we can think of
representations as group homomorphisms into the general linear group of a vector
space.

Definitions 2.4. Let V be a vector space and G be a group. Then V is a G-
module if there is a group homomorphism ρ : G → GL(V ). Equivalently, V is a
G-module if there is an action of G on V denoted by gv for all g ∈ G and v ∈ V
which satisfy:

(1) gv ∈ V
(2) g(cv + dw) = c(gv) + d(gw)
(3) (gh)v = g(hv)
(4) εv = v

for all g, h ∈ G; v, w ∈ V ; and c, d ∈ C

Proof. (The Equivalence of Definitions) By letting gv = ρ(g)(v), (1) means ρ(g) is
a transformation from V to itself; (2) represents that the transformation is linear;
(3) says ρ is a group homomorphism; and (4) in combination with (3) means ρ(g)
and ρ(g−1) are inverse maps of each other and, thus, invertible. �

When there is no confusion arises about the associated group, the prefix G- will be
dropped from terms, such as shortening G-module to module.

Definition 2.5. Let V be a G-module. A submodule of V is a subspace W that
is closed under the action of G, i.e., w ∈ W ⇒ gw ∈ W for all g ∈ G. We write
W ≤ V if W is a submodule of V .

Definition 2.6. A nonzero G-module V is reducible if it contains a nontrivial
submodule W . Otherwise, V is said to be irreducible.

Definitions 2.7. Let V be a vector space with subspaces U and W . Then V is
the direct sum of U and W , written V = U ⊕W , if every v ∈ V can be written
uniquely as a sum v = u + w, u ∈ U , w ∈ W . If V is a G-module and U,W are
G-submodules, then we say that U and W are complements of each other.

Definition 2.8. An inner product on a vector space V is a map < ·, · >: V ×V →
C that satisfies:

(1) < x, y >= < y, x >
(2) < ax, y >= a < x, y >
(3) < x+ y, z >=< x, z > + < y, z >
(4) < x, x >≥ 0 with equality only for x = 0

for x, y, z ∈ V and a ∈ C

Definition 2.9. For < ·, · > an inner product on a vector space V and a subspace
W , the orthogonal complement of W is W⊥ = {v ∈ V :< v,w >= 0 for all w ∈
W}

Note that V = W ⊕W⊥.

Definition 2.10. An inner product < ·, · > on a vector space V is invariant under
the action of G if < gv, gw >=< v,w > for all g ∈ G and v, w ∈ V .
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Proposition 2.11. Let V be a G-module, W a submodule, and < ·, · > an inner
product on V . If < ·, · > is invariant under the action of G, then W⊥ is also a
G-submodule.

Proof. Suppose g ∈ G and u ∈W⊥. Then, for any w ∈W ,

< gu,w >=< g−1gu, g−1w >=< u, g−1w >= 0

Hence, gu ∈W⊥, and W⊥ is a G-submodule. �

Theorem 2.12. (Maschke’s Theorem) Let G be a finite group and let V be a
nonzero G-module. Then, V = W (1) ⊕W (2) ⊕ ... ⊕W (k) where each W (i) is an
irreducible G-submodule of V .

Proof. Induction on d = dim V

• Base Case: if d = 1, V itself is irreducible. Hence, V = W (1).

• Inductive Case: For d > 1, assume true for d′ < d.
If V is irreducible, V = W (1).
Suppose V is reducible. Then, V has a nontrivial G-submodule, W.
Let B = {v1, ..., vd} be a basis for V . Consider the unique inner product
on V that satisfies

< vi, vj >= δi,j =
{

1 if i = j
0 otherwise

for basis elements in B.
For any v, w ∈ V , let

< v,w >′=
∑
g∈G

< gv, gw >

(1)

< v,w >′=
∑
g∈G

< gv, gw >=
∑
g∈G

< gw, gv > = < w, v >′

(2)

< av,w >′=
∑
g∈G

< g(av), gw >=
∑
g∈G

a < gv, gw >= a < v,w >′

(3)

< v + w, z > =
∑
g∈G

< g(v + w), gz >

=
∑
g∈G

< gv, gz > + < gw, gz >

= < v, z >′ + < w, z >′

(4)

< v, v >′=
∑
g∈G

< gv, gv >≥ 0 and < 0, 0 >′=
∑
g∈G

< g0, g0 >= 0



THE REPRESENTATIONS OF THE SYMMETRIC GROUP 5

Hence, < ·, · >′ is an inner product on V .
Moreover, since, for h ∈ G,

< hv, hw >′ =
∑
g∈G

< ghv, ghw >

=
∑
k∈G

< kv, kw >

= < v,w >′,

< ·, · >′ is invariant under the action of G.
Let W⊥ = {v ∈ V :< v,w >′= 0 for all w ∈ W} Then, V = W ⊕W⊥,
and W⊥ is a G-submodule by Proposition 2.11. Since W and W⊥ can be
written as direct sums of irreducibles by the inductive hypothesis, V can
be expressed as a direct sum of irreducibles.

�

Definition 2.13. Let V and W be G-modules. Then a G-homomorphism is a
linear transformation θ : V →W such that

θ(gv) = gθ(v)

for all g ∈ G and v ∈ V .

Definition 2.14. Let V and W be G-modules. A G-isomorphism is a G-
homomorphism θ : V → W that is bijective. In this case, we say that V and
W are G-isomorphic, or G-equivalent, denoted by V ∼= W . Otherwise, we say
that V and W are G-inequivalent.

Proposition 2.15. Let θ : V →W be a G-homomorphism. Then,

(1) ker θ is a G-submodule of V
(2) im θ is a G-submodule of W

Proof. (1) Since θ(0) = 0, 0 ∈ ker θ and ker θ 6= ∅, and if v1, v2 ∈ ker θ and
c ∈ C, θ(v1 + cv2) = θ(v1) + cθ(v2) = 0 + c0 = 0 and v1 + cv2 ∈ ker θ.
Hence, ker θ is a subspace of V . Suppose v ∈ ker θ. Then, for any g ∈ G

θ(gv) = gθ(v)

= g0

= 0

Thus, gv ∈ ker θ and ker θ is a G-submodule of V .
(2) 0 ∈ im θ and im θ 6= ∅, and if w1, w2 ∈W and c ∈ C, there exist v1, v2 ∈ V

such that θ(v1) = w1 and θ(v2) = w2 and θ(v1 + cv2) = θ(v1) + cθ(v2) =
w1 + cw2. Thus, w1 + cw2 ∈ im θ and im θ is a subspace of W . Suppose
w ∈ im θ. Then, there exists v ∈ V such that θ(v) = w. For any g ∈ G,
gv ∈ V and

θ(gv) = gθ(v) = gw

Hence, gw ∈ im θ and im θ is a G-submodule of W .
�

Theorem 2.16. (Schur’s Lemma) Let V and W be irreducible G-modules. If
θ : V →W is a G-homomorphism, then either

(1) θ is a G-isomorphism, or
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(2) θ is the zero map

Proof. Since V is irreducible and ker θ is a submodule by Proposition 2.15., ker θ =
{0} or ker θ = V . Similarly, im θ = {0} or im θ = W . If ker θ = {0} and
im θ = W , θ is a G-isomorphism, and if ker θ = V and im θ = {0}, θ is the zero
map. �

Corollary 2.17. Let V be a irreducible G-module. If θ : V → V is a G-homomorphism,
θ = cI for some c ∈ C, multiplication by a scalar.

Proof. Since C is algebraically closed, θ has an eigenvalue c ∈ C. Then, θ − cI has
a nonzero kernel. By Theorem 2.16., θ − cI is the zero map. Hence, θ = cI. �

Definition 2.18. Given a G-module V , the corresponding endomorphism alge-
bra is

End V = {θ : V → V : θ is a G-homomorphism}

Definition 2.19. The center of an algebra A is

ZA = {a ∈ A : ab = ba for all b ∈ A}

Let Ei,j be the matrix of zeros with exactly 1 one in position (i, j).

Proposition 2.20. The center of Matd is

ZMatd = {cId : c ∈ C}

Proof. Suppose that C ∈ ZMatd . Consider

CEi,i = Ei,iC

CEi,i(Ei,iC, respectively) is all zeros except for the ith column(row, respectively)
which is the same as that of C. Hence, all off-diagonal elements must be 0.
For i 6= j,

C(Ei,j + Ej,i) = (Ei,j + Ej,i)C

0 . . . c1,j . . . c1,i . . .
...

. . .
...

. . .
...

. . .
0 . . . ci,j . . . ci,i . . .
...

. . .
...

. . .
...

. . .
0 . . . cj,j . . . cj,i . . .
...

. . .
...

. . .
...

. . .

 =


0 . . . 0 . . . 0 . . .
...

. . .
...

. . .
...

. . .
cj,1 . . . cj,i . . . cj,j . . .

...
. . .

...
. . .

...
. . .

ci,1 . . . ci,i . . . ci,j . . .
...

. . .
...

. . .
...

. . .


Then, ci,i = cj,j . Hence, all the diagonal elements must be equal, and C = cId for
some c ∈ C. �

Note that, for A,X ∈Matd and B, Y ∈Matf ,

(A⊕B)(X ⊕ Y ) = AB ⊕XY

Theorem 2.21. Let V be a G-module such that

V ∼= m1V
(1) ⊕m2V

(2) ⊕ · · ·mkV
(k)

where the V (i) are pairwise inequivalent irreducibles and dim V (i) = di. Then,

(1) dim V = m1d1 +m2d2 + · · ·mkdk
(2) End V ∼=

⊕k
i=1Matmi

(3) dim ZEnd V = k.
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Proof.

(1) Clear.
(2) By Theorem 2.16. and Corollary 2.17., θ ∈ End V maps each V (i) into mi

copies of V (i) as multiplications by scalars. Hence,

End V ∼= Matm1
⊕Matm2

⊕ · · · ⊕Matmk

(3) Consider C ∈ ZEnd V . Then,

CT = TC for all T ∈ End V ∼=
k⊕
i=1

Matmi

where T =
⊕k

i=1Mmi and C =
⊕k

i=1 Cmi .

CT = (

k⊕
i=1

Cmi
)(

k⊕
i=1

Mmi
)

=

k⊕
i=1

Cmi
Mmi

Similarly, TC =
⊕k

i=1MmiCmi . Hence,

CmiMmi = MmiCmi for all Mmi ∈Matmi

By Proposition 2.20., Cmi
= ciImi

for some ci ∈ C. Thus,

C =

k⊕
i=1

ciImi

and dim ZEnd V = k.

�

Proposition 2.22. Let V and W be G-modules with V irreducible. Then, dim Hom(V,W )
is the multiplicity of V in W .

Proof. Let m be the multiplicity of V in W . By Theorem 2.16. and Corollary 2.17.,
θ ∈ Hom(V,W ) maps V into m copies of V in W as multiplications by scalars.
Hence,

dim Hom(V,W ) = m

�

Definition 2.23. For a group G = {g1, g2, . . . , gn}, the corresponding group al-
gebra of G is a G-module

C[G] = {c1g1 + c2g2 + · · ·+ cngn : ci ∈ C for all i}

Proposition 2.24. Let G be a finite group and suppose C[G] =
⊕k

i=1miV
(i) where

the V (i) form a complete list of pairwise inequivalent irreducible G-modules. Then,

number of V (i) = k = number of conjugacy classes of G
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Proof. For v ∈ C[G], let the map φv : C[G] → C[G] be right multiplication by v.
In other words,

φv(w) = wv for all w ∈ C[G]

Since φv(gw) = (gw)v = g(wv) = gφv(w), φv ∈ End C[G].
Claim: C[G] ∼= End C[G]
Consider ψ : C[G]→ End C[G] such that ψ(v) = φv.

ψ(v)ψ(w) = φvφw = φwv = ψ(wv)

If ψ(v) = φv is the zero map, then

0 = φv(ε) = εv = v.

Hence, ψ is injective.
Suppose θ ∈ End C[G] and let v = θ(ε) ∈ C[G]. For any g ∈ G,

θ(g) = θ(gε) = gθ(ε) = gv = φv(g)

Since θ and φv agree on a basis G, θ = φv and ψ is surjective. Thus, ψ is an
anti-isomorphism, and C[G] ∼= End C[G].
By (3) of Theorem 2.21., k = dim ZEnd C[G] = dim ZC[G].
Consider z = c1g1 + c2g2 + · · ·+ cngn ∈ ZC[G].

For all h ∈ G, zh = hz ⇔ z = hzh−1 ⇔

c1g1 + c2g2 + · · ·+ cngn = c1hg1h
−1 + c2hg2h

−1 + · · ·+ cnhgnh
−1

Since hgih
−1 runs over the conjugacy class of gi, all elements of each conjugacy

class have the same coefficient. If G has l conjugacy classes K1, . . . ,Kl, let

zi =
∑
g∈Ki

g for i = 1, . . . , l.

Then, any z ∈ ZC[G] can be written as

z =

l∑
i=1

dizi.

Hence,

number of conjugacy classes = dim ZC[G] = k = number of V (i).

�

3. Young Tableaux

Definition 3.1. Suppose λ = (λ1, λ2, . . . , λl) ` n. The Young diagram, or
shape, of λ is a collection of boxes arranged in l left-justified rows with row i
containing λi boxes for 1 ≤ i ≤ l.

Example 3.2. is the Young diagram of λ = (4, 2, 1).

Definition 3.3. Suppose λ ` n. Young tableau of shape λ is an array t
obtained by filling the boxes of the Young diagram of λ with the numbers 1, 2, . . . , n
bijectively.

Let ti,j stand for the entry of t in the position (i, j) and sh t denote the shape of t.
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Example 3.4. t =
2 5 6 4
7 3
1

is a Young tableau of λ = (4, 2, 1), and t1,3 = 6.

π ∈ Sn acts on a tableau t = (ti,j) of λ ` n as follows:

πt = (πti,j) where πti,j = π(ti,j)

Definitions 3.5. Two λ-tableaux t1 and t2 are row equivalent, t1 ∼ t2, if corre-
sponding rows of the two tableaux contain the same elements. A tabloid of shape
λ, or λ-tabloid, is then {t} = {t1 : t1 ∼ t} where sh t = λ.

If λ = (λ1, λ2, . . . , λl) ` n, then the number of tableaux in a λ-tabloid is

λ1!λ2!...λl!
def
= λ!.

Hence, the number of λ-tabloids is n!/λ!.

Example 3.6. For s = 1 2
3 4

, {s} =

{
1 2
3 4

, 1 2
4 3

, 2 1
3 4

, 2 1
4 3

}
def
= 1 2

3 4

Definition 3.7. Suppose λ = (λ1, λ2, . . . , λl) and µ = (µ1, µ2, . . . , µm) are parti-
tions of n. Then λ dominates µ, written λDµ, if λ1+λ2+. . .+λi ≥ µ1+µ2+. . .+µi
for all i ≥ 1. If i > l (i > m, respectively), then we take λi (µi, respectively) to be
zero.

Lemma 3.8. (Dominance Lemma for Partitions) Let tλ and sµ be tableaux
of shapes λ and µ, respectively. If for each index i, the elements of row i in sµ are
all in different columns of tλ, then λD µ.

Proof. Since the elements of row 1 in sµ are all in different columns of tλ, we can
sort the entries in each column of tλ so that the elements of row 1 in sµ all occur
in the first row of tλ(1). Then, since the elements of row 2 in sµ are also all in

different columns of tλ and, thus, tλ(1), we can re-sort the entries in each column of

tλ(1) so that the elements of rows 1 and 2 in sµ all occur in the first two rows of tλ(2).

Inductively, the elements of rows 1, 2, . . . , i in sµ all occur in the first i rows of tλ(i).

Thus,

λ1 + λ2 + . . .+ λi = number of elements in the first i rows of tλ(i)

≥ number of elements in the first i rows of sµ

= µ1 + µ2 + . . .+ µi

�

Definition 3.9. Suppose λ = (λ1, λ2, . . . , λl) and µ = (µ1, µ2, . . . , µm) are parti-
tions of n. Then λ > µ in lexicographic order if, for some index i,

λj = µj for j < i and λi > µi

Proposition 3.10. If λ, µ ` n with λD µ, then λ ≥ µ.

Proof. Suppose λ 6= µ. Let i be the first index where they differ. Then,
∑i−1
j=1 λj =∑i−1

j=1 µj and
∑i
j=1 λj >

∑i
j=1 µj . Hence, λi > µi. �
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4. Representations of the Symmetric Group

Definition 4.1. Suppose λ ` n. Let Mλ = C{{t1}, . . . , {tk}}, where {t1}, . . . , {tk}
is a complete list of λ-tabloids. Then Mλ is called the permutation module
corresponding to λ.

Mλ is indeed an Sn-module by letting π{t} = {πt} for π ∈ Sn and t a λ-tableau.
In addition, dim Mλ = n!/λ!, the number of λ-tabloids.

Definition 4.2. Any G-module M is cyclic if there is a v ∈M such that M = CGv
where Gv = {gv : g ∈ G}. In this case, we say that M is generated by v.

Proposition 4.3. If λ ` n, then Mλ is cyclic, generated by any given λ-tabloid.

Definition 4.4. Suppose that the tableau t has rows R1, R2, . . . , Rl and columns
C1, C2, . . . , Ck. Then,

Rt = SR1 × SR2 × . . .× SRl

and
Ct = SC1

× SC2
× . . .× SCk

are the row-stabilizer and column-stabilizer of t, respectively.

Example 4.5. For t in Example 3.4., Rt = S{2,4,5,6} × S{3,7} × S{1} and Ct =
S{1,2,7} × S{3,5} × S{6} × S{4}.

Given a subset H ⊆ Sn, let H+ =
∑
π∈H π and H− =

∑
π∈H sgn(π)π be elements

of C[Sn]. If H = {π}, then we denote H− by π−.
For a tableau t, let κt = C−t =

∑
π∈Ct

sgn(π)π. Note that if t has columns
C1, C2, ..., Ck, then κt = κC1

κC2
...κCk

.

Definition 4.6. If t is a tableau, then the associated polytabloid is et = κt{t}.

Example 4.7. For s in Example 3.6.,

κs = κC1
κC2

= (ε− (1 3))(ε− (2 4))

Thus,

et = 1 2
3 4

− 3 2
1 4

− 1 4
3 2

+ 3 4
1 2

Lemma 4.8. Let t be a tableau and π be a permutation. Then,

(1) Rπt = πRtπ
−1

(2) Cπt = πCtπ
−1

(3) κπt = πκtπ
−1

(4) eπt = πet

Proof.

(1)

σ ∈ Rπt ⇔ σ{πt} = {πt}
⇔ π−1σπ{t} = {t}
⇔ π−1σπ ∈ Rt
⇔ σ ∈ πRtπ−1
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(2) and (3) can be shown analogously to (1).
(4)

eπt = κπt{πt} = πκtπ
−1{πt} = πκt{t} = πet

�

Definition 4.9. For a partition λ ` n, the corresponding Specht module, Sλ, is
the submodule of Mλ spanned by the polytabloids et, where sh t = λ.

Proposition 4.10. The Sλ are cyclic modules generated by any given polytabloid.

Given any two λ-tabloids ti, tj in the basis of Mλ, let their inner product be

< {ti}, {tj} >= δ{ti},{tj} =
{

1 if {ti} = {tj}
0 otherwise

and extend by linearity in the first variable and conjugate linearity in the second
to obtain an inner product on Mλ.

Lemma 4.11. (Sign Lemma) Let H ≤ Sn be a subgroup.

(1) If π ∈ H, then

πH− = H−π = sgn(π)H−

(2) For any u, v ∈Mλ,

< H−u, v >=< u,H−v >

(3) If the transposition (b c) ∈ H, then we can factor

H− = k(ε− (b c))

where k ∈ C[Sn].
(4) If t is a tableau with b, c in the same row of t and (b c) ∈ H, then

H−{t} = 0

Proof.

(1)

πH− = π
∑
σ∈H

sgn(σ)σ

=
∑
σ∈H

sgn(σ)πσ

=
∑
τ∈H

sgn(π−1τ)τ (by letting τ = πσ)

=
∑
τ∈H

sgn(π−1)sgn(τ)τ

= sgn(π−1)
∑
τ∈H

sgn(τ)τ

= sgn(π)H−

H−π = sgn(π)H− can be proven analogously.
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(2)

< H−u, v > =
∑
π∈H

< sgn(π)πu, v >

=
∑
π∈H

< u, sgn(π−1)π−1v >

=
∑
τ∈H

< u, sgn(τ)τv > (by letting τ = π−1)

= < u,H−v >

(3) Consider the subgroup K = {ε, (bc)} ≤ H. Let {ki : i ∈ I} be a transversal
such that H = ti∈IkiK. Then, H− = (

∑
i∈I ki)(ε− (b c)).

(4) (b c){t} = {t}. Hence,

H−{t} = k(ε− (b c)){t} = k({t} − {t}) = 0

�

Corollary 4.12. Let t be a λ-tableau and s be a µ-tableau, where λ, µ ` n. If
κt{s} 6= 0, then λD µ. Moreover, if λ = µ, then κt{s} = ±et

Proof. Suppose b and c are two elements in the same row of s. If they are in the
same column of t, then (b c) ∈ Ct and κt{s} = 0 by (4) of Sign Lemma. Hence, the
elements in each row of s are all in different columns in t, and λDµ by Dominance
Lemma.
If λ = µ, then {s} = π{t} for some π ∈ Ct. Then, by (4) of Sign Lemma,

κt{s} = κtπ{t} = sgn(π)κt{t} = ±et

�

Corollary 4.13. If u ∈Mµ and sh t = µ, then κtu is a multiple of et.

Proof. Let u =
∑
i∈I ci{si} where ci ∈ C and si are µ-tableaux. By Corollary

4.12., κtu =
∑
i∈J ±ciet = (

∑
i∈J ±ci)et for some J ⊆ I. �

Theorem 4.14. (Submodule Theorem) Let U be a submodule of Mµ. Then,

U ⊇ Sµ or U ⊆ Sµ⊥

Thus, Sµ is irreducible.

Proof. For u ∈ U and a µ-tableau t, κtu = cet for some c ∈ C by Corollary 4.13..
Suppose that there exists a u and t such that c 6= 0. Then, since U is a submodule,
cet = κtu ∈ U . Hence, et ∈ U and Sµ ⊆ U since Sµ is cyclic.
Otherwise, κtu = 0 for all u ∈ U and all µ-tableau t. Then, by (2) of Sign Lemma,

< u, et >=< u, κt{t} >=< κtu, {t} >=< 0, {t} >= 0.

Since et span Sµ, u ∈ Sµ⊥ and U ⊆ Sµ⊥.
Sµ ∩ Sµ⊥ = 0. Hence, Sµ is irreducible. �

Proposition 4.15. If θ ∈ Hom(Sλ,Mµ) is nonzero, then λ D µ. Moreover, if
λ = µ, then θ is multiplication by a scalar.
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Proof. Since θ 6= 0, there exists a basis element et ∈ Sλ such that θ(et) 6= 0.
Because Mλ = Sλ ⊕ Sλ⊥, we can extend θ to an element of Hom(Mλ,Mµ) by
letting θ(Sλ⊥) = {0}. Then,

0 6= θ(et) = θ(κt{t}) = κtθ({t}) = κt(
∑
i

ci{si})

where ci ∈ C and si are µ-tableaux. Hence, by Corollary 4.12., λD µ.
If λ = µ, θ(et) = cet for some c ∈ C by Corollary 4.12.. For any permutation π,

θ(eπt) = θ(πet) = πθ(et) = π(cet) = ceπt

Thus, θ is multiplication by c. �

Theorem 4.16. The Sλ for λ ` n form a complete list of irreducible Sn-modules.

Proof. Since the number of irreducible modules equals the number of conjugacy
classes of Sn by Proposition 2.24., it suffices to show that they are pairwise in-
equivalent. Suppose Sλ ∼= Sµ. Then, there exists a nonzero θ ∈ Hom(Sλ,Mµ)
since Sλ ⊆ Mµ. Thus, by Proposition 4.15., λ D µ. Analogously, λ E µ. Hence,
λ = µ. �

Corollary 4.17. The permutation modules decompose as

Mµ =
⊕
λDµ

mλµS
λ

where the diagonal multiplicity mµµ = 1.

Proof. If Sλ appears in Mµ with nonzero multiplicity, then there exists a nonzero
θ ∈ Hom(Sλ,Mµ) and λD µ by Proposition 4.15.. If λ = µ, then

mµµ = dim Hom(Sµ,Mµ) = 1

by Propositions 2.22. and 4.15.. �
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