THE REPRESENTATIONS OF THE SYMMETRIC GROUP

JE-OK CHOI

ABSTRACT. Young tableau is a combinatorial object which provides a conve-
nient way to describe the group representations of the symmetric group, Sy,.
In this paper, we prove several facts about the symmetric group, group repre-
sentations, and Young tableaux. We then present the construction of Specht
modules which are irreducible representations of Sy,.

CONTENTS

1. THE SYMMETRIC GROUP. S,

Definitions 1.1. The symmetric group, Sq, is a group of all bijections from €2 to
itself under function composition. The elements m € Sq are called permutations.
In particular, for Q = {1,2,3,...,n}, Sq is the symmetric group of degree n,
denoted by S,,.

1 2 3 4 5 6

Example 1.2. o € S7 given by Z(l) 9 5 6 4 7 3 1

is a permutation.
Definition 1.3. A cycle is a string of integers which represents the element of
Sp that cyclically permutes these integers. The cycle (a1 as as ... an,) is the
permutation which sends a; to a;41 for 1 <4 <m — 1 and sends a,, to a;.

Proposition 1.4. FEvery permutation in S, can be written as a product of disjoint
cycles.

Proof. Consider m € S,. Given i € {1,2.3,...,n}, the elements of the sequence
i,m(i), 72(i), m3(i),... cannot all be distinct. Taking the first power p such that
7P (i) = i, we have the cycle (i w(i) 7%(i) ... 7?~1(i)). Iterate this process with an
element that is not in any of the previously generated cycles until each element of
{1,2,3,...,n} belongs to exactly one of the cycles generated. Then, 7 is the product

of the generated cycles. O
Definition 1.5. If 7 € S, is the product of disjoint cycles of lengths nq,ns, ..., n,
such that ny < ng < ... < n,, then the integers ni,no,...,n, are called the cycle
type of 7.

For instance, o in Example 1.2. can be expressed as o = (4)(36)(1257) and its
cycle type is 1,2,4. A 1-cycle of a permutation, such as (4) of o, is called a fixed
point and usually omitted from the cycle notation. Another way to represent the
cycle type is as a partition:
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Definition 1.6. A partition of n is a sequence A = (A1, Ag, ..., A;) where the \;
are weakly decreasing and Zli:l A =mn. If A= (A, Aa, ..., ) is a partition of n,
we write A - n.

o corresponds to the partition A = (4,2, 1).

Definitions 1.7. In any group G, elements g and h are conjugates if g = khk™!
for some k € G. The set of all elements conjugate to a given g is called the
conjugacy class of g and is denoted by K,.

Proposition 1.8. Conjugacy is an equivalence relation. Thus, the distinct conju-
gacy classes partition G.

Proof. Let a ~ b if a and b are conjugates. Since a = eae~! where € is the identity
element of G, a ~ a for all @ € G, and conjugacy is reflexive. Suppose a ~ b. Then,
a=kbk™! & b= (k"1)a(k~!)~!. Hence, b ~ a, and conjugacy is symmetric. If
a~band b~ c a=kbk™t = k(lcd 1 )k~! = (kl)c(kl)~! for some k,l € G, and
a ~ c. Thus, conjugacy is transitive. ]

Proposition 1.9. In S, two permutations are in the same conjugacy class if
and only if they have the same cycle type. Thus, there is a natural one-to-one
correspondence between partitions of n and conjugacy classes of S,,.

Proof. Consider m = (aj a2 ... a;) - (@m @my1 ... an) € S,. For o € S,
oot = (o(a1) o(az) ... o(a)) - (o(am) o(amiry --- o(an)).
Hence, conjugation does not change the cycle type. (I

Definition 1.10. A 2-cycle is called a transposition.

Proposition 1.11. Every element of S,, can be written as a product of transposi-
tions

Proof. For (a1 az ... am) € Sy,

(a1 as ... am) = (a1 am)(ay am-1)--- (a1 az)
Since every cycle can be written as a product of transpositions, by Proposition 1.4.,
every permutation can be expressed as a product of transpositions. O

Definition 1.12. If 7 = 7y75...7%, where the 7; are transpositions, then the sign

of 7 is sgn(r) = (—=1)k.

Proposition 1.13. The map sgn : S, — {1} is a well-defined homomorphism.
In other words, sgn(wo) = sgn(mw)sgn(o).

The proof of Proposition 1.18 may be found in [1].

2. GROUP REPRESENTATIONS

Definitions 2.1. Maty, the full complex matrix algebra of degree d, is the
set of all d x d matrices with entries in C, and GL4, the complex general linear
group of degree d, is the group of all X = (2; j)axa € Maty that are invertible
with respect to multiplication.

Definition 2.2. A matrix representation of a group G is a group homomor-
phism X : G — GLg.
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Definition 2.3. For V a vector space, GL(V), the general linear group of V is
the set of all invertible linear transformations of V to itself.

In this study, all vector spaces will be over C and of finite dimension.

Since GL(V') and GL4 are isomorphic as groups if dim V = d, we can think of
representations as group homomorphisms into the general linear group of a vector
space.

Definitions 2.4. Let V be a vector space and G be a group. Then V is a G-
module if there is a group homomorphism p : G — GL(V). Equivalently, V is a
G-module if there is an action of G on V denoted by gv for all g € G and v € V
which satisfy:

(1) gveV

(2) glev + dw) = c(gv) + d(gw)
(3) (gh)v = g(hv)

(4) ev=w

forall g,h € G; v,w € V; and ¢,d € C

Proof. (The Equivalence of Definitions) By letting gv = p(g)(v), (1) means p(g) is
a transformation from V to itself; (2) represents that the transformation is linear;
(3) says p is a group homomorphism; and (4) in combination with (3) means p(g)
and p(g~!) are inverse maps of each other and, thus, invertible. O

When there is no confusion arises about the associated group, the prefix G- will be
dropped from terms, such as shortening G-module to module.

Definition 2.5. Let V be a G-module. A submodule of V' is a subspace W that
is closed under the action of G, i.e., w € W = gw € W for all g € G. We write
W <V if W is a submodule of V.

Definition 2.6. A nonzero G-module V is reducible if it contains a nontrivial
submodule W. Otherwise, V is said to be irreducible.

Definitions 2.7. Let V be a vector space with subspaces U and W. Then V is
the direct sum of U and W, written V =U @ W, if every v € V can be written
uniquely as asum v = u+w, u € U, w € W. If V is a G-module and U, W are
G-submodules, then we say that U and W are complements of each other.

Definition 2.8. An inner product on a vector space Visamap < -,- >: VxV —
C that satisfies:

1) <z,y>=<y,x >

(2) <ax,y>=a<z,y>

B) <z+y,z>=<z,2>+<y,z>

(4) < z,z >> 0 with equality only for x =0
for z,y,z €V and a € C

Definition 2.9. For < -,- > an inner product on a vector space V and a subspace
W, the orthogonal complement of W is W+ = {v € V :< v,w >=0 for all w €
W}

Note that V=W @ W+.

Definition 2.10. An inner product < -,- > on a vector space V is invariant under
the action of G if < gv, gw >=< v, w > for all g € G and v,w € V.
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Proposition 2.11. Let V be a G-module, W a submodule, and < -,- > an inner
product on V. If < -,- > is invariant under the action of G, then W+ is also a
G-submodule.

Proof. Suppose g € G and u € W=. Then, for any w € W,

1 1

< gu,w >=< g lgu, g~ w>=0

Hence, gu € W, and W+ is a G-submodule. 0

w>=<u,g

Theorem 2.12. (Maschke’s Theorem) Let G be a finite group and let V be a
nonzero G-module. Then, V.= WM @ W@ @ .. @ W*) where each W is an
irreducible G-submodule of V.

Proof. Induction on d = dim V
e Base Case: if d =1, V itself is irreducible. Hence, V = W),

e Inductive Case: For d > 1, assume true for d’ < d.
If V is irreducible, V = W),
Suppose V is reducible. Then, V has a nontrivial G-submodule, W.
Let B = {v1,...,uq} be a basis for V. Consider the unique inner product
on V that satisfies

e 1 ifi=
<, V5 >= 5“1 - { 0 otherwise

for basis elements in B.
For any v,w € V| let

<wv,w >'= Z < gv, gw >
geG

(1)

<v,w >/:Z < gu, gw >:Z<gw,gv>:<w,v >/
geG geG

(2)

< av,w >'= Z < g(av), gw >= Za<gv,gw >=a<v,w>

9€@ g€eG
(3)
<vtw,z> = Z<g(v+w),gz>
geG
= Z<gv,gz>+<gw,gz>
geG

= <v,z> F<w,z>
(4)

<wv,v>'= Z < gv,gv>>0and <0,0>'= Z < g0,90 >=0
9geG geG
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Hence, < -, >’ is an inner product on V.
Moreover, since, for h € G,

< hv,hw >" = Z < ghv, ghw >
geG
= Z < kv, kw >
keG
= <v,w>,

< +,- >’ is invariant under the action of G.

Let Wt ={v €V :<v,w >'=0forallw € W} Then, V = W & W+,
and W+ is a G-submodule by Proposition 2.11. Since W and W+ can be
written as direct sums of irreducibles by the inductive hypothesis, V can
be expressed as a direct sum of irreducibles.

O

Definition 2.13. Let V and W be G-modules. Then a G-homomorphism is a
linear transformation 6 : V' — W such that

0(gv) = gb(v)
forallge Gandv e V.

Definition 2.14. Let V and W be G-modules. A G-isomorphism is a G-
homomorphism 6 : V' — W that is bijective. In this case, we say that V and
W are G-isomorphic, or G-equivalent, denoted by V' = W. Otherwise, we say
that V' and W are G-inequivalent.

Proposition 2.15. Let 0:V — W be a G-homomorphism. Then,

(1) ker 6 is a G-submodule of V
(2) im 6 is a G-submodule of W

Proof. (1) Since 6(0) =0, 0 € ker 6 and ker 8 # 0, and if vy, v2 € ker 6 and
ceC, 0(vy +cvg) = 0(vy) + cb(ve) =04 c0 =0 and vy + cvy € ker 0.
Hence, ker 6 is a subspace of V. Suppose v € ker 0. Then, for any g € G

O(gv) = g0(v)
0

Thus, gv € ker 6 and ker 6 is a G-submodule of V.

(2) 0 €4m @ and im 0 # 0, and if wy,we € W and ¢ € C, there exist vi,vs € V
such that 6(v1) = wy and 0(ve) = wy and O(vy + cve) = O(v1) + cB(va) =
w1 + cwy. Thus, wy + cws € im 6 and im 0 is a subspace of W. Suppose
w € im . Then, there exists v € V such that §(v) = w. For any g € G,
gv € V and

0(gv) = gb(v) = gw
Hence, gw € im 6 and im 0 is a G-submodule of W.
([l

Theorem 2.16. (Schur’s Lemma) Let V and W be irreducible G-modules. If
0:V — W is a G-homomorphism, then either

(1) 0 is a G-isomorphism, or
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(2) 0 is the zero map

Proof. Since V is irreducible and ker 6 is a submodule by Proposition 2.15., ker 0 =
{0} or ker 6 = V. Similarly, im 8 = {0} or im 6 = W. If ker § = {0} and
im 0 = W, 0 is a G-isomorphism, and if ker 6 = V and im 6 = {0}, 6 is the zero
map. ([l

Corollary 2.17. Let V be a irreducible G-module. If0 : V — V is a G-homomorphism,
0 = cI for some c € C, multiplication by a scalar.

Proof. Since C is algebraically closed, 6 has an eigenvalue ¢ € C. Then, 6 — ¢l has
a nonzero kernel. By Theorem 2.16., 6 — cI is the zero map. Hence, 6 = cI. (]

Definition 2.18. Given a G-module V| the corresponding endomorphism alge-
bra is
EndV ={0:V — V :0 is a G-homomorphism}

Definition 2.19. The center of an algebra A is
Za={a€A:ab="baforallbe A}
Let E; ; be the matrix of zeros with exactly 1 one in position (4, j).
Proposition 2.20. The center of Maty is
ZMatd = {CId rce (C}
Proof. Suppose that C' € Zpsq:,. Consider
CEZ‘J‘ = EMC
CE; ;(E;;C, respectively) is all zeros except for the ith column(row, respectively)
which is the same as that of C. Hence, all off-diagonal elements must be 0.
For i # j,
C(Ei; + Eji) = (Eij + Eji)C

0 ... C1,5 . Clg 0 0 0
0 ... Cij .- Cig ... i1 ... Cji ... Cjj
: " : .. : . cr c o
0 ... Cjj o+ Cji ... 7,1 2, 2y

Then, ¢;; = ¢; ;. Hence, all the diagonal elements must be equal, and C' = ¢l for
some ¢ € C. O

Note that, for A, X € Matq and B,Y € Maty,
(A B)(X®Y)=ABa XY
Theorem 2.21. Let V be a G-module such that
Ve VO omV® g .ompv®
where the V) are pairwise inequivalent irreducibles and dim V") = d;. Then,
(1) dimV =mydy + maody + - - - mydy,

(2) EndV = @Y | Mat,y,
(3) dim ZEndV =k.
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Proof.

(1) Clear.
(2) By Theorem 2.16. and Corollary 2.17., 6 € End V maps each V) into m;
copies of V() as multiplications by scalars. Hence,

EndV = Maty,, ® Maty,, ®--- S Maty,,
(3) Consider C € Zgnqv. Then,

k
CT =TC for all T € End V = P Mat,,

i=1

where T' = @le M,,, and C = @le Chn,; -

= @ Cm,- Mmi

i=1
Similarly, TC = @le M,,,Crn,. Hence,

Cm; M, = Mp,,Cy, for all M,,, € Mat,,
By Proposition 2.20., Cy,, = ¢;I,, for some ¢; € C. Thus,

k
C= @ ciImi
i=1

and dim ZEnd Vv = k.
(]

Proposition 2.22. Let V and W be G-modules with V irreducible. Then, dim Hom(V, W)
is the multiplicity of V in W.

Proof. Let m be the multiplicity of V in W. By Theorem 2.16. and Corollary 2.17.,
6 € Hom(V,W) maps V into m copies of V in W as multiplications by scalars.
Hence,

dim Hom(V,W) =m
O

Definition 2.23. For a group G = {g1,92,.-.,9n}, the corresponding group al-
gebra of G is a G-module

C[G) ={c191 + caga + -+ + cngn : ¢; € C for all i}

Proposition 2.24. Let G be a finite group and suppose C[G] = @le m; V) where

the V@ form a complete list of pairwise inequivalent irreducible G-modules. Then,

number of VW =k = number of conjugacy classes of G
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Proof. For v € C[G], let the map ¢, : C[G] — C|G] be right multiplication by v.
In other words,
@y (w) = wo for all w € C|G]

Since ¢y (gw) = (gw)v = g(wv) = gou(w), ¢y € End C[G].
Claim: C[G] 2 End C[G]
Consider 9 : C[G] — End C[G] such that (v) = ¢,.

Y()h(w) = dpduw = Puwv = PY(wv)
If ¢(v) = ¢, is the zero map, then

0= ¢y(e) =ev=n.

Hence, 1 is injective.
Suppose 6 € End C[G] and let v = 0(¢) € C[G]. For any g € G,

0(g) = 0(ge) = gb(e) = gv = du(9)
Since 6 and ¢, agree on a basis G, § = ¢, and 1 is surjective. Thus, ¥ is an
anti-isomorphism, and C[G] & End C[G].
By (3) of Theorem 2.21., k = dim Zgnqcja) = dim Zg(q)-
Consider z = c191 + cag2 + - + cngn € Zea)-
Foral he G, zh=hz < 2=hzh ! &

191+ C2g2 + -+ + Cagn = crhgih™" + cahgah ™' + - + ¢uhgnh ™!

Since hg;h~! runs over the conjugacy class of g;, all elements of each conjugacy

class have the same coefficient. If G has [ conjugacy classes K7y, ..., Kj, let
zi = Z gfori=1,...,L
9geK;

Then, any z € Z¢|g) can be written as

l
i=1

Hence,

number of conjugacy classes = dim Zc¢(g) = k = number of 17408

3. YOUNG TABLEAUX

Definition 3.1. Suppose A = (A1, Ae,...,\;)) F n. The Young diagram, or
shape, of X\ is a collection of boxes arranged in [ left-justified rows with row 1
containing \; boxes for 1 <i <.

Example 3.2. is the Young diagram of A = (4,2,1).

Definition 3.3. Suppose A F n. Young tableau of shape )\ is an array ¢
obtained by filling the boxes of the Young diagram of A with the numbers 1,2,...,n
bijectively.

Let t; ; stand for the entry of ¢ in the position (¢, j) and sh ¢ denote the shape of t.
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516]4]
3 is a Young tableau of A = (4,2,1), and ¢; 3 = 6.

Example 3.4. t =

(=[]

7 € S, acts on a tableau ¢t = (¢; ;) of A - n as follows:
wt = (wt; ;) where wt; ; = 7(t; ;)

Definitions 3.5. Two A-tableaux t; and t; are row equivalent, t; ~ to, if corre-
sponding rows of the two tableaux contain the same elements. A tabloid of shape
A, or A-tabloid, is then {t} = {¢; : t; ~ ¢} where sht = \.

If A= (A1, )e,...,\) b n, then the number of tableaux in a A-tabloid is
Aol ! = AL

Hence, the number of A-tabloids is n!/AL

_11]2 L 211221 [2]1 [ et 1 2
Example3.6.Fors_34,{5}—{34,43,34,43}_ 3 4

Definition 3.7. Suppose A = (A1, Aa,..., \;) and u = (p1, o, - .., fm) are parti-
tions of n. Then A dominates p, written A\D>p, if Ay +Ao+...+X; > pur+po+. . .4pu;
for all 4 > 1. If ¢ > I (i > m, respectively), then we take \; (u;, respectively) to be
zero.

Lemma 3.8. (Dominance Lemma for Partitions) Let t* and s" be tableaux
of shapes A and u, respectively. If for each index i, the elements of row i in s* are
all in different columns of t*, then A > pu.

Proof. Since the elements of row 1 in s are all in different columns of #*, we can
sort the entries in each column of t* so that the elements of row 1 in s# all occur
in the first row of tz\l). Then, since the elements of row 2 in s* are also all in

different columns of t* and, thus, tf‘l), we can re-sort the entries in each column of

tz\l) so that the elements of rows 1 and 2 in s# all occur in the first two rows of tg‘2).

Inductively, the elements of rows 1,2,...,4 in s* all occur in the first i rows of tf‘i).
Thus,
A+ A2+ ...+ )X; = number of elements in the first ¢ rows of tf‘i)

> npumber of elements in the first 7 rows of s*
= p1tp2t .
O
Definition 3.9. Suppose A = (A1, Ao, ..., \;) and p = (u1, p2, - - ., fim) are parti-
tions of n. Then A > p in lexicographic order if, for some index ¢,
Aj =y for 7 <iand A; >
Proposition 3.10. If A\, u = n with A\> pu, then A > pu.

Proof. Suppose A # u. Let ¢ be the first index where they differ. Then, 23;11 Aj =

i1 i i
Doy iyand Y3 A > > i puy. Hence, i > ;. O
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4. REPRESENTATIONS OF THE SYMMETRIC GROUP

Definition 4.1. Suppose A - n. Let M* = C{{t1},...,{tx}}, where {t:},..., {tx}
is a complete list of A-tabloids. Then M? is called the permutation module
corresponding to .

M? is indeed an S,-module by letting 7{t} = {nt} for 7 € S,, and ¢ a A-tableau.
In addition, dim M* = n!/A!, the number of A\-tabloids.

Definition 4.2. Any G-module M is cyclic if there is a v € M such that M = CGv
where Gv = {gv : g € G}. In this case, we say that M is generated by v.

Proposition 4.3. If A\ n, then M?> is cyclic, generated by any given \-tabloid.

Definition 4.4. Suppose that the tableau ¢t has rows Ry, Ro, ..., R; and columns
Cl, 02, ey Ck Then,

Rt:SRl XSRQ X, XSR[
and

Cy =S¢, X Sc, X ... x 8¢,
are the row-stabilizer and column-stabilizer of ¢, respectively.
Example 4.5. For t in Example 3.4., Ry = Sa456) X S(3,73 X Sq1y and C; =
8{17277} X 5{375} X 5{6} X 5{4}.
Given a subset H C Sy, let H =3 mand H- =% sgn(m)m be elements
of C[Sy]. If H = {x}, then we denote H~ by 7.
For a tableau t, let r, = C; = > o sgn(m)m. Note that if ¢ has columns
C1,Cy, ..., Cy, then ks = Koy Koy Ky, -
Definition 4.6. If ¢ is a tableau, then the associated polytabloid is e; = x:{t}.
Example 4.7. For s in Ezample 3.6.,

Rs = RC{RC,
= (e—(13))(e—(24))
Thus,

oo 1L 2 32 1434
7 3 4 1 4 3 2 "1 2

Lemma 4.8. Let t be a tableau and w be a permutation. Then,
(1) Rﬂ—t = 7TRt7T71
(2) Cﬂ—t == 7TCt7r_1
(3) Knt = mrym !

(4) ext = mey
Proof.

(1)
0 € Ry o{nt} = {nt}
mtom{t} = {t}

n lom e Ry

oenRn !

K
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(2) and (3) can be shown analogously to (1).
(4)
ert = Kpe{mt} = mhem Nt} = wR{t} = ey

O

Definition 4.9. For a partition A - n, the corresponding Specht module, S*, is
the submodule of M* spanned by the polytabloids e;, where sht = \.

Proposition 4.10. The S* are cyclic modules generated by any given polytabloid.

Given any two A-tabloids ¢;,¢; in the basis of M A, let their inner product be

<{ti}, {t;} >=0py. 0,y = { Lif {ti} = {t;}

0 otherwise

and extend by linearity in the first variable and conjugate linearity in the second
to obtain an inner product on M?*.

Lemma 4.11. (Sign Lemma) Let H < S,, be a subgroup.
(1) If m € H, then
TH™ =H m=sgn(m)H™
(2) For any u,v € M*,
<H u,v>=<u,H v>
(3) If the transposition (bc) € H, then we can factor
H™ =k(e—(bo))

where k € C[S,].
(4) If t is a tableau with b, c in the same row of t and (bc) € H, then

H={t}=0
Proof.

(1)

TH- = WZSQTL(O’)O’

= Z sgn(o)mwo

oc€EH

= Z sgn(m—tr)T (by letting 7 = 7o)
TEH

= Z sgn(m—Hsgn(r)T

TEH

= sgn(rh) Z sgn(T)T

T€H
= sgn(m)H™

H~7 = sgn(m)H~ can be proven analogously.
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(2)

<H u,v> = Z < sgn(m)Tu,v >
neH
= Z < u,sgn(n T o >
neH
= Z < u, sgn(r)Tv > (by letting 7 = 7~ 1)
TeEH
= <u,H v>

(3) Consider the subgroup K = {e, (bc)} < H. Let {k; : ¢ € I} be a transversal
such that H = Ujerk; K. Then, H™ = (3, ki)(e — (be)).
(4) (be){t} = {t}. Hence,

Ho{t} = k(e = (bo){t} = k({t} - {t}) =0
(]

Corollary 4.12. Let t be a A-tableau and s be a p-tableau, where \,pu F n. If
ki{s} # 0, then A\> u. Moreover, if A\ = p, then ki{s} = te;

Proof. Suppose b and ¢ are two elements in the same row of s. If they are in the
same column of ¢, then (bc) € C; and k{s} = 0 by (4) of Sign Lemma. Hence, the
elements in each row of s are all in different columns in ¢, and A> u by Dominance
Lemma.

If A = pu, then {s} = n{t} for some m € C;. Then, by (4) of Sign Lemma,

ki{s} = kem{t} = sgn(m)r{t} = te;

Corollary 4.13. If u € M*" and sht = p, then kyu is a multiple of e;.

Proof. Let u = ), ;ci{si} where ¢; € C and s; are p-tableaux. By Corollary
4.12., kyu =,y Fcies = (3, £ci)es for some J C 1. |

Theorem 4.14. (Submodule Theorem) Let U be a submodule of M*. Then,
UDS* or UCSH
Thus, S* is irreducible.

Proof. For u € U and a p-tableau t, kyu = ce; for some ¢ € C by Corollary 4.13..
Suppose that there exists a u and ¢ such that ¢ # 0. Then, since U is a submodule,
cer = kyu € U. Hence, e; € U and S* C U since S* is cyclic.

Otherwise, kiu = 0 for all w € U and all py-tableau t. Then, by (2) of Sign Lemma,

<u, e >=< u, ke{t} >=< ru, {t} >=<0,{t} >=0.

Since e; span S*, u € S* and U C Skt
SH N SHE = 0. Hence, S* is irreducible. O

Proposition 4.15. If § € Hom(S*, M) is nonzero, then A > . Moreover, if
A =, then 0 is multiplication by a scalar.
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Proof. Since § # 0, there exists a basis element e; € S* such that 6(e;) # 0.
Because M* = S* @ S* | we can extend 6 to an element of Hom(M*, M*) by
letting 0(S*+) = {0}. Then,

07 0(er) = 0(re{t}) = m:0({t}) = nt(z ci{si})

where ¢; € C and s; are p-tableaux. Hence, by Corollary 4.12., AT p.
If A= p, 0(et) = ces for some ¢ € C by Corollary 4.12.. For any permutation T,

O(ert) = O(mer) = mh(er) = m(cer) = cent
Thus, 6 is multiplication by c. O
Theorem 4.16. The S* for A n form a complete list of irreducible S,,-modules.

Proof. Since the number of irreducible modules equals the number of conjugacy
classes of S,, by Proposition 2.24., it suffices to show that they are pairwise in-
equivalent. Suppose S* = S#. Then, there exists a nonzero § € Hom(S*, M*)
since S* C M*. Thus, by Proposition 4.15., A > p. Analogously, A < u. Hence,

A= p. g
Corollary 4.17. The permutation modules decompose as
M* = @ m)\#S/\
AD>p

where the diagonal multiplicity m,,, = 1.

Proof. If S* appears in M* with nonzero multiplicity, then there exists a nonzero
6 € Hom(S*, M*) and A\ > p by Proposition 4.15.. If A = p, then

My, = dim Hom(S*, M") =1
by Propositions 2.22. and 4.15.. O
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