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Abstract. This paper explores basic number theory including the groups, the

rings and the units of modulo classes. It concludes with the Chinese Remainder
Theorem. The goal is to examine these objects, their properties and to gain

insight into their relationship with other sets.
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Introduction

Number theory is the study of the basic properties of numbers. In particular it
looks to explore how numbers relate to each other in terms of divisibility, primality,
greatest common divisors, congruences and many other distinct properties. Section
one deals with basic definitions of groups, rings, units, and ideals. Section two
explores the integers. In particular it proves they are both a principal ideal domain,
and a Euclidean domain. It then generalizes that all Euclidean domains are also
principal ideal domains. Section three defines congruence in the integers and sets up
the basic notion of Z/nZ. Section four introduces the notion of the order of Z/nZ
and includes Euler’s Theorem and Fermat’s Little Theorem. However, there is little
exploration of either’s implications. Finally in Section five, the paper culminates
in the proof of the Chinese Remainder Theorem and displays one application: the
units of Z/pZ (where p is a prime number) are cyclic.

1. Preliminary definitions

Definition 1.1. Group: A group G is a set with a binary operation m such that:
(1) For any two elements a, b of this group, m(a, b) ∈ G;
(2) For any three elements a, b, c of the group m(a,m(b, c)) = m(m(a, b), c);
(3) The group G possesses an identity element e such that for any element

a ∈ G, m(e, a) = a and m(a, e) = a;
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(4) There exists an inverse for each element. In particular, for any a, there exists a−1

such that m(a, a−1) = e and m(a−1, a) = e.

Definition 1.2. Ring: A ring is an abelian group under addition ( + ) with a
binary operation called multiplication ( · ) such that:

(1) The product of any two elements of the ring is also contained in the ring.
a, b ∈ R =⇒ ab ∈ R;

(2) Multiplication on this ring is associative. That is a, b, c ∈ R, (ab)c = a(bc);
(3) There exists an identity 1 ∈ R such that for any a ∈ R, a1 = 1a = 1.
(4) Multiplication in the ring is distributive over addition, that is, for a, b, c ∈

R, a(b+ c) = ab+ ac and (a+ b)c = ac+ bc.
A ring R is called commutative if any two elements commute; that is, for all

a, b ∈ R, ab = ba.

Definition 1.3. Unit: A unit is any element a of a ring R such that there exists
an inverse a−1 where a · a−1 = a−1 · a = 1.

Definition 1.4. Ideal: An ideal I of a commutative ring R is an additive subgroup
S ⊂ R such that for all r ∈ R and s ∈ S, we have rs ∈ S.

A principal ideal is an ideal that can be generated by a single element of R.
A principal ideal domain (PID) is a integral domain in which every ideal is

principal.

2. Integers, Principal Ideal Domains, and Euclidean domains

Proposition 2.1. The integers Z are a principal ideal domain.

Proof. It suffices to show that all subgroups, and therefore all ideals of the integers,
are of the form nZ for some n ∈ Z.

Let H be an arbitrary subgroup, closed under addition and subtraction, and let
h ∈ H be the smallest positive element. It is also true that hZ ⊂ H .

Let us then assume that our proposition is false so that hZ 6= H.
Because hZ 6= H there exists a g ∈ H \ hZ.
Let n = b ghc such that n is the greatest integer ≤ g

h .
Because hZ ⊂ H,hn ∈ H, g − hn < h and ∈ {0, 1, . . . , h− 1}. This contradicts

the minimality of h.
Therefore hZ = H. �

Definition 2.2. Euclidean domain: A ring R that has no zero divisors and
where 0 6= 1 is called and integral domain. An integral domain is considered to be
a Euclidean domain if there is a function λ from the elements of R \ {0} to the set
{1, 2, 3, . . . } such that for any a, b ∈ R, where b 6= 0, there exists a c, d ∈ R such
that a = cb+ d and either d = 0 or λ(d) < λ(b).

Proposition 2.3. The integers Z are a Euclidean domain.

Proof. Let a, b ∈ Z where b 6= 0. Consider the set of all integers of the form a− xb
with x ∈ Z. This set includes positive elements. Let r = a − qb be the least
nonnegative element in this set. We claim that 0 ≤ r < b. If not, r = a − qb ≥ b
and so 0 ≤ a − (q + 1)b < r which contradicts the minimality of r. (Implicitly
λ(x) = |x|). �

Proposition 2.4. All Euclidean domains are principal ideal domains.
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Proof. Let R be a Euclidean domain with the function λ. Take an ideal I ⊂ R.
Let a be an element of this ideal such that λ(a) is minimal. Assume for the sake

of contradiction, that I is not principal. That is, a does not generate the entire
ideal. There then exists a b ∈ I \ {a} and b does not equal zero.

Because b exists there also exists a q, r such that b = qa+ r where λ(r) < λ(a).
This leads to a contradiction because r = b− qa ∈ I goes against the minimality of
our selection, a. �

3. Congruence in Z

Definition 3.1. If a, b,m ∈ Z and m 6= 0, then a is called congruent to b modulo
m if m is a divisor of b− a. This statement is written as a ≡ b (mod m).

Proposition 3.2. Congruence in Z is an equivalence relation.
a) a ≡ a (mod m);
b) a ≡ b (mod m) implies b ≡ a (mod m); and
c) If a ≡ b (mod m) and b ≡ c (mod m) then a ≡ c (mod m).

Proof. a) a− a ≡ 0 and m|0.
b) If m|b− a then m|a− b.
c) If m|b− a and m|c− b then m|c− a = (c− b) + (b− a). �

We can now take a look at the integers and in particular look at the equivalence
classes. If a ∈ Z then let ā denote the set of integers congruent to a modulo m,
that is ā = {n ∈ Z|n ≡ a (mod m)}. This is the same as saying ā is the set of
integers of the form a+ km (k ∈ Z).

Definition 3.3. A set of the form ā is called a congruence class modulo m.

Definition 3.4. The set of all congruence classes modulo m is denoted by Z/mZ.
It can also be denoted as Zm.

The set of all congruence classes modulo m is a ring. It is an abelian group under
addition and subtraction and is closed under multiplication.

4. The Units of Z/pZ

Definition 4.1. The units of a ring are denoted by R×.

Definition 4.2. The order of a group element a a is the smallest positive integer
m such that am = 1. This is denoted by ord(a) = m.

Definition 4.3. (Euler’s Phi Function) Euler’s phi function denoted by φ(n) is the
number of positive integers less than and relatively prime to n.

Proposition 4.4. An element of Z/mZ, is a unit if and only if the greatest common
divisor of a and m is 1.

This is a direct result of the Euclidian algorithm. The algorithm backwards
yields gcd(a,m) = xa+my for integers x, y. Thus x is a’s inverse

Lemma 4.5. For a group G and any g ∈ G ord (g) divides |G|

Proof. G/〈g〉 consists of classes of size 〈g〉 = ord(g) each. So the number of equiv-
alence classes is |G|/ord(g). �

Corollary 4.6. (Euler’s Theorem) If gcd(a,m) = 1, then aφ(m) ≡ 1 (mod m).
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Proof. The units in Z/mZ form a group of order φ(m). If gcd(a,m) = 1 then ā is
a unit. Therefore because of lemma 4.5 āφ(m) = 1̄ which is the same as aφ(m) ≡ 1
(mod m). �

Corollary 4.7. (Fermat’s Little Theorem) If p is a prime and p 6 |a, then ap−1 ≡ 1
(mod p).

Proof. If p does not divide a then gcd(a, p) = 1. Now φ(p) equals p− 1 because p
is prime. Therefore aφ(p) ≡ 1 (mod p). �

Lemma 4.8. For a finite abelian group (G,+) let m = max ord(x) then for all
z ∈ G, ord(z)|m.

Proof. Take two elements a, b ∈ G. Let ord(a) = k and ord(b) = l. (ab)n = anbn.
Because ord(a) = k, it follows that ak = 1. Thus an = an (mod k) and bn =
bn (mod l). Let us write k as k′d and l = l′d where d = gcd(k, l). Therefore the least
common multiple of (k, l) = k′l′d. Note bd has and order of l.

It suffices to show that ord(abd) = k′l′d. Indeed ak
′l′d′

bk
′l′d2 = 1. Moreover, if

(abd)x = 1 then ax = (bd)−x = y.
However, ord(z)|ord(a) = k′d and ord(z)|ord(bd) = l′.
Furthermore, gcd(k′l′d) = 1 so ord (z) = 1 and z = 1. Backtracking for a

moment to ax = (bd)−x = z, we can apply the previous statement so ax = 1 and
(bd)x = 1. It then follows that k′d′|x and l′|x so k′l′d|x.

Therefore if G has elements of ordk, l then it has one of order lcm (k, l).
To finish the lemma, let z ∈ G have ordk then there exist elements of order

lcm(k,m) = m which implies k|m. �

Proposition 4.9. Z×p is cyclic.

Proof. Let m = max ord(a) where a ∈ Z×p .
By the lemma, for all a ∈ Z×p , ord(a)|m implies that am = am (mod ord(a)) =

a0 = 1.
Therefore for all a ∈ Z×p , a because |Z×p | = p− 1is a root of xm − 1 ∈ Zp[x].
There are p− 1 units. All are roots of xm − 1 and xm − 1 has at most m roots.

Therefore m ≥ p− 1, so m = p− 1 Finally, there exists a g ∈ Z×p of order p− 1. �

5. The Chinese Remainder Theorem

Lemma 5.1. If a1, . . . , al are all relatively prime to m, then so is a1a2 . . . al.

Proof. Because āi ∈ Z/mZ is a unit, ā1ā2 . . . āt = a1a2 . . . at. Therefore by propo-
sition 4.4, a1a2 . . . at is relatively prime to m. �

Lemma 5.2. Suppose that a1, a2, . . . , at all divide n and that (ai, aj) = 1 for i 6= j.
Then a1a2 . . . at divides n.

Proof. The proof is by induction on t. If t = 1 then there is nothing to do. Suppose
that t > 1 and that the lemma is true for t − 1. Then a1, a2, . . . , at−1 divides n.
Using Lemma 5.1 at is prime to a1, a2, . . . , at−1. So there are integers r and s such
that rat + sa1a2 . . . at−1 = 1. Multiply both sides by n and it quickly follows that
the left hand is divisible by a1a2 . . . at. �



ELEMENTARY NUMBER THEORY AND THE CHINESE REMAINDER THEOREM 5

Proposition 5.3. (The Chinese Remainder Theorem)
Suppose that m = m1m2 . . .mt and that gcd(mi,mj) = 1 for any i 6= j. Let

b1, b2, . . . , bt be integers and consider the system of congruences:

x ≡ b1(m1), x ≡ b2(m2), . . . , x ≡ bt(mt)
Then this system always has solutions and any two solutions differ by a multiple

of m.

Proof. Let ni = m/mi. By lemma 5.1, mi and ni are relatively prime. Therefore
there exists integers ri and si such that rimi + sini = 1. Let ei = sini. ei ≡ 1(mi)
and ei ≡ 0(mj) for i 6= j.

If x0 =
∑t
i biei then we have x0t ≡ biei(mi) and consequently x0 = bi(mi). x0

is a solution.
Suppose that there were another solution. Then x1 − x0 ≡ 0(mi) for i =

1, 2, . . . , t. In other words m1,m2, . . . ,mt divide x1 − x0 by lemma 5.2. �
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