THE REPRESENTATIONS OF THE SYMMETRIC GROUP

JE-OK CHOI

Abstract

Young tableau is a combinatorial object which provides a convenient way to describe the group representations of the symmetric group, S_{n}. In this paper, we prove several facts about the symmetric group, group representations, and Young tableaux. We then present the construction of Specht modules which are irreducible representations of S_{n}.

Contents

1. The Symmetric Group. S_{n}

Definitions 1.1. The symmetric group, S_{Ω}, is a group of all bijections from Ω to itself under function composition. The elements $\pi \in S_{\Omega}$ are called permutations. In particular, for $\Omega=\{1,2,3, \ldots, n\}, S_{\Omega}$ is the symmetric group of degree n, denoted by S_{n}.

Example 1.2. $\sigma \in S_{7}$ given by | i | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |
| $\sigma(i)$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | 5 | 6 | 4 | 7 | 3 | 1 | | is a permutation.

Definition 1.3. A cycle is a string of integers which represents the element of S_{n} that cyclically permutes these integers. The cycle $\left(\begin{array}{lllll}a_{1} & a_{2} & a_{3} & \ldots & a_{m}\end{array}\right)$ is the permutation which sends a_{i} to a_{i+1} for $1 \leq i \leq m-1$ and sends a_{m} to a_{1}.

Proposition 1.4. Every permutation in S_{n} can be written as a product of disjoint cycles.

Proof. Consider $\pi \in S_{n}$. Given $i \in\{1,2.3, \ldots, n\}$, the elements of the sequence $i, \pi(i), \pi^{2}(i), \pi^{3}(i), \ldots$ cannot all be distinct. Taking the first power p such that $\pi^{p}(i)=i$, we have the cycle $\left(i \pi(i) \pi^{2}(i) \ldots \pi^{p-1}(i)\right)$. Iterate this process with an element that is not in any of the previously generated cycles until each element of $\{1,2,3, \ldots, n\}$ belongs to exactly one of the cycles generated. Then, π is the product of the generated cycles.

Definition 1.5. If $\pi \in S_{n}$ is the product of disjoint cycles of lengths $n_{1}, n_{2}, \ldots, n_{r}$ such that $n_{1} \leq n_{2} \leq \ldots \leq n_{r}$, then the integers $n_{1}, n_{2}, \ldots, n_{r}$ are called the cycle type of π.

For instance, σ in Example 1.2. can be expressed as $\sigma=(4)(36)(1257)$ and its cycle type is $1,2,4$. A 1 -cycle of a permutation, such as (4) of σ, is called a fixed point and usually omitted from the cycle notation. Another way to represent the cycle type is as a partition:

[^0]Definition 1.6. A partition of n is a sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ where the λ_{i} are weakly decreasing and $\sum_{i=1}^{l} \lambda_{i}=n$. If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ is a partition of n, we write $\lambda \vdash n$.
σ corresponds to the partition $\lambda=(4,2,1)$.
Definitions 1.7. In any group G, elements g and h are conjugates if $g=k h k^{-1}$ for some $k \in G$. The set of all elements conjugate to a given g is called the conjugacy class of g and is denoted by K_{g}.
Proposition 1.8. Conjugacy is an equivalence relation. Thus, the distinct conjugacy classes partition G.

Proof. Let $a \sim b$ if a and b are conjugates. Since $a=\epsilon a \epsilon^{-1}$ where ϵ is the identity element of $G, a \sim a$ for all $a \in G$, and conjugacy is reflexive. Suppose $a \sim b$. Then, $a=k b k^{-1} \Leftrightarrow b=\left(k^{-1}\right) a\left(k^{-1}\right)^{-1}$. Hence, $b \sim a$, and conjugacy is symmetric. If $a \sim b$ and $b \sim c, a=k b k^{-1}=k\left(l c l^{-1}\right) k^{-1}=(k l) c(k l)^{-1}$ for some $k, l \in G$, and $a \sim c$. Thus, conjugacy is transitive.

Proposition 1.9. In S_{n}, two permutations are in the same conjugacy class if and only if they have the same cycle type. Thus, there is a natural one-to-one correspondence between partitions of n and conjugacy classes of S_{n}.

Proof. Consider $\pi=\left(a_{1} a_{2} \ldots a_{l}\right) \cdots\left(a_{m} a_{m+1} \ldots a_{n}\right) \in S_{n}$. For $\sigma \in S_{n}$, $\sigma \pi \sigma^{-1}=\left(\sigma\left(a_{1}\right) \sigma\left(a_{2}\right) \ldots \sigma\left(a_{l}\right)\right) \cdots\left(\sigma\left(a_{m}\right) \sigma\left(a_{m+1)} \ldots \sigma\left(a_{n}\right)\right)\right.$.
Hence, conjugation does not change the cycle type.
Definition 1.10. A 2-cycle is called a transposition.
Proposition 1.11. Every element of S_{n} can be written as a product of transpositions

Proof. For $\left(a_{1} a_{2} \ldots a_{m}\right) \in S_{n}$,

$$
\left(a_{1} a_{2} \ldots a_{m}\right)=\left(a_{1} a_{m}\right)\left(a_{1} a_{m-1}\right) \cdots\left(a_{1} a_{2}\right)
$$

Since every cycle can be written as a product of transpositions, by Proposition 1.4., every permutation can be expressed as a product of transpositions.

Definition 1.12. If $\pi=\tau_{1} \tau_{2} \ldots \tau_{k}$, where the τ_{i} are transpositions, then the sign of π is $\operatorname{sgn}(\pi)=(-1)^{k}$.
Proposition 1.13. The map sgn : $S_{n} \rightarrow\{ \pm 1\}$ is a well-defined homomorphism. In other words, $\operatorname{sgn}(\pi \sigma)=\operatorname{sgn}(\pi) \operatorname{sgn}(\sigma)$.

The proof of Proposition 1.13 may be found in [1].

2. Group Representations

Definitions 2.1. $M a t_{d}$, the full complex matrix algebra of degree d, is the set of all $d \times d$ matrices with entries in \mathbb{C}, and $G L_{d}$, the complex general linear group of degree d, is the group of all $X=\left(x_{i, j}\right)_{d \times d} \in M a t_{d}$ that are invertible with respect to multiplication.

Definition 2.2. A matrix representation of a group G is a group homomorphism $X: G \rightarrow G L_{d}$.

Definition 2.3. For V a vector space, $\mathrm{GL}(\mathrm{V})$, the general linear group of V is the set of all invertible linear transformations of V to itself.

In this study, all vector spaces will be over \mathbb{C} and of finite dimension.
Since $G L(V)$ and $G L_{d}$ are isomorphic as groups if $\operatorname{dim} V=d$, we can think of representations as group homomorphisms into the general linear group of a vector space.

Definitions 2.4. Let V be a vector space and G be a group. Then V is a G module if there is a group homomorphism $\rho: G \rightarrow G L(V)$. Equivalently, V is a G-module if there is an action of G on V denoted by $g v$ for all $g \in G$ and $v \in V$ which satisfy:
(1) $g v \in V$
(2) $g(c v+d w)=c(g v)+d(g w)$
(3) $(g h) v=g(h v)$
(4) $\epsilon v=v$
for all $g, h \in G ; v, w \in V$; and $c, d \in \mathbb{C}$
Proof. (The Equivalence of Definitions) By letting $g v=\rho(g)(v)$, (1) means $\rho(g)$ is a transformation from V to itself; (2) represents that the transformation is linear; (3) says ρ is a group homomorphism; and (4) in combination with (3) means $\rho(g)$ and $\rho\left(g^{-1}\right)$ are inverse maps of each other and, thus, invertible.

When there is no confusion arises about the associated group, the prefix G - will be dropped from terms, such as shortening G-module to module.

Definition 2.5. Let V be a G-module. A submodule of V is a subspace W that is closed under the action of G, i.e., $w \in W \Rightarrow g w \in W$ for all $g \in G$. We write $W \leq V$ if W is a submodule of V.

Definition 2.6. A nonzero G-module V is reducible if it contains a nontrivial submodule W. Otherwise, V is said to be irreducible.
Definitions 2.7. Let V be a vector space with subspaces U and W. Then V is the direct sum of U and W, written $V=U \oplus W$, if every $v \in V$ can be written uniquely as a sum $v=u+w, u \in U, w \in W$. If V is a G-module and U, W are G-submodules, then we say that U and W are complements of each other.

Definition 2.8. An inner product on a vector space V is a map $<\cdot, \cdot>: V \times V \rightarrow$ \mathbb{C} that satisfies:
(1) $\langle x, y\rangle=\langle y, x\rangle$
(2) $<a x, y>=a<x, y>$
(3) $<x+y, z>=<x, z>+\langle y, z>$
(4) $<x, x>\geq 0$ with equality only for $x=0$
for $x, y, z \in V$ and $a \in \mathbb{C}$
Definition 2.9. For $\langle\cdot, \cdot>$ an inner product on a vector space V and a subspace W, the orthogonal complement of W is $W^{\perp}=\{v \in V:<v, w>=0$ for all $w \in$ $W\}$
Note that $V=W \oplus W^{\perp}$.
Definition 2.10. An inner product $\langle\cdot, \cdot\rangle$ on a vector space V is invariant under the action of G if $\langle g v, g w\rangle=\langle v, w\rangle$ for all $g \in G$ and $v, w \in V$.

Proposition 2.11. Let V be a G-module, W a submodule, and $<\cdot, \cdot>$ an inner product on V. If $<\cdot \cdot \gg$ is invariant under the action of G, then W^{\perp} is also a G-submodule.

Proof. Suppose $g \in G$ and $u \in W^{\perp}$. Then, for any $w \in W$,

$$
<g u, w>=<g^{-1} g u, g^{-1} w>=<u, g^{-1} w>=0
$$

Hence, $g u \in W^{\perp}$, and W^{\perp} is a G-submodule.
Theorem 2.12. (Maschke's Theorem) Let G be a finite group and let V be a nonzero G-module. Then, $V=W^{(1)} \oplus W^{(2)} \oplus \ldots \oplus W^{(k)}$ where each $W^{(i)}$ is an irreducible G-submodule of V.

Proof. Induction on $d=\operatorname{dim} V$

- Base Case: if $d=1, \mathrm{~V}$ itself is irreducible. Hence, $V=W^{(1)}$.
- Inductive Case: For $d>1$, assume true for $d^{\prime}<d$.

If V is irreducible, $V=W^{(1)}$.
Suppose V is reducible. Then, V has a nontrivial G-submodule, W.
Let $B=\left\{v_{1}, \ldots, v_{d}\right\}$ be a basis for V. Consider the unique inner product on V that satisfies

$$
<v_{i}, v_{j}>=\delta_{i, j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

for basis elements in B.
For any $v, w \in V$, let

$$
<v, w>^{\prime}=\sum_{g \in G}<g v, g w>
$$

(1)

$$
\begin{equation*}
<v, w>^{\prime}=\sum_{g \in G}<g v, g w>=\sum_{g \in G} \overline{<g w, g v>}=\overline{\left\langle w, v>^{\prime}\right.} \tag{2}
\end{equation*}
$$

$<a v, w>^{\prime}=\sum_{g \in G}<g(a v), g w>=\sum_{g \in G} a<g v, g w>=a<v, w>^{\prime}$

$$
\begin{align*}
<v+w, z> & =\sum_{g \in G}<g(v+w), g z> \tag{3}\\
& =\sum_{g \in G}<g v, g z>+<g w, g z> \\
& =<v, z>^{\prime}+<w, z>^{\prime}
\end{align*}
$$

$$
\begin{equation*}
<v, v>^{\prime}=\sum_{g \in G}<g v, g v>\geq 0 \text { and }<0,0>^{\prime}=\sum_{g \in G}<g 0, g 0>=0 \tag{4}
\end{equation*}
$$

Hence, $\langle\cdot, \cdot\rangle^{\prime}$ is an inner product on V.
Moreover, since, for $h \in G$,

$$
\begin{aligned}
<h v, h w>^{\prime} & =\sum_{g \in G}<g h v, g h w> \\
& =\sum_{k \in G}<k v, k w> \\
& =<v, w>^{\prime}
\end{aligned}
$$

$<\cdot, \cdot>^{\prime}$ is invariant under the action of G.
Let $W^{\perp}=\left\{v \in V:<v, w>^{\prime}=0\right.$ for all $\left.w \in W\right\}$ Then, $V=W \oplus W^{\perp}$, and W^{\perp} is a G-submodule by Proposition 2.11. Since W and W^{\perp} can be written as direct sums of irreducibles by the inductive hypothesis, V can be expressed as a direct sum of irreducibles.

Definition 2.13. Let V and W be G-modules. Then a G-homomorphism is a linear transformation $\theta: V \rightarrow W$ such that

$$
\theta(g v)=g \theta(v)
$$

for all $g \in G$ and $v \in V$.
Definition 2.14. Let V and W be G-modules. A G-isomorphism is a G homomorphism $\theta: V \rightarrow W$ that is bijective. In this case, we say that V and W are G-isomorphic, or G-equivalent, denoted by $V \cong W$. Otherwise, we say that V and W are G-inequivalent.
Proposition 2.15. Let $\theta: V \rightarrow W$ be a G-homomorphism. Then,
(1) $\operatorname{ker} \theta$ is a G-submodule of V
(2) $\operatorname{im} \theta$ is a G-submodule of W

Proof. (1) Since $\theta(0)=0,0 \in \operatorname{ker} \theta$ and $\operatorname{ker} \theta \neq \emptyset$, and if $v_{1}, v_{2} \in \operatorname{ker} \theta$ and $c \in \mathbb{C}, \theta\left(v_{1}+c v_{2}\right)=\theta\left(v_{1}\right)+c \theta\left(v_{2}\right)=0+c 0=0$ and $v_{1}+c v_{2} \in \operatorname{ker} \theta$. Hence, $\operatorname{ker} \theta$ is a subspace of V. Suppose $v \in \operatorname{ker} \theta$. Then, for any $g \in G$

$$
\begin{aligned}
\theta(g v) & =g \theta(v) \\
& =g 0 \\
& =0
\end{aligned}
$$

Thus, $g v \in \operatorname{ker} \theta$ and $\operatorname{ker} \theta$ is a G-submodule of V.
(2) $0 \in \operatorname{im} \theta$ and $i m \theta \neq \emptyset$, and if $w_{1}, w_{2} \in W$ and $c \in \mathbb{C}$, there exist $v_{1}, v_{2} \in V$ such that $\theta\left(v_{1}\right)=w_{1}$ and $\theta\left(v_{2}\right)=w_{2}$ and $\theta\left(v_{1}+c v_{2}\right)=\theta\left(v_{1}\right)+c \theta\left(v_{2}\right)=$ $w_{1}+c w_{2}$. Thus, $w_{1}+c w_{2} \in i m \theta$ and $\operatorname{im} \theta$ is a subspace of W. Suppose $w \in \operatorname{im} \theta$. Then, there exists $v \in V$ such that $\theta(v)=w$. For any $g \in G$, $g v \in V$ and

$$
\theta(g v)=g \theta(v)=g w
$$

Hence, $g w \in \operatorname{im} \theta$ and $\operatorname{im} \theta$ is a G-submodule of W.

Theorem 2.16. (Schur's Lemma) Let V and W be irreducible G-modules. If $\theta: V \rightarrow W$ is a G-homomorphism, then either
(1) θ is a G-isomorphism, or
(2) θ is the zero map

Proof. Since V is irreducible and $\operatorname{ker} \theta$ is a submodule by Proposition 2.15., $\operatorname{ker} \theta=$ $\{0\}$ or ker $\theta=V$. Similarly, $\operatorname{im} \theta=\{0\}$ or $\operatorname{im} \theta=W$. If ker $\theta=\{0\}$ and $\operatorname{im} \theta=W, \theta$ is a G-isomorphism, and if $\operatorname{ker} \theta=V$ and $\operatorname{im} \theta=\{0\}, \theta$ is the zero map.

Corollary 2.17. Let V be a irreducible G-module. If $\theta: V \rightarrow V$ is a G-homomorphism, $\theta=c I$ for some $c \in \mathbb{C}$, multiplication by a scalar.

Proof. Since \mathbb{C} is algebraically closed, θ has an eigenvalue $c \in \mathbb{C}$. Then, $\theta-c I$ has a nonzero kernel. By Theorem 2.16., $\theta-c I$ is the zero map. Hence, $\theta=c I$.

Definition 2.18. Given a G-module V, the corresponding endomorphism algebra is

$$
\text { End } V=\{\theta: V \rightarrow V: \theta \text { is a } G \text {-homomorphism }\}
$$

Definition 2.19. The center of an algebra A is

$$
Z_{A}=\{a \in A: a b=b a \text { for all } b \in A\}
$$

Let $E_{i, j}$ be the matrix of zeros with exactly 1 one in position (i, j).
Proposition 2.20. The center of $M a t_{d}$ is

$$
Z_{M a t_{d}}=\left\{c I_{d}: c \in \mathbb{C}\right\}
$$

Proof. Suppose that $C \in Z_{M a t_{d}}$. Consider

$$
C E_{i, i}=E_{i, i} C
$$

$C E_{i, i}\left(E_{i, i} C\right.$, respectively) is all zeros except for the i th column(row, respectively) which is the same as that of C. Hence, all off-diagonal elements must be 0 . For $i \neq j$,

\[

\]

Then, $c_{i, i}=c_{j, j}$. Hence, all the diagonal elements must be equal, and $C=c I_{d}$ for some $c \in \mathbb{C}$.
Note that, for $A, X \in M a t_{d}$ and $B, Y \in M a t_{f}$,

$$
(A \oplus B)(X \oplus Y)=A B \oplus X Y
$$

Theorem 2.21. Let V be a G-module such that

$$
V \cong m_{1} V^{(1)} \oplus m_{2} V^{(2)} \oplus \cdots m_{k} V^{(k)}
$$

where the $V^{(i)}$ are pairwise inequivalent irreducibles and dim $V^{(i)}=d_{i}$. Then,
(1) $\operatorname{dim} V=m_{1} d_{1}+m_{2} d_{2}+\cdots m_{k} d_{k}$
(2) End $V \cong \bigoplus_{i=1}^{k} M a t_{m_{i}}$
(3) $\operatorname{dim} Z_{E n d V}=k$.

Proof.
(1) Clear.
(2) By Theorem 2.16. and Corollary 2.17., $\theta \in E n d V$ maps each $V^{(i)}$ into m_{i} copies of $V^{(i)}$ as multiplications by scalars. Hence,

$$
\text { End } V \cong M a t_{m_{1}} \oplus M a t_{m_{2}} \oplus \cdots \oplus M a t_{m_{k}}
$$

(3) Consider $C \in Z_{E n d V}$. Then,

$$
C T=T C \text { for all } T \in E n d V \cong \bigoplus_{i=1}^{k} M a t_{m_{i}}
$$

where $T=\bigoplus_{i=1}^{k} M_{m_{i}}$ and $C=\bigoplus_{i=1}^{k} C_{m_{i}}$.

$$
\begin{aligned}
C T & =\left(\bigoplus_{i=1}^{k} C_{m_{i}}\right)\left(\bigoplus_{i=1}^{k} M_{m_{i}}\right) \\
& =\bigoplus_{i=1}^{k} C_{m_{i}} M_{m_{i}}
\end{aligned}
$$

Similarly, $T C=\bigoplus_{i=1}^{k} M_{m_{i}} C_{m_{i}}$. Hence,

$$
C_{m_{i}} M_{m_{i}}=M_{m_{i}} C_{m_{i}} \text { for all } M_{m_{i}} \in M a t_{m_{i}}
$$

By Proposition 2.20., $C_{m_{i}}=c_{i} I_{m_{i}}$ for some $c_{i} \in \mathbb{C}$. Thus,

$$
C=\bigoplus_{i=1}^{k} c_{i} I_{m_{i}}
$$

and $\operatorname{dim} Z_{E n d V}=k$.

Proposition 2.22. Let V and W be G-modules with V irreducible. Then, dim Hom (V, W) is the multiplicity of V in W.

Proof. Let m be the multiplicity of V in W. By Theorem 2.16. and Corollary 2.17., $\theta \in \operatorname{Hom}(V, W)$ maps V into m copies of V in W as multiplications by scalars. Hence,

$$
\operatorname{dim} \operatorname{Hom}(V, W)=m
$$

Definition 2.23. For a group $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$, the corresponding group algebra of G is a G-module

$$
\mathbb{C}[G]=\left\{c_{1} g_{1}+c_{2} g_{2}+\cdots+c_{n} g_{n}: c_{i} \in \mathbb{C} \text { for all } i\right\}
$$

Proposition 2.24. Let G be a finite group and suppose $\mathbb{C}[G]=\bigoplus_{i=1}^{k} m_{i} V^{(i)}$ where the $V^{(i)}$ form a complete list of pairwise inequivalent irreducible G-modules. Then,
number of $V^{(i)}=k=$ number of conjugacy classes of G

Proof. For $v \in \mathbb{C}[G]$, let the map $\phi_{v}: \mathbb{C}[G] \rightarrow \mathbb{C}[G]$ be right multiplication by v. In other words,

$$
\phi_{v}(w)=w v \text { for all } w \in \mathbb{C}[G]
$$

Since $\phi_{v}(g w)=(g w) v=g(w v)=g \phi_{v}(w), \phi_{v} \in$ End $\mathbb{C}[G]$.
Claim: $\mathbb{C}[G] \cong$ End $\mathbb{C}[G]$
Consider $\psi: \mathbb{C}[G] \rightarrow$ End $\mathbb{C}[G]$ such that $\psi(v)=\phi_{v}$.

$$
\psi(v) \psi(w)=\phi_{v} \phi_{w}=\phi_{w v}=\psi(w v)
$$

If $\psi(v)=\phi_{v}$ is the zero map, then

$$
0=\phi_{v}(\epsilon)=\epsilon v=v .
$$

Hence, ψ is injective.
Suppose $\theta \in \operatorname{End} \mathbb{C}[G]$ and let $v=\theta(\epsilon) \in \mathbb{C}[G]$. For any $g \in G$,

$$
\theta(g)=\theta(g \epsilon)=g \theta(\epsilon)=g v=\phi_{v}(g)
$$

Since θ and ϕ_{v} agree on a basis $G, \theta=\phi_{v}$ and ψ is surjective. Thus, ψ is an anti-isomorphism, and $\mathbb{C}[G] \cong E n d \mathbb{C}[G]$.
By (3) of Theorem 2.21., $k=\operatorname{dim} Z_{E n d} \mathbb{C}[G]=\operatorname{dim} Z_{\mathbb{C}[G]}$.
Consider $z=c_{1} g_{1}+c_{2} g_{2}+\cdots+c_{n} g_{n} \in Z_{\mathbb{C}[G]}$.
For all $h \in G, z h=h z \Leftrightarrow z=h z h^{-1} \Leftrightarrow$

$$
c_{1} g_{1}+c_{2} g_{2}+\cdots+c_{n} g_{n}=c_{1} h g_{1} h^{-1}+c_{2} h g_{2} h^{-1}+\cdots+c_{n} h g_{n} h^{-1}
$$

Since $h g_{i} h^{-1}$ runs over the conjugacy class of g_{i}, all elements of each conjugacy class have the same coefficient. If G has l conjugacy classes K_{1}, \ldots, K_{l}, let

$$
z_{i}=\sum_{g \in K_{i}} g \text { for } i=1, \ldots, l
$$

Then, any $z \in Z_{\mathbb{C}[G]}$ can be written as

$$
z=\sum_{i=1}^{l} d_{i} z_{i}
$$

Hence,

$$
\text { number of conjugacy classes }=\operatorname{dim} Z_{\mathbb{C}[G]}=k=\text { number of } V^{(i)}
$$

3. Young Tableaux

Definition 3.1. Suppose $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right) \vdash n$. The Young diagram, or shape, of λ is a collection of boxes arranged in l left-justified rows with row i containing λ_{i} boxes for $1 \leq i \leq l$.

Example 3.2.

Definition 3.3. Suppose $\lambda \vdash n$. Young tableau of shape λ is an array t obtained by filling the boxes of the Young diagram of λ with the numbers $1,2, \ldots, n$ bijectively.

Let $t_{i, j}$ stand for the entry of t in the position (i, j) and $s h t$ denote the shape of t.

Example 3.4. $t=$| 2 | 5 | 6 | 4 |
| :--- | :--- | :--- | :--- |
| 7 | 3 | | |
| 1 | | | | is a Young tableau of $\lambda=(4,2,1)$, and $t_{1,3}=6$.

$\pi \in S_{n}$ acts on a tableau $t=\left(t_{i, j}\right)$ of $\lambda \vdash n$ as follows:

$$
\pi t=\left(\pi t_{i, j}\right) \text { where } \pi t_{i, j}=\pi\left(t_{i, j}\right)
$$

Definitions 3.5. Two λ-tableaux t_{1} and t_{2} are row equivalent, $t_{1} \sim t_{2}$, if corresponding rows of the two tableaux contain the same elements. A tabloid of shape λ, or λ-tabloid, is then $\{t\}=\left\{t_{1}: t_{1} \sim t\right\}$ where $\operatorname{sh} t=\lambda$.

If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right) \vdash n$, then the number of tableaux in a λ-tabloid is

$$
\lambda_{1}!\lambda_{2}!\ldots \lambda_{l}!\stackrel{\text { def }}{=} \lambda!.
$$

Hence, the number of λ-tabloids is $n!/ \lambda!$.

Definition 3.7. Suppose $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m}\right)$ are partitions of n. Then λ dominates μ, written $\lambda \unrhd \mu$, if $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{i} \geq \mu_{1}+\mu_{2}+\ldots+\mu_{i}$ for all $i \geq 1$. If $i>l\left(i>m\right.$, respectively), then we take λ_{i} (μ_{i}, respectively) to be zero.

Lemma 3.8. (Dominance Lemma for Partitions) Let t^{λ} and s^{μ} be tableaux of shapes λ and μ, respectively. If for each index i, the elements of row i in s^{μ} are all in different columns of t^{λ}, then $\lambda \unrhd \mu$.

Proof. Since the elements of row 1 in s^{μ} are all in different columns of t^{λ}, we can sort the entries in each column of t^{λ} so that the elements of row 1 in s^{μ} all occur in the first row of $t_{(1)}^{\lambda}$. Then, since the elements of row 2 in s^{μ} are also all in different columns of t^{λ} and, thus, $t_{(1)}^{\lambda}$, we can re-sort the entries in each column of $t_{(1)}^{\lambda}$ so that the elements of rows 1 and 2 in s^{μ} all occur in the first two rows of $t_{(2)}^{\lambda}$. Inductively, the elements of rows $1,2, \ldots, i$ in s^{μ} all occur in the first i rows of $t_{(i)}^{\lambda}$. Thus,

$$
\begin{aligned}
\lambda_{1}+\lambda_{2}+\ldots+\lambda_{i} & =\text { number of elements in the first } i \text { rows of } t_{(i)}^{\lambda} \\
& \geq \text { number of elements in the first } i \text { rows of } s^{\mu} \\
& =\mu_{1}+\mu_{2}+\ldots+\mu_{i}
\end{aligned}
$$

Definition 3.9. Suppose $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{m}\right)$ are partitions of n. Then $\lambda>\mu$ in lexicographic order if, for some index i,

$$
\lambda_{j}=\mu_{j} \text { for } j<i \text { and } \lambda_{i}>\mu_{i}
$$

Proposition 3.10. If $\lambda, \mu \vdash n$ with $\lambda \unrhd \mu$, then $\lambda \geq \mu$.
Proof. Suppose $\lambda \neq \mu$. Let i be the first index where they differ. Then, $\sum_{j=1}^{i-1} \lambda_{j}=$ $\sum_{j=1}^{i-1} \mu_{j}$ and $\sum_{j=1}^{i} \lambda_{j}>\sum_{j=1}^{i} \mu_{j}$. Hence, $\lambda_{i}>\mu_{i}$.

4. Representations of the Symmetric Group

Definition 4.1. Suppose $\lambda \vdash n$. Let $M^{\lambda}=\mathbb{C}\left\{\left\{t_{1}\right\}, \ldots,\left\{t_{k}\right\}\right\}$, where $\left\{t_{1}\right\}, \ldots,\left\{t_{k}\right\}$ is a complete list of λ-tabloids. Then M^{λ} is called the permutation module corresponding to λ.
M^{λ} is indeed an S_{n}-module by letting $\pi\{t\}=\{\pi t\}$ for $\pi \in S_{n}$ and t a λ-tableau. In addition, $\operatorname{dim} M^{\lambda}=n!/ \lambda!$, the number of λ-tabloids.

Definition 4.2. Any G-module M is cyclic if there is a $v \in M$ such that $M=\mathbb{C} G v$ where $G v=\{g v: g \in G\}$. In this case, we say that M is generated by v.

Proposition 4.3. If $\lambda \vdash n$, then M^{λ} is cyclic, generated by any given λ-tabloid.
Definition 4.4. Suppose that the tableau t has rows $R_{1}, R_{2}, \ldots, R_{l}$ and columns $C_{1}, C_{2}, \ldots, C_{k}$. Then,

$$
R_{t}=S_{R_{1}} \times S_{R_{2}} \times \ldots \times S_{R_{l}}
$$

and

$$
C_{t}=S_{C_{1}} \times S_{C_{2}} \times \ldots \times S_{C_{k}}
$$

are the row-stabilizer and column-stabilizer of t, respectively.
Example 4.5. For t in Example 3.4., $R_{t}=S_{\{2,4,5,6\}} \times S_{\{3,7\}} \times S_{\{1\}}$ and $C_{t}=$ $S_{\{1,2,7\}} \times S_{\{3,5\}} \times S_{\{6\}} \times S_{\{4\}}$.

Given a subset $H \subseteq S_{n}$, let $H^{+}=\sum_{\pi \in H} \pi$ and $H^{-}=\sum_{\pi \in H} \operatorname{sgn}(\pi) \pi$ be elements of $\mathbb{C}\left[S_{n}\right]$. If $H=\{\pi\}$, then we denote H^{-}by π^{-}.
For a tableau t, let $\kappa_{t}=C_{t}^{-}=\sum_{\pi \in C_{t}} \operatorname{sgn}(\pi) \pi$. Note that if t has columns $C_{1}, C_{2}, \ldots, C_{k}$, then $\kappa_{t}=\kappa_{C_{1}} \kappa_{C_{2}} \ldots \kappa_{C_{k}}$.

Definition 4.6. If t is a tableau, then the associated polytabloid is $e_{t}=\kappa_{t}\{t\}$.
Example 4.7. For s in Example 3.6.,

$$
\begin{aligned}
\kappa_{s} & =\kappa_{C_{1}} \kappa_{C_{2}} \\
& =(\epsilon-(13))(\epsilon-(24))
\end{aligned}
$$

Thus,

Lemma 4.8. Let t be a tableau and π be a permutation. Then,
(1) $R_{\pi t}=\pi R_{t} \pi^{-1}$
(2) $C_{\pi t}=\pi C_{t} \pi^{-1}$
(3) $\kappa_{\pi t}=\pi \kappa_{t} \pi^{-1}$
(4) $e_{\pi t}=\pi e_{t}$

Proof.

$$
\begin{align*}
\sigma \in R_{\pi t} & \Leftrightarrow \sigma\{\pi t\}=\{\pi t\} \tag{1}\\
& \Leftrightarrow \pi^{-1} \sigma \pi\{t\}=\{t\} \\
& \Leftrightarrow \pi^{-1} \sigma \pi \in R_{t} \\
& \Leftrightarrow \sigma \in \pi R_{t} \pi^{-1}
\end{align*}
$$

(2) and (3) can be shown analogously to (1).

$$
\begin{equation*}
e_{\pi t}=\kappa_{\pi t}\{\pi t\}=\pi \kappa_{t} \pi^{-1}\{\pi t\}=\pi \kappa_{t}\{t\}=\pi e_{t} \tag{4}
\end{equation*}
$$

Definition 4.9. For a partition $\lambda \vdash n$, the corresponding Specht module, S^{λ}, is the submodule of M^{λ} spanned by the polytabloids e_{t}, where $s h t=\lambda$.

Proposition 4.10. The S^{λ} are cyclic modules generated by any given polytabloid. Given any two λ-tabloids t_{i}, t_{j} in the basis of M^{λ}, let their inner product be

$$
<\left\{t_{i}\right\},\left\{t_{j}\right\}>=\delta_{\left\{t_{i}\right\},\left\{t_{j}\right\}}= \begin{cases}1 & \text { if }\left\{t_{i}\right\}=\left\{t_{j}\right\} \\ 0 & \text { otherwise }\end{cases}
$$

and extend by linearity in the first variable and conjugate linearity in the second to obtain an inner product on M^{λ}.

Lemma 4.11. (Sign Lemma) Let $H \leq S_{n}$ be a subgroup.
(1) If $\pi \in H$, then

$$
\pi H^{-}=H^{-} \pi=\operatorname{sgn}(\pi) H^{-}
$$

(2) For any $u, v \in M^{\lambda}$,

$$
<H^{-} u, v>=<u, H^{-} v>
$$

(3) If the transposition $(b c) \in H$, then we can factor

$$
H^{-}=k(\epsilon-(b c))
$$

where $k \in \mathbb{C}\left[S_{n}\right]$.
(4) If t is a tableau with b, c in the same row of t and $(b c) \in H$, then

$$
H^{-}\{t\}=0
$$

Proof.
(1)

$$
\begin{aligned}
\pi H^{-} & =\pi \sum_{\sigma \in H} \operatorname{sgn}(\sigma) \sigma \\
& =\sum_{\sigma \in H} \operatorname{sgn}(\sigma) \pi \sigma \\
& =\sum_{\tau \in H} \operatorname{sgn}\left(\pi^{-1} \tau\right) \tau \quad \quad \text { (by letting } \tau=\pi \sigma \text {) } \\
& =\sum_{\tau \in H} \operatorname{sgn}\left(\pi^{-1}\right) \operatorname{sgn}(\tau) \tau \\
& =\operatorname{sgn}\left(\pi^{-1}\right) \sum_{\tau \in H} \operatorname{sgn}(\tau) \tau \\
& =\operatorname{sgn}(\pi) H^{-}
\end{aligned}
$$

$$
H^{-} \pi=\operatorname{sgn}(\pi) H^{-} \text {can be proven analogously. }
$$

$$
\begin{align*}
\left.<H^{-} u, v\right\rangle & =\sum_{\pi \in H}\langle\operatorname{sgn}(\pi) \pi u, v\rangle \tag{2}\\
& =\sum_{\pi \in H}\left\langle u, \operatorname{sgn}\left(\pi^{-1}\right) \pi^{-1} v\right\rangle \\
& =\sum_{\tau \in H}\langle u, \operatorname{sgn}(\tau) \tau v\rangle \\
& =\left\langle u, H^{-} v\right\rangle
\end{align*} \quad \text { (by letting } \tau=\pi^{-1} \text {) }
$$

(3) Consider the subgroup $K=\{\epsilon,(b c)\} \leq H$. Let $\left\{k_{i}: i \in I\right\}$ be a transversal such that $H=\sqcup_{i \in I} k_{i} K$. Then, $H^{-}=\left(\sum_{i \in I} k_{i}\right)(\epsilon-(b c))$.
(4) $(b c)\{t\}=\{t\}$. Hence,

$$
H^{-}\{t\}=k(\epsilon-(b c))\{t\}=k(\{t\}-\{t\})=0
$$

Corollary 4.12. Let t be a λ-tableau and s be $a \mu$-tableau, where $\lambda, \mu \vdash n$. If $\kappa_{t}\{s\} \neq 0$, then $\lambda \unrhd \mu$. Moreover, if $\lambda=\mu$, then $\kappa_{t}\{s\}= \pm e_{t}$

Proof. Suppose b and c are two elements in the same row of s. If they are in the same column of t, then $(b c) \in C_{t}$ and $\kappa_{t}\{s\}=0$ by (4) of Sign Lemma. Hence, the elements in each row of s are all in different columns in t, and $\lambda \unrhd \mu$ by Dominance Lemma.
If $\lambda=\mu$, then $\{s\}=\pi\{t\}$ for some $\pi \in C_{t}$. Then, by (4) of Sign Lemma,

$$
\kappa_{t}\{s\}=\kappa_{t} \pi\{t\}=\operatorname{sgn}(\pi) \kappa_{t}\{t\}= \pm e_{t}
$$

Corollary 4.13. If $u \in M^{\mu}$ and sh $t=\mu$, then $\kappa_{t} u$ is a multiple of e_{t}.
Proof. Let $u=\sum_{i \in I} c_{i}\left\{s_{i}\right\}$ where $c_{i} \in \mathbb{C}$ and s_{i} are μ-tableaux. By Corollary 4.12., $\kappa_{t} u=\sum_{i \in J} \pm c_{i} e_{t}=\left(\sum_{i \in J} \pm c_{i}\right) e_{t}$ for some $J \subseteq I$.

Theorem 4.14. (Submodule Theorem) Let U be a submodule of M^{μ}. Then,

$$
U \supseteq S^{\mu} \quad \text { or } \quad U \subseteq S^{\mu \perp}
$$

Thus, S^{μ} is irreducible.
Proof. For $u \in U$ and a μ-tableau $t, \kappa_{t} u=c e_{t}$ for some $c \in \mathbb{C}$ by Corollary 4.13.. Suppose that there exists a u and t such that $c \neq 0$. Then, since U is a submodule, $c e_{t}=\kappa_{t} u \in U$. Hence, $e_{t} \in U$ and $S^{\mu} \subseteq U$ since S^{μ} is cyclic.
Otherwise, $\kappa_{t} u=0$ for all $u \in U$ and all μ-tableau t. Then, by (2) of Sign Lemma,

$$
<u, e_{t}>=<u, \kappa_{t}\{t\}>=<\kappa_{t} u,\{t\}>=<0,\{t\}>=0
$$

Since e_{t} span $S^{\mu}, u \in S^{\mu \perp}$ and $U \subseteq S^{\mu \perp}$.
$S^{\mu} \cap S^{\mu \perp}=0$. Hence, S^{μ} is irreducible.
Proposition 4.15. If $\theta \in \operatorname{Hom}\left(S^{\lambda}, M^{\mu}\right)$ is nonzero, then $\lambda \unrhd \mu$. Moreover, if $\lambda=\mu$, then θ is multiplication by a scalar.

Proof. Since $\theta \neq 0$, there exists a basis element $e_{t} \in S^{\lambda}$ such that $\theta\left(e_{t}\right) \neq 0$. Because $M^{\lambda}=S^{\lambda} \oplus S^{\lambda \perp}$, we can extend θ to an element of $\operatorname{Hom}\left(M^{\lambda}, M^{\mu}\right)$ by letting $\theta\left(S^{\lambda \perp}\right)=\{0\}$. Then,

$$
0 \neq \theta\left(e_{t}\right)=\theta\left(\kappa_{t}\{t\}\right)=\kappa_{t} \theta(\{t\})=\kappa_{t}\left(\sum_{i} c_{i}\left\{s_{i}\right\}\right)
$$

where $c_{i} \in \mathbb{C}$ and s_{i} are μ-tableaux. Hence, by Corollary 4.12., $\lambda \unrhd \mu$.
If $\lambda=\mu, \theta\left(e_{t}\right)=c e_{t}$ for some $c \in \mathbb{C}$ by Corollary 4.12.. For any permutation π,

$$
\theta\left(e_{\pi t}\right)=\theta\left(\pi e_{t}\right)=\pi \theta\left(e_{t}\right)=\pi\left(c e_{t}\right)=c e_{\pi t}
$$

Thus, θ is multiplication by c.
Theorem 4.16. The S^{λ} for $\lambda \vdash n$ form a complete list of irreducible S_{n}-modules.
Proof. Since the number of irreducible modules equals the number of conjugacy classes of S_{n} by Proposition 2.24., it suffices to show that they are pairwise inequivalent. Suppose $S^{\lambda} \cong S^{\mu}$. Then, there exists a nonzero $\theta \in \operatorname{Hom}\left(S^{\lambda}, M^{\mu}\right)$ since $S^{\lambda} \subseteq M^{\mu}$. Thus, by Proposition 4.15., $\lambda \unrhd \mu$. Analogously, $\lambda \unlhd \mu$. Hence, $\lambda=\mu$.

Corollary 4.17. The permutation modules decompose as

$$
M^{\mu}=\bigoplus_{\lambda \unrhd \mu} m_{\lambda \mu} S^{\lambda}
$$

where the diagonal multiplicity $m_{\mu \mu}=1$.
Proof. If S^{λ} appears in M^{μ} with nonzero multiplicity, then there exists a nonzero $\theta \in \operatorname{Hom}\left(S^{\lambda}, M^{\mu}\right)$ and $\lambda \unrhd \mu$ by Proposition 4.15.. If $\lambda=\mu$, then

$$
m_{\mu \mu}=\operatorname{dim} \operatorname{Hom}\left(S^{\mu}, M^{\mu}\right)=1
$$

by Propositions 2.22. and 4.15..
Acknowledgments. I sincerely thank my mentor, Saravanan Thiyagarajan, for his guidance and assistance.

References

[1] David S. Dummit \& Richard M. Foote. Abstract Algebra. 3nd. Wiley. 2003.
[2] William Fulton \& Joe Harris. Representation Theory: A First Course. Springer. 1991.
[3] William Fulton. Young Tableaux: With Applications to Representation Theory and Geometry. Cambridge University Press. 1996.
[4] Bruce E. Sagan. The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. Springer-Verlag. 2000.

[^0]: Date: August 25, 2010.

