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Abstract. In this paper, we consider discrete Markov Chains and hidden

Markov models. After examining a common algorithm for estimating matrices

of probability, we conclude by constructing a hidden Markov model of S&P
500 index returns.
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1. Markov Chains: Basic Principles

Definition 1.1. Let (E, E) be a measurable space and Ω be a sample space with
σ-algebra F and probability measure P : F → [0, 1]. A random variable is an
(F , E)-measurable function X : Ω→ E.

We consider in this paper a useful and intuitive collection of these functions.

Definition 1.2. A discrete-time Markov chain on a state space Ω is an Ω-valued
sequence of random variables X1, X2, X3, ... such that for all times k in N and states
x1, x2, x3, ...

P (Xk = xk|Xk−1 = xk−1, Xk−2 = xk−2, ...X1 = x1) = P (Xk = xk|Xk−1 = xk−1)

Thus the chain’s next move depends only on the most recent state.

Example 1.3. The simple random walk on integer lattice Zn with standard vectors
e1, e2, ...en is a Markov chain satisfying

P (Xk = α|Xk−1 = α± ei) =
1

2n
∀α ∈ Zn

Definition 1.4. If Ω is finite with |Ω| = n, the chain can be represented by an
n× n transition matrix P where p(i, j) = P (Xk = j|Xk−1 = i).
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
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pi,1 pi,2 · · · pi,j · · ·
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. . .

...
. . .


If the chain starts at state X1 = j and ej denotes the standard unit vector, then

ejP indicates naturally the probability distribution of X2 given that X1 = j. In

general, if |Ω| = n and µ ∈ Rn with
∑n
i=1 µi = 1 and µi ≥ 0 for all i, then µPk

is the probability distribution of the process after k transitions starting at µ. We
denote P (Xi+k = y|Xi = x) by pk(x, y), the (x, y)th entry of Pk.

Definition 1.5. A probability distribution π is stationary if π = πP.

A stationary distribution thus represents an equilibrium for the random process.
We prove the existence of this equilibrium in the next section.

2. Krylov-Bogoliubov Argument

Definition 2.1. A chain P is irreducible if for any two states x, y ∈ Ω there exists
α ∈ Z such that pα(x, y) > 0.

Thus states in an irreducible chain are always accessible from any given state.
In our Zn random walk, a point in the lattice can be reached from any other, so
that the walk is irreducible.

Definition 2.2. The period of state x is gcd {n ∈ N|pn(x, x) > 0}. If every state
in a chain has period 1 the chain is aperiodic. Otherwise, it is periodic.

Proposition 2.3. If chain P is irreducible, then for all x, y ∈ Ω

gcd {n ∈ N|pn(x, x) > 0} = gcd {n ∈ N|pn(y, y) > 0}

Proof. Given states x and y, there exist i and j ∈ Z such that pi(x, y) > 0 and
pj(y, x) > 0. Let {n ∈ N|pn(α, α) > 0} = G(α) and let k = i+ j.

Then k ∈ G(x) ∩ G(y), implying G(x) ⊂ G(y) - {k}. Thus gcdG(y) divides all
elements of G(x) and

gcdG(y) ≤ gcdG(x)

But k ∈ G(x) ∩ G(y) also implies that G(y) ⊂ G(x) - {k} so that

gcdG(x) ≤ gcdG(y)

�

All possible probability vectors µ axiomatically satsify
∑n
i=1 µi = 1 and µi ≥ 0

for all i. Thus the set P of probablity distributions on Ω with |Ω| = n is the
standard N -simplex in Rn. Containing P in the (n − 1)-sphere with radius 2 and
observing that convexity connects any 2 points by a (closed) line, we see that P is
bounded, closed, and hence compact by the Heine-Borel Theorem. In the following
proof, we will use the Bolzano-Weierstrass property of compact spaces to extract
our convergent subsequence.
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Theorem 2.4. Krylov-Bogoliubov Argument: If Markov chain P is finite-state and
discrete, then there exists π in P with π = πP.

Proof. Fix ϕ in P and consider Cesàro average 1
n

n∑
i=1

ϕPi.

As the Cesàro average is an arimethic average of probability vectors, its compo-
nents remain positive and sum to n

n . Thus Cesàro averages remain in P.

Consider

{
1
n

n∑
i=1

ϕPi

}∞
n=1

with convergent subsequence

{
1
nk

nk∑
i=1

ϕPi

}∞
nk=1

and

denote, albeit prophetically, π as the limit of the subsequence. Observing the
continuity of linear map P,

πP = lim
k→∞

1

nk

nk∑
i=1

ϕPi ·P

= lim
k→∞

1

nk

nk+1∑
i=2

ϕPi

= lim
k→∞

1

nk

(
nk∑
i=1

ϕPi + ϕPnk+1 − ϕP

)

= lim
k→∞

1

nk

(
nk∑
i=1

ϕPi

)
+ lim
k→∞

1

nk

(
ϕPnk+1 − ϕP

)

= lim
k→∞

1

nk

(
nk∑
i=1

ϕPi

)
= π

�

3. Hidden Markov Models

Given sufficient observations of a Markov chain, we can estimate transition ma-
trix P by counting or bootstrapping the sample probabilities. A more interesting
problem arises when the states are unobservable, but act as random variables on
observable output set {o1, o2, o3...}.

Definition 3.1. A hidden Markov model (P,Q, µ) is a 3-tuple of transition matrix
P, matrix of observation probabilities Q where q(i, j) = P (Ok = oi|Xk = xj) for
all times k in N, and initial probability vector µ.

Note that the model is hidden irrespective of whether P is explicitly known.
Instead, the chain states are difficult to observe or are defined by their output.

Example 3.2. Consider a speech recognition machine which gathers observable
sound waves {o1, o2, o3...} as a proxy for spoken words {x1, x2, x3...}. Given (sta-
tistical) noise and speech variation, oi may indicate more than one xj , but since
the machine knows P it weights its estimation in favor of likelier word orderings.



4 JUSVIN DHILLON

The above diagrams summarize hidden Markov models. In figure A, dashed
arrows represent possible state changes, while each state can emit all of the three
possible observable outputs. In figure B, known as a trellis diagram, arrows repre-
sent conditional dependence and we consider a possible sequence of states and their
outputs. Continuing our example above, the sentence {xt1, xt2, xt3...} would be oc-
curring while the speech recognition machine sees only sound waves {ot1, ot2, ot3...}.

4. Baum-Welch Inference Algorithm

Suppose we have K observations O1 = ot1 , O2 = ot2 , ...OK = otK , where otk
is any element from {o1, o2, o3...}. Denoting H = (P,Q, µ), we will consider two
simple ways to find P (ot1 , ot2 , ...otK |H).

Definition 4.1. For each time k and state xi, forward variable α is defined by

(4.2) αk(xi) = P (Xk = xi ∩ ot1 , ot2 , ...otk |H)

This is the probability of the kth state being xi and seeing the observations
through time k, given our model. From the definition of Q and µ, we see that

α1(xi) = P (X1 = xi ∩O1 = ot1 |H) = q(t1, i)µi

and

α2(xi) = P (X2 = xi ∩O1 = ot1 , O2 = ot2 |H) = q(t2, i)

n∑
j=1

α2(xj)pji

so that recursively

αk+1(xi) = q(tk + 1, i)

n∑
j=1

αk(xj)pji.

In particular, we can find αK(xi). Since this is the conditional probability given
state xi,

n∑
i=1

αK(xi) = P (ot1 , ot2 , ...otK |H)

Definition 4.3. For each time k and state xi, backward variable β is defined by

(4.4) βk(xi) = P (otk+1
, otk+2

, ...otK |Xk = xi ∩H)
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This is the probability of seeing the observations after time k, given our model
and that the kth state is xi. Since given otK and H

βK(xi) = P (OK = otK |XK = xi ∩H) = 1

and

βK−1(xi) = P (OK−1 = otK−1
, OK = otK |XK−1 = xi ∩H) =

n∑
j=1

βK(xj)pijq(tK , j)

recursively we have

βk(xi) =

n∑
j=1

βk+1(xj)pijq(tk+1, j).

From the definitions of α and β we can write

αk(xi)βk(xi) = P (ot1 , ot2 , ...otK |Xk = xi,H)

Since this is the conditional probability given state xi,

n∑
i=1

αk(xi)βk(xi) = P (ot1 , ot2 , ...otK |H)

Thus we have two ways to judge the fit of hidden Markov model H. Many
useful probabilities can be expressed as a combination of forward and backward
probabilities. For example, the probability of two states at two adjacent times
given our observations and model is

ξk(i, j) := P (Xk = xi ∩Xk+1 = xj |ot1 , ot2 , ...otK ,H)

=
P (Xk = xi ∩Xk+1 = xj ∩ ot1 , ot2 , ...otK |H)

P (ot1 , ot2 , ...otK |H)

=
αk(xi)P (Xk+1 = xj ∩ otk+1

, otk+2
, ...otK |H)

n∑
i=1

αk(xi)βk(xi)

=
αk(xi)pijβk+1(xj)q(tk+1, j)

n∑
i=1

αk(xi)βk(xi)

The probability of state xi at time k given our observations and model is

γk(xi) := P (Xk = xi|ot1 , ot2 , ...otK ,H) =
αk(xi)βk(xi)
n∑
i=1

αk(xi)βk(xi)

Observe that since βk(xi) =

n∑
j=1

βk+1(xj)pijq(tk+1, j),

γk(xi) =

n∑
j=1

ξk(i, j)
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Definition 4.5. The Baum-Welch inference algorithm reestimates P,Q, and µ as

(4.6) µ̄i = γ1(xi)

(4.7) p̄ij =

K−1∑
k=1

ξk(i, j)

K−1∑
k=1

γk(xi)

(4.8) q̄(i, j) =

K∑
k=1

γk(xj)1otk=oi

K∑
k=1

γk(xj)

The origin of these values will be introduced in the next section.

5. Kullback-Leibler Divergence Derivation

Definition 5.1. For probability distributions P and P ′ on discrete random variable
X, their Kullback-Leibler divergence is

DKL(P, P ′) =
∑
x

P (x) log

(
P (x)

P ′(x)

)
wherever log

(
P (x)
P ′(x)

)
is defined.

As this is a (weighted) average of the log-differences between distributions P and
P ′, it is often used to judge the fit of an estimated distribution P ′ to a theoretical
distribution P . We consider a basic attribute of K-L divergence.

Lemma 5.2. Jensen’s inequality: If X is a discrete random variable and ϕ a convex
function,

ϕ(E [X]) ≤ E [ϕ(X)]

Proof. Since E [X] =
∑
i

P (xi)xi with
∑
i

P (xi) = 1, by convexity

ϕ(P (x1)x1 + P (x2)x2) ≤ P (x1)ϕ(x1) + P (x2)ϕ(x2)

Suppose as an inductive hypothesis that for all (k − 1)-valued X with P

ϕ

(
k−1∑
i=1

P (xi)xi

)
≤
k−1∑
i=1

P (xi)ϕ(xi)

Then

ϕ

(
k∑
i=1

P (xi)xi

)
= ϕ

(
P (x1)x1 + (1− P (x1))

k∑
i=2

P (xi)

1− P (x1)
xi

)
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But since

k∑
i=2

P (xi)

1− P (x1)
=

(
k∑
i=1

P (xi)

)
− P (x1)

1− P (x1)
= 1

our hypothesis gives

ϕ(E [X]) = ϕ

(
k∑
i=1

P (xi)xi

)
≤

k∑
i=1

P (xi)ϕ(xi) = E [ϕ(X)]

�

The continuous case is similar (but not needed for our purposes), and it is clear
from above that Jensen’s inequality holds for any weighted sum, not just discrete
expectations.

Proposition 5.3. Gibb’s inequality

DKL(P, P ′) ≥ 0

Proof. Use Jensen’s inequality with X = P ′

P and ϕ = log
(
1
x

)
. Then

DKL(P, P ′) =
∑
x

P (x) log

(
P (x)

P ′(x)

)
= E [ϕ(X)] ≥ log

(
1

E [P ′/P ]

)
where

log

(
1

E [P ′/P ]

)
= log

 1∑
i

P (xi)P
′(xi)/P (xi)

 = log

(
1

1

)
= 0

�

Definition 5.4. For observations ot1 , ...otK and H = (P,Q, µ) proxy probability Q
is defined by

Q(H′) =
∑

xt1
,...xtK

P (xt1 , ...xtK ∩ ot1 , ...otK |H) · logP (xt1 , ...xtK ∩ ot1 , ...otK |H′)

This probability mimics the probability of observations given a model, as shown
below.

Proposition 5.5. If Q(H) ≤ Q(H̄), then P (ot1 , ...otK |H) ≤ P (ot1 , ...otK |H̄).

Proof. Let O = (given) observations ot1 , ...otK . Using Gibb’s Inequality with

P =
P (xt1 , ...xtK ,O|H)

P (O|H)
, P ′ =

P (xt1 , ...xtK ,O|H̄)

P (O|H̄)

we have



8 JUSVIN DHILLON

0 ≤
∑

xt1 ,...xtK

P (xt1 , ...xtK ,O|H)

P (O|H)
· log

(
P (xt1 , ...xtK ,O|H)P (O|H̄)

P (O|H)P (xt1 , ...xtK ,O|H̄)

)

= log

(
P (O|H̄)

P (O|H)

)
+

∑
xt1

,...xtK

P (xt1 , ...xtK ,O|H)

P (O|H)
· log

(
P (xt1 , ...xtK ,O|H)

P (xt1 , ...xtK ,O|H̄)

)

= log

(
P (O|H̄)

P (O|H)

)
+
Q(H)−Q(H̄)

P (O|H)

Rearranging gives

Q(H̄)−Q(H)

P (O|H)
≤ log

(
P (O|H̄)

P (O|H)

)
Since

0 ≤ Q(H̄)−Q(H)

we conclude
P (ot1 , ...otK |H) ≤ P (ot1 , ...otK |H̄)

�

Thus proxy probability Q allows us to compare the fit of different H to the ob-
served data. Why examine Q over P (ot1 , ...otK |H)? Maximizing real-valued Q(H)
produces a critical point of H̄ equal precisely to H̄ in the Baum-Welch algorithm.
As space prohibits, the reader may check this lengthy exercise in taking derivatives
(Baum, 1972).

Since H̄ = (P̄, Q̄, µ̄) is therefore a maximum log-likelihood estimation, we have

P (ot1 , ot2 , ...otK |H̄) ≥ P (ot1 , ot2 , ...otK |H),

We can repeat the process iteratively to obtain
{
H, H̄, ¯̄H...

}
with probabilities

given {ot1 , ot2 , ...otK} converging by the monotone convergence theorem. Repeated
reestimation is the algorithmic component of Baum-Welch inference.

6. Hidden Markov Chains in Index Returns

We conclude with an example that applies and optimizes a hidden Markov model
using Baum-Welch inference.

Recall that hidden Markov models allow for phenomena where states of the
world {xt1 , xt2 , ...xtK} are difficult to observe, but rather can be understood by the
observable output {ot1 , ot2 , ...otK} they produce. Following the global liquidity and
financial crisis of 2007-2009, general interest in market performance has reached new
heights, accompanied as always by speculation over arrivals of “Bull” and “Bear”
markets.

Despite a vague sense that “Bull” equates with “Good” while “Bear” embodies
the reverse (for the majority of equity investors), when to apply these two terms
is not well-defined. As they are characterized by the difficult to observe (and often
conflicting) phenomenon of investor sentiment, determination of the states

{xBullMarket, xBearMarket}
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lend themselves agreeably to hidden Markov structure.

We will use as observable output monthly log-returns of the S&P 500, a capitalization-
weighted index of 500 large companies based in the United States. To simplify
matters and produce accessible probability matrices, we divide returns into three
classes

{onegative, oflat, opositive}
where returns become negative or positive by exceeding - or + 15

12%, respectively.
No sound methodology was used to determine the cutoff, though annual returns
exceeding ± (10 to 20 %) are generally accepted markers of bullish or bearish
markets. We examine monthly returns from July 1970 through July 2010.

Operatively, to model bull and bear markets as a hidden Markov chain we input
hypothesized probabilities of each return given each state, and each state given a
previous state. The true probabilities are then optimized from the observations
using Baum-Welch. Programming and iterating for this paper were done in R and
Excel.

Below are results after 10 iterations of the Baum-Welch inference algorithm for
three different starting parameters.

Initial I


P (xBear|...) P (xBull|...) P (on|...) P (of |...) P (op|...)

P (...|xBear) 0.7 0.3 0.6 0.3 0.1

P (...|xBull) 0.3 0.7 0.1 0.3 0.6



Baum-Welch Optimization I


P (xBear|...) P (xBull|...) P (on|...) P (of |...) P (op|...)

P (...|xBear) 0.661 0.339 0.452 0.286 0.262

P (...|xBull) 0.209 0.781 0.241 0.195 0.564



Initial II


P (xBear|...) P (xBull|...) P (on|...) P (of |...) P (op|...)

P (...|xBear) 0.8 0.2 0.7 0.2 0.1

P (...|xBull) 0.2 0.8 0.1 0.2 0.7



Baum-Welch Optimization II


P (xBear|...) P (xBull|...) P (on|...) P (of |...) P (op|...)

P (...|xBear) 0.774 0.226 0.462 0.311 0.227

P (...|xBull) 0.118 0.872 0.243 0.184 0.57


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Initial III


P (xBear|...) P (xBull|...) P (on|...) P (of |...) P (op|...)

P (...|xBear) 0.6 0.4 0.8 0.1 0.1

P (...|xBull) 0.4 0.6 0.1 0.1 0.8


Baum-Welch Optimization III


P (xBear|...) P (xBull|...) P (on|...) P (of |...) P (op|...)

P (...|xBear) 0.607 0.393 0.550 0.301 0.148

P (...|xBull) 0.279 0.711 0.154 0.178 0.668


The Baum-Welch inference algorithm adjusts probabilities away from starting

conditions, which as proved increases the likelihood of our model given the obser-
vations. Here, the observation probabilities appear most consistently altered. Al-
though it remains sensitive to initial conditions, some relativistic patterns emerged
which were confirmed in further trials. For instance,

P (xBullMarket|xBullMarket) > P (xBearMarket|xBearMarket)

Thus the model adapts to account for more frequent (and longer) Bull Markets.
Somewhat more surprisingly,

P (onegative|xBullMarket) ≈ P (oflat|xBullMarket)

After some research into whether this was possible, I read of market corrections,
which are short-term drops in asset prices that realign them with the asset’s eco-
nomic value. During bull markets, positive investor sentiment and speculation lead
to stock prices continually inflating, until checked by these short drops. Thus the
model optimized to account for market features unknown (to me) a priori.
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