THE REPRESENTATIONS OF THE SYMMETRIC GROUP

JE-OK CHOI

ABSTRACT. Young tableau is a combinatorial object which provides a convenient way to describe the group representations of the symmetric group, S_n . In this paper, we prove several facts about the symmetric group, group representations, and Young tableaux. We then present the construction of Specht modules which are irreducible representations of S_n .

CONTENTS

1. The Symmetric Group. S_n

Definitions 1.1. The symmetric group, S_{Ω} , is a group of all bijections from Ω to itself under function composition. The elements $\pi \in S_{\Omega}$ are called **permutations**. In particular, for $\Omega = \{1, 2, 3, ..., n\}$, S_{Ω} is **the symmetric group of degree** n, denoted by S_n .

Example 1.2. $\sigma \in S_7$ given by $\begin{array}{c|cccc} i & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 5 & 6 & 4 & 7 & 3 & 1 \end{array}$ is a permutation.

Definition 1.3. A cycle is a string of integers which represents the element of S_n that cyclically permutes these integers. The cycle $(a_1 \ a_2 \ a_3 \ \dots \ a_m)$ is the permutation which sends a_i to a_{i+1} for $1 \le i \le m-1$ and sends a_m to a_1 .

Proposition 1.4. Every permutation in S_n can be written as a product of disjoint cycles.

Proof. Consider $\pi \in S_n$. Given $i \in \{1, 2, 3, ..., n\}$, the elements of the sequence $i, \pi(i), \pi^2(i), \pi^3(i), ...$ cannot all be distinct. Taking the first power p such that $\pi^p(i) = i$, we have the cycle $(i \pi(i) \pi^2(i) \dots \pi^{p-1}(i))$. Iterate this process with an element that is not in any of the previously generated cycles until each element of $\{1, 2, 3, ..., n\}$ belongs to exactly one of the cycles generated. Then, π is the product of the generated cycles.

Definition 1.5. If $\pi \in S_n$ is the product of disjoint cycles of lengths n_1, n_2, \ldots, n_r such that $n_1 \leq n_2 \leq \ldots \leq n_r$, then the integers n_1, n_2, \ldots, n_r are called the **cycle type** of π .

For instance, σ in *Example 1.2.* can be expressed as $\sigma = (4)(3\ 6)(1\ 2\ 5\ 7)$ and its cycle type is 1, 2, 4. A 1-cycle of a permutation, such as (4) of σ , is called a **fixed point** and usually omitted from the cycle notation. Another way to represent the cycle type is as a partition:

Date: August 25, 2010.

Definition 1.6. A partition of *n* is a sequence $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ where the λ_i are weakly decreasing and $\sum_{i=1}^{l} \lambda_i = n$. If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ is a partition of *n*, we write $\lambda \vdash n$.

 σ corresponds to the partition $\lambda = (4, 2, 1)$.

Definitions 1.7. In any group G, elements g and h are **conjugates** if $g = khk^{-1}$ for some $k \in G$. The set of all elements conjugate to a given g is called the **conjugacy class** of g and is denoted by K_g .

Proposition 1.8. Conjugacy is an equivalence relation. Thus, the distinct conjugacy classes partition G.

Proof. Let $a \sim b$ if a and b are conjugates. Since $a = \epsilon a \epsilon^{-1}$ where ϵ is the identity element of G, $a \sim a$ for all $a \in G$, and conjugacy is reflexive. Suppose $a \sim b$. Then, $a = kbk^{-1} \Leftrightarrow b = (k^{-1})a(k^{-1})^{-1}$. Hence, $b \sim a$, and conjugacy is symmetric. If $a \sim b$ and $b \sim c$, $a = kbk^{-1} = k(lcl^{-1})k^{-1} = (kl)c(kl)^{-1}$ for some $k, l \in G$, and $a \sim c$. Thus, conjugacy is transitive.

Proposition 1.9. In S_n , two permutations are in the same conjugacy class if and only if they have the same cycle type. Thus, there is a natural one-to-one correspondence between partitions of n and conjugacy classes of S_n .

Proof. Consider $\pi = (a_1 \ a_2 \ \dots \ a_l) \cdots (a_m \ a_{m+1} \ \dots \ a_n) \in S_n$. For $\sigma \in S_n$, $\sigma \pi \sigma^{-1} = (\sigma(a_1) \ \sigma(a_2) \ \dots \ \sigma(a_l)) \cdots (\sigma(a_m) \ \sigma(a_{m+1}) \ \dots \ \sigma(a_n)).$

Hence, conjugation does not change the cycle type.

Definition 1.10. A 2-cycle is called a **transposition**.

Proposition 1.11. Every element of S_n can be written as a product of transpositions

Proof. For $(a_1 \ a_2 \ \dots \ a_m) \in S_n$,

 $(a_1 a_2 \ldots a_m) = (a_1 a_m)(a_1 a_{m-1}) \cdots (a_1 a_2)$

Since every cycle can be written as a product of transpositions, by *Proposition 1.4.*, every permutation can be expressed as a product of transpositions. \Box

Definition 1.12. If $\pi = \tau_1 \tau_2 \dots \tau_k$, where the τ_i are transpositions, then the sign of π is $sgn(\pi) = (-1)^k$.

Proposition 1.13. The map $sgn : S_n \to \{\pm 1\}$ is a well-defined homomorphism. In other words, $sgn(\pi\sigma) = sgn(\pi)sgn(\sigma)$.

The proof of *Proposition 1.13* may be found in [1].

2. Group Representations

Definitions 2.1. Mat_d , the full complex matrix algebra of degree d, is the set of all $d \times d$ matrices with entries in \mathbb{C} , and GL_d , the complex general linear group of degree d, is the group of all $X = (x_{i,j})_{d \times d} \in Mat_d$ that are invertible with respect to multiplication.

Definition 2.2. A matrix representation of a group G is a group homomorphism $X: G \to GL_d$.

$$\square$$

Definition 2.3. For V a vector space, GL(V), the **general linear group** of V is the set of all invertible linear transformations of V to itself.

In this study, all vector spaces will be over \mathbb{C} and of finite dimension. Since GL(V) and GL_d are isomorphic as groups if $\dim V = d$, we can think of representations as group homomorphisms into the general linear group of a vector space.

Definitions 2.4. Let V be a vector space and G be a group. Then V is a G-module if there is a group homomorphism $\rho : G \to GL(V)$. Equivalently, V is a G-module if there is an action of G on V denoted by gv for all $g \in G$ and $v \in V$ which satisfy:

(1) $gv \in V$ (2) g(cv + dw) = c(gv) + d(gw)(3) (gh)v = g(hv)(4) $\epsilon v = v$

for all $g, h \in G$; $v, w \in V$; and $c, d \in \mathbb{C}$

Proof. (The Equivalence of Definitions) By letting $gv = \rho(g)(v)$, (1) means $\rho(g)$ is a transformation from V to itself; (2) represents that the transformation is linear; (3) says ρ is a group homomorphism; and (4) in combination with (3) means $\rho(g)$ and $\rho(g^{-1})$ are inverse maps of each other and, thus, invertible.

When there is no confusion arises about the associated group, the prefix G- will be dropped from terms, such as shortening G-module to module.

Definition 2.5. Let V be a G-module. A **submodule** of V is a subspace W that is closed under the action of G, i.e., $w \in W \Rightarrow gw \in W$ for all $g \in G$. We write $W \leq V$ if W is a submodule of V.

Definition 2.6. A nonzero G-module V is reducible if it contains a nontrivial submodule W. Otherwise, V is said to be irreducible.

Definitions 2.7. Let V be a vector space with subspaces U and W. Then V is the **direct sum** of U and W, written $V = U \oplus W$, if every $v \in V$ can be written uniquely as a sum v = u + w, $u \in U$, $w \in W$. If V is a G-module and U, W are G-submodules, then we say that U and W are **complements** of each other.

Definition 2.8. An inner product on a vector space V is a map $\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{C}$ that satisfies:

 $\begin{array}{l} (1) < x, y >= \overline{\langle y, x \rangle} \\ (2) < ax, y >= a < x, y > \\ (3) < x + y, z >= < x, z > + < y, z > \\ (4) < x, x > \ge 0 \text{ with equality only for } x = 0 \\ \text{for } x, y, z \in V \text{ and } a \in \mathbb{C} \end{array}$

Definition 2.9. For $\langle \cdot, \cdot \rangle$ an inner product on a vector space V and a subspace W, the **orthogonal complement** of W is $W^{\perp} = \{v \in V : \langle v, w \rangle = 0 \text{ for all } w \in W\}$

Note that $V = W \oplus W^{\perp}$.

Definition 2.10. An inner product $\langle \cdot, \cdot \rangle$ on a vector space V is **invariant** under the action of G if $\langle gv, gw \rangle = \langle v, w \rangle$ for all $g \in G$ and $v, w \in V$.

Proposition 2.11. Let V be a G-module, W a submodule, and $\langle \cdot, \cdot \rangle$ an inner product on V. If $\langle \cdot, \cdot \rangle$ is invariant under the action of G, then W^{\perp} is also a G-submodule.

Proof. Suppose $g \in G$ and $u \in W^{\perp}$. Then, for any $w \in W$,

$$< gu, w > = < g^{-1}gu, g^{-1}w > = < u, g^{-1}w > = 0$$

Hence, $gu \in W^{\perp}$, and W^{\perp} is a *G*-submodule.

Theorem 2.12. (Maschke's Theorem) Let G be a finite group and let V be a nonzero G-module. Then, $V = W^{(1)} \oplus W^{(2)} \oplus ... \oplus W^{(k)}$ where each $W^{(i)}$ is an irreducible G-submodule of V.

Proof. Induction on $d = \dim V$

- Base Case: if d = 1, V itself is irreducible. Hence, $V = W^{(1)}$.
- Inductive Case: For d > 1, assume true for d' < d.
 If V is irreducible, V = W⁽¹⁾.
 Suppose V is reducible. Then, V has a nontrivial G-submodule, W.
 Let B = {v₁,...,v_d} be a basis for V. Consider the unique inner product on V that satisfies

$$\langle v_i, v_j \rangle = \delta_{i,j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

for basis elements in B. For any $v, w \in V$, let

$$< v, w >' = \sum_{g \in G} < gv, gw >$$

(1)

$$\langle v, w \rangle' = \sum_{g \in G} \langle gv, gw \rangle = \sum_{g \in G} \overline{\langle gw, gv \rangle} = \overline{\langle w, v \rangle'}$$

$$< av, w >' = \sum_{g \in G} < g(av), gw > = \sum_{g \in G} a < gv, gw > = a < v, w >'$$

(3)

$$< v + w, z > = \sum_{g \in G} < g(v + w), gz >$$

 $= \sum_{g \in G} < gv, gz > + < gw, gz >$
 $= < v, z >' + < w, z >'$

(4)

$$\langle v, v \rangle' = \sum_{g \in G} \langle gv, gv \rangle \ge 0$$
 and $\langle 0, 0 \rangle' = \sum_{g \in G} \langle g0, g0 \rangle = 0$

Hence, $\langle \cdot, \cdot \rangle'$ is an inner product on V. Moreover, since, for $h \in G$,

$$\begin{array}{lll} < hv, hw >' & = & \displaystyle \sum_{g \in G} < ghv, ghw > \\ \\ & = & \displaystyle \sum_{k \in G} < kv, kw > \\ \\ & = & < v, w >', \end{array}$$

 $\langle \cdot, \cdot \rangle'$ is invariant under the action of G.

Let $W^{\perp} = \{v \in V : \langle v, w \rangle' = 0 \text{ for all } w \in W\}$ Then, $V = W \oplus W^{\perp}$, and W^{\perp} is a *G*-submodule by *Proposition 2.11*. Since *W* and W^{\perp} can be written as direct sums of irreducibles by the inductive hypothesis, *V* can be expressed as a direct sum of irreducibles.

Definition 2.13. Let V and W be G-modules. Then a G-homomorphism is a linear transformation $\theta: V \to W$ such that

$$\theta(gv) = g\theta(v)$$

for all $g \in G$ and $v \in V$.

Definition 2.14. Let V and W be G-modules. A G-isomorphism is a G-homomorphism $\theta : V \to W$ that is bijective. In this case, we say that V and W are G-isomorphic, or G-equivalent, denoted by $V \cong W$. Otherwise, we say that V and W are G-inequivalent.

Proposition 2.15. Let $\theta: V \to W$ be a *G*-homomorphism. Then,

- (1) ker θ is a G-submodule of V
- (2) $im \theta$ is a G-submodule of W
- *Proof.* (1) Since $\theta(0) = 0$, $0 \in \ker \theta$ and $\ker \theta \neq \emptyset$, and if $v_1, v_2 \in \ker \theta$ and $c \in \mathbb{C}$, $\theta(v_1 + cv_2) = \theta(v_1) + c\theta(v_2) = 0 + c0 = 0$ and $v_1 + cv_2 \in \ker \theta$. Hence, $\ker \theta$ is a subspace of V. Suppose $v \in \ker \theta$. Then, for any $g \in G$

$$\begin{array}{rcl} \theta(gv) & = & g\theta(v) \\ & = & g0 \\ & = & 0 \end{array}$$

Thus, $gv \in ker \ \theta$ and $ker \ \theta$ is a *G*-submodule of *V*.

(2) $0 \in im \ \theta$ and $im \ \theta \neq \emptyset$, and if $w_1, w_2 \in W$ and $c \in \mathbb{C}$, there exist $v_1, v_2 \in V$ such that $\theta(v_1) = w_1$ and $\theta(v_2) = w_2$ and $\theta(v_1 + cv_2) = \theta(v_1) + c\theta(v_2) = w_1 + cw_2$. Thus, $w_1 + cw_2 \in im \ \theta$ and $im \ \theta$ is a subspace of W. Suppose $w \in im \ \theta$. Then, there exists $v \in V$ such that $\theta(v) = w$. For any $g \in G$, $gv \in V$ and

$$\theta(gv) = g\theta(v) = gw$$

Hence, $gw \in im \ \theta$ and $im \ \theta$ is a *G*-submodule of *W*.

Theorem 2.16. (Schur's Lemma) Let V and W be irreducible G-modules. If $\theta: V \to W$ is a G-homomorphism, then either

(1) θ is a G-isomorphism, or

(2) θ is the zero map

Proof. Since V is irreducible and $\ker \theta$ is a submodule by *Proposition 2.15.*, $\ker \theta = \{0\}$ or $\ker \theta = V$. Similarly, $\operatorname{im} \theta = \{0\}$ or $\operatorname{im} \theta = W$. If $\ker \theta = \{0\}$ and $\operatorname{im} \theta = W$, θ is a G-isomorphism, and if $\ker \theta = V$ and $\operatorname{im} \theta = \{0\}$, θ is the zero map.

Corollary 2.17. Let V be a irreducible G-module. If $\theta : V \to V$ is a G-homomorphism, $\theta = cI$ for some $c \in \mathbb{C}$, multiplication by a scalar.

Proof. Since \mathbb{C} is algebraically closed, θ has an eigenvalue $c \in \mathbb{C}$. Then, $\theta - cI$ has a nonzero kernel. By *Theorem 2.16.*, $\theta - cI$ is the zero map. Hence, $\theta = cI$. \Box

Definition 2.18. Given a G-module V, the corresponding **endomorphism algebra** is

End $V = \{\theta : V \to V : \theta \text{ is a } G\text{-homomorphism}\}$

Definition 2.19. The **center** of an algebra A is

 $Z_A = \{a \in A : ab = ba \text{ for all } b \in A\}$

Let $E_{i,j}$ be the matrix of zeros with exactly 1 one in position (i, j).

Proposition 2.20. The center of Mat_d is

$$Z_{Mat_d} = \{ cI_d : c \in \mathbb{C} \}$$

Proof. Suppose that $C \in Z_{Mat_d}$. Consider

$$CE_{i,i} = E_{i,i}C$$

 $CE_{i,i}(E_{i,i}C, \text{ respectively})$ is all zeros except for the *i*th column(row, respectively) which is the same as that of C. Hence, all off-diagonal elements must be 0. For $i \neq j$,

$$C(E_{i,j} + E_{j,i}) = (E_{i,j} + E_{j,i})C$$

$\int 0$	• • •	$c_{1,j}$	• • •	$c_{1,i}$	\	\wedge	0		0		0	\
	۰.	÷	·	:	·) (:	·	:	·	:	·
0	• • •	$c_{i,j}$	• • •	$c_{i,i}$	• • •		$c_{j,1}$	• • •	$c_{j,i}$	•••	$c_{j,j}$	
1 :	·	÷	·	÷	·		:	·.	:	••.	:	··.
0	• • •	$c_{j,j}$	• • •	$c_{j,i}$	•••		<i>ci</i> ,1	•••	$c_{i,i}$		$c_{i,j}$]
\÷	·	÷	·	÷	·. /	/ \	:	•••	:	•••	:	··. /

Then, $c_{i,i} = c_{j,j}$. Hence, all the diagonal elements must be equal, and $C = cI_d$ for some $c \in \mathbb{C}$.

Note that, for $A, X \in Mat_d$ and $B, Y \in Mat_f$,

$$(A \oplus B)(X \oplus Y) = AB \oplus XY$$

Theorem 2.21. Let V be a G-module such that

$$V \cong m_1 V^{(1)} \oplus m_2 V^{(2)} \oplus \cdots \oplus m_k V^{(k)}$$

where the $V^{(i)}$ are pairwise inequivalent irreducibles and dim $V^{(i)} = d_i$. Then,

- (1) $\dim V = m_1 d_1 + m_2 d_2 + \cdots + m_k d_k$
- (2) End $V \cong \bigoplus_{i=1}^{k} Mat_{m_i}$
- (3) $\dim Z_{End V} = k$.

 $\mathbf{6}$

Proof.

- (1) Clear.
- (2) By Theorem 2.16. and Corollary 2.17., $\theta \in End V$ maps each $V^{(i)}$ into m_i copies of $V^{(i)}$ as multiplications by scalars. Hence,

End
$$V \cong Mat_{m_1} \oplus Mat_{m_2} \oplus \cdots \oplus Mat_{m_k}$$

(3) Consider $C \in Z_{End V}$. Then,

$$CT = TC$$
 for all $T \in End \ V \cong \bigoplus_{i=1}^{\kappa} Mat_{m_i}$

where $T = \bigoplus_{i=1}^{k} M_{m_i}$ and $C = \bigoplus_{i=1}^{k} C_{m_i}$.

$$CT = \left(\bigoplus_{i=1}^{k} C_{m_i}\right) \left(\bigoplus_{i=1}^{k} M_{m_i}\right)$$
$$= \bigoplus_{i=1}^{k} C_{m_i} M_{m_i}$$

Similarly, $TC = \bigoplus_{i=1}^{k} M_{m_i} C_{m_i}$. Hence,

$$C_{m_i}M_{m_i} = M_{m_i}C_{m_i}$$
 for all $M_{m_i} \in Mat_{m_i}$

By Proposition 2.20., $C_{m_i} = c_i I_{m_i}$ for some $c_i \in \mathbb{C}$. Thus,

$$C = \bigoplus_{i=1}^{k} c_i I_{m_i}$$

and dim $Z_{End V} = k$.

Proposition 2.22. Let V and W be G-modules with V irreducible. Then, dim Hom(V, W) is the multiplicity of V in W.

Proof. Let *m* be the multiplicity of *V* in *W*. By *Theorem 2.16.* and *Corollary 2.17.*, $\theta \in Hom(V, W)$ maps *V* into *m* copies of *V* in *W* as multiplications by scalars. Hence,

$$\dim Hom(V,W) = m$$

Definition 2.23. For a group $G = \{g_1, g_2, \ldots, g_n\}$, the corresponding **group al-gebra** of G is a G-module

$$\mathbb{C}[G] = \{c_1g_1 + c_2g_2 + \dots + c_ng_n : c_i \in \mathbb{C} \text{ for all } i\}$$

Proposition 2.24. Let G be a finite group and suppose $\mathbb{C}[G] = \bigoplus_{i=1}^{k} m_i V^{(i)}$ where the $V^{(i)}$ form a complete list of pairwise inequivalent irreducible G-modules. Then,

number of $V^{(i)} = k =$ number of conjugacy classes of G

Proof. For $v \in \mathbb{C}[G]$, let the map $\phi_v : \mathbb{C}[G] \to \mathbb{C}[G]$ be right multiplication by v. In other words,

 $\phi_v(w) = wv \text{ for all } w \in \mathbb{C}[G]$ Since $\phi_v(gw) = (gw)v = g(wv) = g\phi_v(w), \ \phi_v \in End \ \mathbb{C}[G]$. Claim: $\mathbb{C}[G] \cong End \ \mathbb{C}[G]$ Consider $\psi : \mathbb{C}[G] \to End \ \mathbb{C}[G]$ such that $\psi(v) = \phi_v$.

$$\psi(v)\psi(w) = \phi_v\phi_w = \phi_{wv} = \psi(wv)$$

If $\psi(v) = \phi_v$ is the zero map, then

$$0 = \phi_v(\epsilon) = \epsilon v = v.$$

Hence, ψ is injective.

Suppose $\theta \in End \mathbb{C}[G]$ and let $v = \theta(\epsilon) \in \mathbb{C}[G]$. For any $g \in G$,

$$\theta(g) = \theta(g\epsilon) = g\theta(\epsilon) = gv = \phi_v(g)$$

Since θ and ϕ_v agree on a basis G, $\theta = \phi_v$ and ψ is surjective. Thus, ψ is an anti-isomorphism, and $\mathbb{C}[G] \cong End \mathbb{C}[G]$. By (3) of Theorem 2.21., $k = \dim Z_{End \mathbb{C}[G]} = \dim Z_{\mathbb{C}[G]}$. Consider $z = c_1g_1 + c_2g_2 + \cdots + c_ng_n \in Z_{\mathbb{C}[G]}$. For all $h \in G$, $zh = hz \Leftrightarrow z = hzh^{-1} \Leftrightarrow$

$$c_1g_1 + c_2g_2 + \dots + c_ng_n = c_1hg_1h^{-1} + c_2hg_2h^{-1} + \dots + c_nhg_nh^{-1}$$

Since hg_ih^{-1} runs over the conjugacy class of g_i , all elements of each conjugacy class have the same coefficient. If G has l conjugacy classes K_1, \ldots, K_l , let

$$z_i = \sum_{g \in K_i} g \text{ for } i = 1, \dots, l.$$

Then, any $z \in Z_{\mathbb{C}[G]}$ can be written as

$$z = \sum_{i=1}^{l} d_i z_i.$$

Hence,

number of conjugacy classes = $\dim Z_{\mathbb{C}[G]} = k$ = number of $V^{(i)}$.

3. Young Tableaux

Definition 3.1. Suppose $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l) \vdash n$. The **Young diagram**, or **shape**, of λ is a collection of boxes arranged in l left-justified rows with row i containing λ_i boxes for $1 \leq i \leq l$.

Example 3.2. is the Young diagram of
$$\lambda = (4, 2, 1)$$
.

Definition 3.3. Suppose $\lambda \vdash n$. Young tableau of shape λ is an array t obtained by filling the boxes of the Young diagram of λ with the numbers $1, 2, \ldots, n$ bijectively.

Let $t_{i,j}$ stand for the entry of t in the position (i, j) and sh t denote the shape of t.

Example 3.4.
$$t = \frac{2 | 5 | 6 | 4}{7 | 3 |}$$
 is a Young tableau of $\lambda = (4, 2, 1)$, and $t_{1,3} = 6$.

 $\pi \in S_n$ acts on a tableau $t = (t_{i,j})$ of $\lambda \vdash n$ as follows:

$$\pi t = (\pi t_{i,j})$$
 where $\pi t_{i,j} = \pi(t_{i,j})$

Definitions 3.5. Two λ -tableaux t_1 and t_2 are row equivalent, $t_1 \sim t_2$, if corresponding rows of the two tableaux contain the same elements. A tabloid of shape λ , or λ -tabloid, is then $\{t\} = \{t_1 : t_1 \sim t\}$ where $sh t = \lambda$.

If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l) \vdash n$, then the number of tableaux in a λ -tabloid is

$$\lambda_1!\lambda_2!...\lambda_l! \stackrel{\text{\tiny def}}{=} \lambda!.$$

Hence, the number of λ -tabloids is $n!/\lambda!$.

Example 3.6. For
$$s = \boxed{\begin{array}{c} 1 & 2 \\ 3 & 4 \end{array}}, \{s\} = \left\{ \boxed{\begin{array}{c} 1 & 2 \\ 3 & 4 \end{array}, \boxed{\begin{array}{c} 1 & 2 \\ 4 & 3 \end{array}, \boxed{\begin{array}{c} 2 & 1 \\ 3 & 4 \end{array}, \boxed{\begin{array}{c} 2 & 1 \\ 4 & 3 \end{array}}, \boxed{\begin{array}{c} 2 & 1 \\ 4 & 3 \end{array}} \right\} \stackrel{\text{def}}{=} \boxed{\begin{array}{c} 1 & 2 \\ \hline 3 & 4 \end{array}}$$

Definition 3.7. Suppose $\lambda = (\lambda_1, \lambda_2, ..., \lambda_l)$ and $\mu = (\mu_1, \mu_2, ..., \mu_m)$ are partitions of n. Then λ **dominates** μ , written $\lambda \succeq \mu$, if $\lambda_1 + \lambda_2 + ... + \lambda_i \ge \mu_1 + \mu_2 + ... + \mu_i$ for all $i \ge 1$. If i > l (i > m, respectively), then we take λ_i (μ_i , respectively) to be zero.

Lemma 3.8. (Dominance Lemma for Partitions) Let t^{λ} and s^{μ} be tableaux of shapes λ and μ , respectively. If for each index *i*, the elements of row *i* in s^{μ} are all in different columns of t^{λ} , then $\lambda \geq \mu$.

Proof. Since the elements of row 1 in s^{μ} are all in different columns of t^{λ} , we can sort the entries in each column of t^{λ} so that the elements of row 1 in s^{μ} all occur in the first row of $t^{\lambda}_{(1)}$. Then, since the elements of row 2 in s^{μ} are also all in different columns of t^{λ} and, thus, $t^{\lambda}_{(1)}$, we can re-sort the entries in each column of $t^{\lambda}_{(1)}$ so that the elements of rows 1 and 2 in s^{μ} all occur in the first two rows of $t^{\lambda}_{(2)}$. Inductively, the elements of rows 1, 2, ..., *i* in s^{μ} all occur in the first *i* rows of $t^{\lambda}_{(i)}$. Thus,

$$\lambda_1 + \lambda_2 + \ldots + \lambda_i = \text{number of elements in the first } i \text{ rows of } t_{(i)}^{\lambda}$$

$$\geq \text{ number of elements in the first } i \text{ rows of } s^{\mu}$$

$$= \mu_1 + \mu_2 + \ldots + \mu_i$$

Definition 3.9. Suppose $\lambda = (\lambda_1, \lambda_2, ..., \lambda_l)$ and $\mu = (\mu_1, \mu_2, ..., \mu_m)$ are partitions of n. Then $\lambda > \mu$ in **lexicographic order** if, for some index i,

$$\lambda_j = \mu_j$$
 for $j < i$ and $\lambda_i > \mu_i$

Proposition 3.10. If $\lambda, \mu \vdash n$ with $\lambda \succeq \mu$, then $\lambda \ge \mu$.

Proof. Suppose $\lambda \neq \mu$. Let *i* be the first index where they differ. Then, $\sum_{j=1}^{i-1} \lambda_j = \sum_{j=1}^{i-1} \mu_j$ and $\sum_{j=1}^{i} \lambda_j > \sum_{j=1}^{i} \mu_j$. Hence, $\lambda_i > \mu_i$.

4. Representations of the Symmetric Group

Definition 4.1. Suppose $\lambda \vdash n$. Let $M^{\lambda} = \mathbb{C}\{\{t_1\}, \ldots, \{t_k\}\}\}$, where $\{t_1\}, \ldots, \{t_k\}$ is a complete list of λ -tabloids. Then M^{λ} is called the **permutation module corresponding to** λ .

 M^{λ} is indeed an S_n -module by letting $\pi\{t\} = \{\pi t\}$ for $\pi \in S_n$ and $t \neq \lambda$ -tableau. In addition, $\dim M^{\lambda} = n!/\lambda!$, the number of λ -tabloids.

Definition 4.2. Any *G*-module *M* is **cyclic** if there is a $v \in M$ such that $M = \mathbb{C}Gv$ where $Gv = \{gv : g \in G\}$. In this case, we say that *M* is **generated by** *v*.

Proposition 4.3. If $\lambda \vdash n$, then M^{λ} is cyclic, generated by any given λ -tabloid.

Definition 4.4. Suppose that the tableau t has rows R_1, R_2, \ldots, R_l and columns C_1, C_2, \ldots, C_k . Then,

$$R_t = S_{R_1} \times S_{R_2} \times \ldots \times S_R$$

and

$$C_t = S_{C_1} \times S_{C_2} \times \ldots \times S_{C_d}$$

are the **row-stabilizer** and **column-stabilizer** of t, respectively.

Example 4.5. For t in Example 3.4., $R_t = S_{\{2,4,5,6\}} \times S_{\{3,7\}} \times S_{\{1\}}$ and $C_t = S_{\{1,2,7\}} \times S_{\{3,5\}} \times S_{\{6\}} \times S_{\{4\}}$.

Given a subset $H \subseteq S_n$, let $H^+ = \sum_{\pi \in H} \pi$ and $H^- = \sum_{\pi \in H} sgn(\pi)\pi$ be elements of $\mathbb{C}[S_n]$. If $H = \{\pi\}$, then we denote H^- by π^- . For a tableau t, let $\kappa_t = C_t^- = \sum_{\pi \in C_t} sgn(\pi)\pi$. Note that if t has columns $C_1, C_2, ..., C_k$, then $\kappa_t = \kappa_{C_1} \kappa_{C_2} ... \kappa_{C_k}$.

Definition 4.6. If t is a tableau, then the associated **polytabloid** is $e_t = \kappa_t \{t\}$.

Example 4.7. For s in Example 3.6.,

$$\kappa_s = \kappa_{C_1} \kappa_{C_2}$$

= $(\epsilon - (13))(\epsilon - (24))$

Thus,

$$e_t = \boxed{\frac{1 \quad 2}{3 \quad 4}} - \boxed{\frac{3 \quad 2}{1 \quad 4}} - \boxed{\frac{1 \quad 4}{3 \quad 2}} + \boxed{\frac{3 \quad 4}{1 \quad 2}}$$

Lemma 4.8. Let t be a tableau and π be a permutation. Then,

(1) $R_{\pi t} = \pi R_t \pi^{-1}$ (2) $C_{\pi t} = \pi C_t \pi^{-1}$ (3) $\kappa_{\pi t} = \pi \kappa_t \pi^{-1}$ (4) $e_{\pi t} = \pi e_t$

Proof.

(1)

$$\sigma \in R_{\pi t} \quad \Leftrightarrow \quad \sigma\{\pi t\} = \{\pi t\}$$
$$\Leftrightarrow \quad \pi^{-1}\sigma\pi\{t\} = \{t\}$$
$$\Leftrightarrow \quad \pi^{-1}\sigma\pi \in R_t$$
$$\Leftrightarrow \quad \sigma \in \pi R_t \pi^{-1}$$

(2) and (3) can be shown analogously to (1).(4)

$$e_{\pi t} = \kappa_{\pi t} \{ \pi t \} = \pi \kappa_t \pi^{-1} \{ \pi t \} = \pi \kappa_t \{ t \} = \pi e_t$$

Definition 4.9. For a partition $\lambda \vdash n$, the corresponding **Specht module**, S^{λ} , is the submodule of M^{λ} spanned by the polytabloids e_t , where $sh t = \lambda$.

Proposition 4.10. The S^{λ} are cyclic modules generated by any given polytabloid.

Given any two λ -tabloids t_i, t_j in the basis of M^{λ} , let their inner product be

$$<\{t_i\},\{t_j\}>=\delta_{\{t_i\},\{t_j\}}=\left\{\begin{array}{ll}1 & \text{if }\{t_i\}=\{t_j\}\\0 & \text{otherwise}\end{array}\right.$$

and extend by linearity in the first variable and conjugate linearity in the second to obtain an inner product on M^{λ} .

Lemma 4.11. (Sign Lemma) Let $H \leq S_n$ be a subgroup.

(1) If $\pi \in H$, then $\pi H^- = H^- \pi = sgn(\pi)H^-$ (2) For any $u, v \in M^{\lambda}$,

$$< H^{-}u, v > = < u, H^{-}v >$$

(3) If the transposition $(b c) \in H$, then we can factor

$$H^- = k(\epsilon - (b c))$$

where $k \in \mathbb{C}[S_n]$. (4) If t is a tableau with b, c in the same row of t and $(b c) \in H$, then

$$H^-\{t\} = 0$$

Proof.

(1)

$$\begin{split} \pi H^{-} &= \pi \sum_{\sigma \in H} sgn(\sigma)\sigma \\ &= \sum_{\sigma \in H} sgn(\sigma)\pi\sigma \\ &= \sum_{\tau \in H} sgn(\pi^{-1}\tau)\tau \qquad \text{(by letting } \tau = \pi\sigma) \\ &= \sum_{\tau \in H} sgn(\pi^{-1})sgn(\tau)\tau \\ &= sgn(\pi^{-1})\sum_{\tau \in H} sgn(\tau)\tau \\ &= sgn(\pi)H^{-} \end{split}$$

 $H^{-}\pi = sgn(\pi)H^{-}$ can be proven analogously.

(2)

$$\langle H^{-}u, v \rangle = \sum_{\pi \in H} \langle sgn(\pi)\pi u, v \rangle$$

$$= \sum_{\pi \in H} \langle u, sgn(\pi^{-1})\pi^{-1}v \rangle$$

$$= \sum_{\tau \in H} \langle u, sgn(\tau)\tau v \rangle$$

$$= \langle u, H^{-}v \rangle$$
(by letting $\tau = \pi^{-1}$)

- (3) Consider the subgroup $K = \{\epsilon, (bc)\} \leq H$. Let $\{k_i : i \in I\}$ be a transversal such that $H = \bigsqcup_{i \in I} k_i K$. Then, $H^- = (\sum_{i \in I} k_i)(\epsilon (bc))$.
- (4) $(b c){t} = {t}$. Hence,

$$H^{-}\{t\} = k(\epsilon - (b c))\{t\} = k(\{t\} - \{t\}) = 0$$

Corollary 4.12. Let t be a λ -tableau and s be a μ -tableau, where $\lambda, \mu \vdash n$. If $\kappa_t\{s\} \neq 0$, then $\lambda \supseteq \mu$. Moreover, if $\lambda = \mu$, then $\kappa_t\{s\} = \pm e_t$

Proof. Suppose b and c are two elements in the same row of s. If they are in the same column of t, then $(b c) \in C_t$ and $\kappa_t \{s\} = 0$ by (4) of Sign Lemma. Hence, the elements in each row of s are all in different columns in t, and $\lambda \geq \mu$ by Dominance Lemma.

If $\lambda = \mu$, then $\{s\} = \pi\{t\}$ for some $\pi \in C_t$. Then, by (4) of Sign Lemma,

$$\kappa_t\{s\} = \kappa_t \pi\{t\} = sgn(\pi)\kappa_t\{t\} = \pm e_t$$

Corollary 4.13. If $u \in M^{\mu}$ and $sh t = \mu$, then $\kappa_t u$ is a multiple of e_t .

Proof. Let $u = \sum_{i \in I} c_i \{s_i\}$ where $c_i \in \mathbb{C}$ and s_i are μ -tableaux. By *Corollary* 4.12., $\kappa_t u = \sum_{i \in J} \pm c_i e_t = (\sum_{i \in J} \pm c_i) e_t$ for some $J \subseteq I$.

Theorem 4.14. (Submodule Theorem) Let U be a submodule of M^{μ} . Then,

$$U \supset S^{\mu}$$
 or $U \subset S^{\mu \perp}$

Thus, S^{μ} is irreducible.

Proof. For $u \in U$ and a μ -tableau t, $\kappa_t u = ce_t$ for some $c \in \mathbb{C}$ by *Corollary 4.13.*. Suppose that there exists a u and t such that $c \neq 0$. Then, since U is a submodule, $ce_t = \kappa_t u \in U$. Hence, $e_t \in U$ and $S^{\mu} \subseteq U$ since S^{μ} is cyclic.

Otherwise, $\kappa_t u = 0$ for all $u \in U$ and all μ -tableau t. Then, by (2) of Sign Lemma,

$$\langle u, e_t \rangle = \langle u, \kappa_t \{t\} \rangle = \langle \kappa_t u, \{t\} \rangle = \langle 0, \{t\} \rangle = 0.$$

Since e_t span S^{μ} , $u \in S^{\mu \perp}$ and $U \subseteq S^{\mu \perp}$. $S^{\mu} \cap S^{\mu \perp} = 0$. Hence, S^{μ} is irreducible.

Proposition 4.15. If $\theta \in Hom(S^{\lambda}, M^{\mu})$ is nonzero, then $\lambda \geq \mu$. Moreover, if $\lambda = \mu$, then θ is multiplication by a scalar.

Proof. Since $\theta \neq 0$, there exists a basis element $e_t \in S^{\lambda}$ such that $\theta(e_t) \neq 0$. Because $M^{\lambda} = S^{\lambda} \oplus S^{\lambda \perp}$, we can extend θ to an element of $Hom(M^{\lambda}, M^{\mu})$ by letting $\theta(S^{\lambda \perp}) = \{0\}$. Then,

$$0 \neq \theta(e_t) = \theta(\kappa_t\{t\}) = \kappa_t \theta(\{t\}) = \kappa_t(\sum_i c_i\{s_i\})$$

where $c_i \in \mathbb{C}$ and s_i are μ -tableaux. Hence, by *Corollary 4.12.*, $\lambda \geq \mu$. If $\lambda = \mu$, $\theta(e_t) = ce_t$ for some $c \in \mathbb{C}$ by *Corollary 4.12.*. For any permutation π ,

$$\theta(e_{\pi t}) = \theta(\pi e_t) = \pi \theta(e_t) = \pi(ce_t) = ce_{\pi t}$$

Thus, θ is multiplication by c.

Theorem 4.16. The S^{λ} for $\lambda \vdash n$ form a complete list of irreducible S_n -modules.

Proof. Since the number of irreducible modules equals the number of conjugacy classes of S_n by Proposition 2.24., it suffices to show that they are pairwise inequivalent. Suppose $S^{\lambda} \cong S^{\mu}$. Then, there exists a nonzero $\theta \in Hom(S^{\lambda}, M^{\mu})$ since $S^{\lambda} \subseteq M^{\mu}$. Thus, by Proposition 4.15., $\lambda \succeq \mu$. Analogously, $\lambda \trianglelefteq \mu$. Hence, $\lambda = \mu$.

Corollary 4.17. The permutation modules decompose as

m

$$M^{\mu} = \bigoplus_{\lambda \trianglerighteq \mu} m_{\lambda \mu} S^{\lambda}$$

where the diagonal multiplicity $m_{\mu\mu} = 1$.

Proof. If S^{λ} appears in M^{μ} with nonzero multiplicity, then there exists a nonzero $\theta \in Hom(S^{\lambda}, M^{\mu})$ and $\lambda \geq \mu$ by *Proposition 4.15.* If $\lambda = \mu$, then

$$t_{\mu\mu} = \dim Hom(S^{\mu}, M^{\mu}) = 1$$

by Propositions 2.22. and 4.15..

Acknowledgments. I sincerely thank my mentor, Saravanan Thiyagarajan, for his guidance and assistance.

References

- [1] David S. Dummit & Richard M. Foote. Abstract Algebra. 3nd. Wiley. 2003.
- [2] William Fulton & Joe Harris. Representation Theory: A First Course. Springer. 1991.
- [3] William Fulton. Young Tableaux: With Applications to Representation Theory and Geometry. Cambridge University Press. 1996.
- [4] Bruce E. Sagan. The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. Springer-Verlag. 2000.