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Abstract. This paper is intended as a introduction to Gaussian Curvature

and the Gauss Map. Before studying this, a review of Jacobian Determinants

and Surfaces in R3 will be reviewed so Gaussian Curvature can be adequately
studied.
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1. Jacobian, Geometric Interpretations and Examples

1.1. Motivation for Understanding. We are motivated to understand the Ja-
cobian of a given function because it will allow us to understand certain geometric
properties of f , namely:

(1) Area
(2) Orientation, and
(3) Invertibility.

Definition 1.1. Given f : R2 → R2 written f(x, y) = (f1(x, y), f2(x, y)) the
Jacobian of f at (x, y) ∈ R2 is:

Df(x,y) =

(
δf1
δx

δf1
δy

δf2
δx

δf2
δy

)
.
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1.2. Area. The Jacobian of a matrix allows us to understand the area. When the
determinant of the Jacobian is not equal to zero, the area is not annihilated but
may be enlarged or shrunk.

Definition 1.2. Given a 2x2 matrix A =

[
a b
c d

]
, the determinant of A is the

area of the parallelogram spanned by −→v1 = (a, b) and −→v2 = (c, d). The formula for
a 2x2 matrix is

det(A) = a · d− b · c.

A visual aid for this can be seen in Figure 1.1.

Figure 1.1

The span of two independent vectors form a parallelogram.

However, this is only how it looks when the vectors are linearly independent.
Instead, we can suppose that −→v1 and −→v2 are linearly dependent. That is −→v1 = a · −→v2
for some a ∈ R then det(A) = 0. A visual example for understanding why the span
of a set of dependent vectors will always equal to zero can be seen in Figure 1.2.

Figure 1.2

The span of two dependent vectors form a line (with zero area).

Example 1.3. Suppose that f(x, y) = (cos(θ)x − sin(θ)y, sin(θ)x + cos(θ)y) for
θ ∈ R which is a rotation about the origin of angle θ. Then

det(Df(x,y)) =

[
cos(θ) −sin(θ)
sin(θ) cost(θ)

]
= 1.

This implies that f preserves area. For a visual example of this, we can let θ = π
2 .

Then f(x, y) = (−y, x). So,

f(−→e1) = f(1, 0) = (0, 1) = −→e2

f(−→e2) = f(−1, 0) = −(1, 0) = −−→e1 .

As we can see, this simply rotates the vectors which would not change the area
spanned by the vectors. See Figure 1.3.
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Figure 1.4

f(x, y) = (x,−y) reverses orientation.

Figure 1.3

Functions that rotate a graph, such as f(x, y) = (−y, x) preserve area.

1.3. Orientation.

Definition 1.4. A function f : R2 → R2 preserves orientation if det(Df(x,y)) > 0

for all (x, y) ∈ R2. And, f reverses orientation if det(Df(x,y)) < 0 for all (x, y) ∈ R2.
Looking again at Figure 1.3, we see that the function f(x, y) = (−y, x) preserves
orientation which should be expected because the determinant of the Jacobian is
greater than zero.

Example 1.5. Consider f(x, y) = (x,−y). Then, det(Dfx,y) = −1. Looking at
Figure 1.4, we can use the right hand rule to see that f does reverse orientation.

1.4. Invertability. To understand whether a function is in invertible, we shall call
upon the help of the Inverse Function Theorem.

Theorem 1.6. (The Inverse Function Theorem) Suppose that f : R2 → R2 is a
smooth function such that Df(x,y) is non-singular at (x0, y0) ∈ R2, then there exists
a neighborhood U of (x0, y0) and f(U) = V of f(x0, y0) such that the restriction

f : U → V

is a diffeomorphism. That is, there exists a smooth function f−1 : V → U such
that f ◦ f−1 = 1 : U → U and f−1 ◦ f = 1 : V → V .

2. Regular Surfaces in S3

Definition 2.1. A subset S ⊂ R3 is called a regular surface if, for each point p ∈ S,
there exists a neighborhood V ∈ R3 and a map −→x : U → V ∩ S. where U is an
open set in R2 and U is onto V ∩ S ⊂ R3 such that (see Figure 2.1):
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Figure 2.1

z

y

x

X
v

u

(x(u,v),y(u,v),z(u,v))

V ∩ S

V

(u,v)

p

Explanation of Regular Surface

(1) −→x is a differentiable. This means if

−→x (u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ U
the functions x(u, v), y(u, v), and z(u, v) have continuous par-
tial derivatives for all orders in U .

(2) −→x is a homeomorphism. We already know −→x is continuous by
condition one, thus −→x has an inverse −→x −1 : V ∩S → U which
is also continuous

(3) For each q ∈ U , the differential d−→x q : R2 → R3 is one-to-one.

2.1. Stereographic Projection.

Example 2.2. The Unit Sphere I shall show that the unit sphere is a regular sur-
face in two different ways. The first will involve using six, simpler parameterizations
while the second requires only two, however more slightly more complicated, param-
eterizations. We must show each parameterizations is a regular surface satisfying
the three conditions. Of course, the unit sphere is:

S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}.
Version 1: We will first define the open part the unit sphere above the xy plane.

This is the map x1 : U ⊂ R2 → R3 given by:

x1(x, y) : (x, y,+
√

1− (x2 + y2)).

Version 2: Stereographic Projection Let:
π(x) : R2 → S2 \ {p}
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Figure 1.2

π ( x )

L = {t−→x + (1− t)−→p |t ∈ [o, 1]}.

If −→x = (x1, x2, 0), then t−→x + (1− t)−→p = (tx1, tx2, (1− t)).

Note this is on the sphere when t2x21+t2x22+(1−t)2 = 1. Recall, ||−→x ||2 = x21+x22,
t2||−→x ||2 + (1− t)2 = 1.

So,
t2 · ||−→x ||2 + t2 − 2t+ 1 = 1 and

t2(||
−→
( x)||2 + 1)− 2t = 0.

Thus, t = 2
1+||−→x ||2

So,

π(−→x ) =
2

1 + ||−→x ||2
· −→x + (1− 2

1 + ||−→x ||2
)−→p

=
2

1 + ||−→x ||2
· −→x + (

||−→x ||2 − 1

1 + ||−→x ||2
)−→p

= (
2x+ 1

1 + ||−→x ||2
,

2x2
1 + ||−→x0||

,
||−→x ||2 − 1

||−→x ||2 + 1
).

2.2. Regular Value Theorem.

Theorem 2.3. : Regular Value Theorem (R3 to R)
Let F : R3 → R be a smooth function. Then, for a ∈ R, the set F−1(a) = {−→p ∈
R|F (−→p ) = a} is a regular surface if DpF 6=

−→
0 for all −→p ∈ F−1(a).

For instance, the set F−1(0) is not a surface for the function F (x, y, z) = x2 +

y2 − z2 because DpF = (2x, 2y,−2z) which is equal to
−→
0 when x, y, and z are

all identically equal to zero. See Figure 2.2. However, the surface defined by
F (x, y, z) = xy−z2 is a surface for F−1(1) for DpF = (y, x,−2z) which is only equal
to zero when x,y, and z are all identically equal to zero. But F (0, 0, 0) 6= −1. See
Figure 2.3. To prove the Regular Value Theorem, the Implicit Function Theorem
will be used.
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Figure 2.2

F (x, y, z) = x2 + y2 − z2 is not a regular surface for F−1(0).

Figure 2.3
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z = 0

F (x, y, z) = xy − z2 is a regular surface for F−1(1).

Theorem 2.4. : Implicit Function Theorem (R2 to R3)
If F : R3 → R satisfies DF

dz nonzero at some point (x, y, z) with F (x, y, z) = a,

then there exists a neighborhood of (x, y) in R2 and a smooth function g from the
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neighborhood to R3 satisfying g(x, y) = (x, y, z) and, in a neighborhood of (x, y, z),
F (x′, y′, z′) = a if, and only if, g(x′, y′) = z′.

Proof. Consider a function F : R3 → R such that F is smooth and a point a ∈ R
that is a regular value. That is, for each −→p ∈ F−1(a) = {(x, y, z)|F (x, y, z) = a}
D−→p F 6=

−→
0 . Without loss of generality, let δf

δz (p) 6= 0. Write −→p = (p1, p2, p3). Near
−→p ∈ V , by the Implicit Function Theorem, there exists a neighborhood U ∈ R2

where (p1, p2) ∈ U and φ : U → R3 with φ(p1, p2) = −→p and for (x, y, z) ∈ V ,
F (x, y, z) = a if and only if φ(x, y) = z. This means, locally, F−1(a) is the graph
of a smooth function. �

3. Gauss Map

3.1. Tangent Space. : Consider the surface S ∈ R3 and a point p ∈ S (see figure
3.1).

Figure 3.1

Surface S ∈ R3 and point p ∈ S.

Let U be a neighborhood containing p and consider a coordinate chart
−→
X : V →

U where V is a space in R2 containing the point q such that −→x (q) = p (see Figure
3.2).

Figure 3.2
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Say F : S → R is a smooth function. To differentiate F at p, differentiate F ◦ x
at q ∈ −→v where −→x (q) = p.

Because −→x (q) = p, the tangent space at p is the 2-Dimensional vector space

spanned by δ−→x
δu ≡

−→
Xu(q) and δ−→x

δv ≡
−→
X v(q) where (u, v) are the coordinates of v.

Given −→v ∈ TpM , the directional derivative of F at p is defined by
Dpf(−→v ) = Dq(f ◦ −→x )(ṽ) where d−→x q(ṽ) = −→v

= Dpf ◦Dq
−→̃
v

= Dpf ◦ −→v .

3.2. Gauss Map. Examples
Sr = {−→x ∈ R3|||−→x || = r} = sphere radius r ⊆ R3

The Gauss Map N : Sr → S is given by:

N(−→x ) = x
||−→x || =

−→x
r .

Figure 3.3

Ñ : R3 → R3

Consider Ñ(x, y, z) = (
−→x
r ,
−→y
r ,
−→z
r ). This means that:

dÑ =

 1
r 0 0
0 1

r 0
0 0 1

r


=

1

r
· I

Figure 3.4

Note, N = Ñ |Sr. Given dÑ = 1
r I3 at p, what is dN?
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Given −→v ∈ TpSr, take σ : (−ε, ε)→ Sr smooth satisfying σ(0) = −→p and σ′(0) =
−→v .

By definition,

dpN
−→v =

d

dt
(N ◦ σ)|t=0

=
d

dt
(Ñ ◦ σ)|t=0

= dÑ · σ′(0)
and

dpN(−→v = dpÑ · σ′(0)

=
1

r
· I(
−→
( v)

=
1

r
· −→v .

This means, for all −→v ∈ TpSr, dpN(−→v ) = 1
r ·
−→v . Hence, dpN = 1

r I2. Hence, for

each p ∈ Sr, the Gaussian curvature K(p) = det(dpN) = det( 1
r · I2) = 1

r2 .

Figure 3.5

Given p ∈ C, K(p) = det(dpN) = 0.

Figure 3.6

N reverses orientation but remains a local diffeomorphism with det(dpN)0.



10 DOUGLAS EVERSON, JR.

Acknowledgments. I would like to thank my mentor, Benjamin Fehrman, for
introducing me to this topic and guiding me through the process of writing this
paper. I would also like to thank Peter May for organization this REU.

References

[1] Mantredo P. do Carmo. Differential Geometry of Curves and Surfaces Prentice Hall. 1976.
[2] J. P. May. A Concise Course in Algebraic Topology. University of Chicago Press. 1999.

[3] Tobias Oekiter, Hubert Partl, Irene Hyna and Elisabeth Schlegl. The Not So Short Introduction

to LATEX 2ε. http://tobi.oetiker.ch/lshort/lshort.pdf.


