
ULTRAPRODUCTS AND MODEL THEORY

AARON HALPER

Abstract. The first-order model-theoretic description of mathematical struc-
tures is unable to always uniquely characterize models up to isomorphism when
the models are not finite. In this paper I look to ultraproducts of models to
remedy this somewhat. By taking the ultraproduct construction over models,
we form a new model out of many that preserves all of the first-order logical
sentences of “most” of the original models. This construction will be useful
for characterizing when models are equivalent according to their first-order
model-theoretic description, and for describing the class of models that are
equivalent in this way.
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1. Introduction

The ultraproduct is formed by taking the cartesian product of at least a countable
number of sets and identifying those elements that agree on a “large” set of sets in
the cartesian product. By carefully making constraints on the meaning of “large”
we are able to change the construction of the ultraproduct. In this paper, I exhibit
the use of this technique in model theory where an ultraproduct is itself a model
that preserves first-order logical statements. I show how this construction is useful
in characterizing when models are equivalent according to their first-order model-
theoretic description, and to describe the class of models that are equivalent in this
way.

2. Preliminary Definitions for Model Theory

We begin by defining a few basic terms intrinsic to model theory.

Definition 2.1. A first-order language L is a set of relation symbols, function
symbols, and constant symbols as well as variables v1, v2, ..., vi, ...,, logical symbols
∀, ∃, (, ), ∧, ∨, ¬, →, ←, ↔ and the binary equality relation ≡. In this paper we
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will only deal with languages that are first-order, and we will denote them using
script letters.

Definition 2.2. Given a language L ′ that contains all the symbols of L and
perhaps some additional symbols, we call L

′ an expansion of L , L a reduction of
L ′, and write L ′ ⊇ L .

Definition 2.3. To give our language some meaning we have to interpret what
the elements of our language mean. We therefore define an interpretation function
I to be a correspondence between L and a universe set A so that I maps n-ary
relations of L to n-ary relations R ⊆ An on A, m-ary functions of L to m-ary
functions G : Am → A on A, and each constant symbol to a constant x ∈ A.

Definition 2.4. A model M is a pair 〈M, I〉 of a universe set M and an interpre-
tation function I. We will denote models by gothic letters throughout this paper
and their universe sets by their corresponding capital letter.

Definition 2.5. A model M is a reduction of M′ if

(i) M ⊆M ′.
(ii) Each n-ary relation R of M is the restriction to M of the corresponding

relation R′ of M′.
(iii) Each m-ary function G of M is the restriction to M of the corresponding

function G′ of M′

(iv) Each constant of M is the corresponding constant of M′.

We will write this as M �M′ and call M′ an expansion of M.

We will now work our way to a definition of a first-order theory, starting first
with the idea of a first-order formula. The concept of a formula of L is defined
inductively as follows.

Definition 2.6. The terms of L are strings of symbols of L which come about
through finite applications of the following rules:

(i) A variable is a term.
(ii) A constant symbol is a term.

(iii) Given an m-ary function F and terms t1, t2, ..., tm, then F (t1, ..., tm) is a term.

The atomic formulas of L are strings of the following form:

(i) Given terms t1, t2, t1 ≡ t2 is an atomic formula.
(ii) Given an m-ary relation P and terms t1, t2, ..., tm, then P (t1, ..., tm) is an

atomic formula.

Finally, the formulas of L are defined inductively as follows

(i) An atomic formula is a formula.
(ii) If φ is a formula, then so is ¬φ.

(iii) If φ and ψ are formulas, then so is φ ∧ ψ.
(iv) Given a formula φ and a variable x, (∀x)φ is a formula too.

We also define the other symbols we need in the usual way. Thus, ∃x := ¬(∀x)¬φ
and φ ∨ ψ := ¬((¬φ) ∧ (¬ψ)). Of course, we also need some logical axioms, but we
will assume that the reader is already familiar with those.
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Definition 2.7. The variables of a formula that have no quantifier are called free
variables. We call a formula that contains no free variables a sentence.

We will sometimes write formulas in the form φ(x1, x2, ..., xn) denoting that the
free variables of φ are a subset of {x1, ..., xn}. We will usually do this only when we
wish to call attention to the free variables. We will also write x̄ to mean x1, ..., xn,
thus φ(x̄) = φ(x1, ..., xn). We will use this notation as a shorthand especially when
we wish to suppress the n.

In any given model of L , all sentences of L are either true or false. For any
sentence φ of L , we use the notation M |= φ to mean that φ is true in M.

Definition 2.8. A theory T of a language L is a set of sentences of L . The theory
of M, denoted Th(M), is the set of all the sentences of L that are true in M.

For any sentence φ of L , we use the notation T |= φ to mean that for every
model N of T, N |= φ. This leads us to the following equivalence relation:

Definition 2.9. Given models M and N, we write

M ≡ N if and only if Th(M) = Th(N),

i.e., every sentence that is true in M is true in N. When this happens, we say that
M and N are elementarily equivalent.

Although we already used the symbol ≡, this is not an abuse of notation since ≡
was previously only defined between terms of L , and now we are using ≡ between
models of L . Checking that ≡ is an equivalence relation is trivial, as are the
following properties of elementary equivalence that we leave the reader to prove.

Proposition 2.10. Let M and N be models.
1. Th(M) is complete and consistent (i.e., for all sentences φ in L , either M |= φ

or M |= ¬φ, but never both).
2. If M and N are isomorphic, then M ≡ N.

Unless M is finite, the converse to statement 2 of the above proposition is not
true, and indeed we will see a counterexample in the next section. Therefore, the
description of a model that this logic gives us is somewhat ambiguous. One of the
principal goals of this paper will be answering the question of when a given class
of models includes all of the models of a given theory.

3. Ultraproducts

Definition 3.1. For a set A, an ultrafilter U over A is a subset of the power set
P(A) with the properties that

(i) A ∈ U .
(ii) If V ∈ U and W ∈ U then V ∩W ∈ U .
(iii) If V ∈ U and V ⊆ C ⊆ A then C ∈ U .
(iv) For any set K ∈ P(A), either K ∈ U or A \K ∈ U .

Intuitively we think of the ultrafilter as containing the subsets of A that are
“large.” Not all ultrafilters are created equal however. In particular, we would like
to separate the trivial ultrafilters from the non-trivial ones. The trivial ultrafilters
we will call principal.
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Definition 3.2. An ultrafilter U on A is principal if there is an element d ∈ A
that acts as a dictator of U . That is, if J ⊆ P(A) then J ∈ U if and only if d ∈ J .
Ultrafilters without dictators are called non-principal.

Definition 3.3. Given a family of sets Ai with i ∈ I, an index set I with an
ultrafilter U on I, we consider the cartesian product

∏

i∈I Ai, and on this product
we define the relation ∼:

For f, g ∈
∏

i∈I

Ai, f ∼ g if and only if {i ∈ I | fi = fi} ∈ U.

It is easy to see that this is indeed an equivalence relation, and we can therefore look
at the equivalence classes fU = {g | g ∼ f}. We can then define the ultraproduct
∏

U Ai =
∏

i∈I Ai

/

U as the set of ∼ equivalence classes:

∏

i∈I

Ai

/

U = {fU | f ∈
∏

i∈I

Ai}.

Just like a cartesian product, we can think of the elements fU ∈
∏

U Ai as the
equivalence classes of functions that map each i ∈ I to an element fU (i) of Ai.

We now connect this to the material in section 2.

Definition 3.4. Given an ultrafilter U over a set I and a family Mi of models of

L with universe set Mi for each i ∈ I, the ultraproduct
∏

i∈I Mi

/

U is the unique

model of L whose universe set is the ultraproduct
∏

U Mi and with formulas from
the Mi’s in the following way. For each atomic formula φ(x1, ..., xk) with at least
one symbol from L , and for every f1, ..., fk ∈

∏

i∈I Mi,

∏

i∈I

Mi

/

U |= φ(f1U , f2U , ..., fkU ) iff {i | Mi |= φ(f1(i), ..., f2(i))} ∈ U.

It is not difficult to show that the ultraproduct is well-defined, but it is tedious.
We leave the details to the reader.

In the case that all of the Mi are the same, i.e. that there is a model N such
that Mi = N ∀ i ∈ I, we will call this ultraproduct the ultrapower of N, and denote
it by N|I|/U .

Whew. That was a lot of definitions! Let’s move on to some of the results
that ultraproducts give us. We will first give without proof some of the properties
of ultraproducts that make them powerful. We would like to know when we can
actually build ultrafilters. To this end, we have this

Theorem 3.5 (Finite Intersection Property). Given X ⊆ P(I), if the intersection
over any finite subset of X is nonempty, then there exists an ultrafilter U over P(I)
so that X ⊆ U .

Much of the power of ultraproducts comes from the following two theorems.

Theorem 3.6 (Expansion Theorem). Given a language L and an expansion L ′ ⊃
L , let I be a non-empty set, U an ultrafilter over I, so that for each i ∈ I we have
a model Mi for L and we have a model M′

i �Mi in L ′. Then
∏

U M′
i �

∏

U Mi

in L
′.



ULTRAPRODUCTS AND MODEL THEORY 5

Theorem 3.7 ( Loś’s Theorem). For all sentences φ of L ,

∏

U

Mi |= φ if and only if {i ∈ I | Mi |= φ} ∈ U.

In the case of an ultrapower, M ≡
∏

U MI

Ultraproducts give us a very natural proof of the following major theorem of
model theory, the Compactness Theorem.

Theorem 3.8 (Compactness Theorem). A set of sentences Σ of a language L has
a model if and only if every finite subset of Σ has a model.

Proof. The forward direction is trivial since it is clear that if Σ has a model M,
then M is also a model for any finite subset of Σ.

To prove the backwards direction, take I to be the set of all finite subsets of Σ.
For each i ∈ I by assumption there exists a model Mi, and we can define the set
Si = {j ∈ I | j ⊇ i}. Then the set S = {Si | ∀i ∈ I} satisfies the finite intersection
property. Therefore by Theorem 3.5 there exists an ultrafilter U over I containing
all the sets of the form Si, and we can take the ultraproduct

∏

U Mi.
This ultraproduct is a model of Σ. This is because for any σ ∈ Σ, {i ∈ I |Mi |=

σ} ⊇ S{σ} and since S{σ} ∈ U , we see that {i ∈ I | Mi |= σ} ∈ U , by property (iii)
of Definition 3.1. By  Loś’s theorem then,

∏

U Mi |= σ, hence
∏

U Mi is a model of
Σ. �

Corollary 3.9. There exists a model V satisfying all of the sentences in Th(N)
such that V ≇ N.

Proof. It is well known that the natural numbers are a model of the Peano Arith-
metic axioms PA. We wish to define a language PA′ in the language of Peano
Arithmetic along with a new constant symbol x. PA′ contains all of the axioms of
PA as well as an axiom for each n ∈ N, namely that x > n. Any finite subset of
PA′ is satisfied by a model N that is the standard model of arithmetic along with
a constant corresponding to x which becomes the largest number of N. Thus by
the compactness theorem there is a model V that satisfies all of the axioms of PA′.
Then V satisfies all of the sentences in P , the Th(N), but V contains an element
corresponding to x, a “largest” element of V. Since no such element exists in N,
we see that V ≇ N. �

This proves the existence of such a model, but the result of the compactness
theorem was not merely existential; we actually constructed the model that we
were looking for. Using the ultraproduct construction here, we can get the sort of
construction we are looking for.

Construction 3.10. We will look at the ultrapower of the natural numbers. We
get this ultrapower from considering Sk = {n ∈ N | n ≥ k} for each k ∈ N. Then it
is clear that the Sk’s satisfy the finite intersection property, so by Theorem 3.5 we
can build a non-principal ultrafilter U on N so that ∀k, Sk ⊆ U . It is clear from the
way that we constructed U that there can be no dictator of U and therefore that
U is non-principal.

Now we have our ultrafilter U , let’s boldly step ahead and build an ultrapower
Nλ/U , given some cardinal λ ≥ ℵ0. Now by  Loś’s theorem, N ≡ Nλ/U , however,
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as we will show, they are not isomorphic. To do this we will consider the sentences
φk(x) = ∃x(x ∈ Sk) and take them all together:

ψi(x) =
∧

k<i

φk(x).

Then by the way we constructed U , Nλ/U |= ψi(x) for each i < ℵ0, hence

{t < ℵ0 | N |= ∃xψi(x)} ∈ U.

Observe that the Sk’s form a descending chain in the ultrafilter,

N = S1 ⊃ S2 ⊃ S3 ⊃ . . .

but that
⋂

i<ℵ0
Si = ∅. So for each i < ℵ0 we define an l ∈ Nλ/U so that l(i) ∈ N

so that Ni |= ψi[l(i)]. This ensures that for each i, Ni |= φi[l(i)]. Thus by  Loś’s
Theorem, Nλ/U |= φi[lU ] for all i > 0, which means that lU satisfies ψi(x) in Nλ/U
for each i, exactly what we wanted.

4. Saturation

Definition 4.1. Take a model M of a language L and A ⊆M , the universe set of
M. Let LA = L ∪ {ca | a ∈ A}, obtained by adding a constant ca for each a ∈ A
to the original language L . Let ThA(M) be the set of all sentences of LA that are
true in M.

Let p be the set of LA-formulas in free variables v1, v2, ..., vn. Then p is called
an n-type if p ∪ ThA(M) is satisfiable. We call p a complete n-type if φ ∈ p or
¬φ ∈ p for every LA-formulas φ with the free variables v1, v2, ...., vn. We denote
by SM

n (A) the set of all complete n-types.
If p is a complete n-type over A, we say that M realizes p if there exists an

ā = (a1, a2, ..., an) ∈Mn so that M |= φ(ā) for all φ ∈ p.

Definition 4.2. For any cardinal κ, a model M is κ-saturated if for all subsets
A ⊆ M with |A| < κ, M realizes all complete types over A. In the case that
κ = |M |, we say that M is saturated.

We would like to know when models are saturated. Specifically, when are ultra-
products saturated? We answered this question already to some extent in Construc-
tion 3.10, but we will generalize this result somewhat. That construction required
an ultrafilter that contained Sk’s, but not their countable intersection. We therefore
make the following definition.

Definition 4.3. A ultrafilter U is countably incomplete if U has a countable subset
V with the property that

⋂

V = ∅.

Proposition 4.4. Every countably incomplete ultraproduct over a countable lan-
guage L is ℵ1-saturated.

Proof. We need to show that given a language |L | ≤ ℵ0, a cardinal κ ≥ ℵ1 so
that there exists a non-principal ultrafilter U over κ, as well as an ultraproduct
N :=

∏

U Mi of a family of models Mi then N realizes all the complete types over
any A ⊆ N with |A| < ℵ0.

Since A is countable, S(A) is too, and we can take p ∈ S(A) and enumerate

p(x) = {φi(x; a1i , a
2
i , ..., a

mi

i ) | i ∈ N}.
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Taking them all together:

ψi(x) =
∧

j≤i

φi(x; a1i , a
2
i , ..., a

mi

i )

Then by  Loś’s theorem, since ∃xψi(x; c1i , c
1
i , ..., c

mi

i ) is true in N there is a “large”
set of index models on which this is true, i.e.

{t < ω | Mt |= ∃x ψi(x; c1i [t], ..., cmi

i [t])} ∈ U

Now since U is countably incomplete there is a descending chain

I = I0 ⊃ I1 ⊃ . . .

with each In ∈ U but
⋂

t<ω It = 0. So we can define X0 := I and for each
0 < n < ω:

Xn = In ∩ {t < ω | Mt |= ∃x ψi(x; c1i [t], ..., cmi

i [t])}

Then each Xn ∈ U , and they form a descending chain Xn ⊃ Xn+1 with
⋂

t<ωXn =
0

So for each i ∈ I there exist a greatest n(i) < ω with i ∈ Xn(i). We now choose
an element l ∈

∏

i∈I Mi so that if n(i) = 0, l(i) is allowed to be some arbitrary
element of Mi. But if n(i) > 0, we make l(i) ∈ Ai so that Mi |= ψn(i)[l(i)]. This
ensures that whenever 0 < n and i ∈ Xn, we have that n ≤ n(i), so Mi |= φn[l(i)].
Thus by  Loś’s Theorem,

∏

U Mi |= φn[lU ] for all n > 0, which means that lU
satisfies A in

∏

U Mi which suffices to prove the theorem. �

The last construction relied on the fact that we could find a countably incomplete
ultrafilter. This turns out to be very doable in most cases. It is not hard to see that
every principal ultrafilter is not countably incomplete (i.e. countably complete). But
the existence of cardinals that admit a non-principal countably complete ultrafilter
(called measurable cardinals) is not provable in ZFC [2].

We state without proof the following

Theorem 4.5 (Uniqueness of Saturated Models). Given elementarily equivalent
saturated models M,N of the same cardinality, M ∼= N.

A proof can be found in, say, [1], but it is tedious and we will only use the result
here. We give a quick but nice corollary to Proposition 4.4 that can be extended
to higher cardinals, but we will need an important assumption, the generalized
continuum hypothesis (or GCH) which states that for any α, ℵα+1 = 2ℵα .

Corollary 4.6. Assuming GCH, given models M,N of a countable language L

with |M |, |N | ≤ ℵ1 we have M ≡ N if and only if there exist ultrafilters U,D so
that

∏

U M ∼=
∏

D N.

Proof. For the forward direction, assume M ≡ N and take U,D to be non-principal
ultrafilters over ℵ0. Then by Proposition 4.4,

∏

U M,
∏

D N are ℵ1 saturated. Now

|M |, |N | ≤ ℵ1 = 2ℵ0

by GCH, so the ultrapowers
∏

U M,
∏

D N have cardinality at most ℵ1. By  Loś’s
Theorem they are elementarily equivalent, and so by the Uniqueness Theorem for
Saturated Models, they are isomorphic.

The backwards direction follows immediately from  Loś’s Theorem. �
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Both Proposition 4.4 and Corollary 4.6 can be generalized to all cardinalities,
but not in a straightforward way [1]. Though the full treatment of that is beyond
the scope of this paper, we do give the following important theorem that in its full
form proves that any theory with an infinite model has a model of each infinite
cardinality. The half of this theorem which can be proved using ultraproducts
follows.

Theorem 4.7 (Upward Löwenheim-Skolem Theorem). Given a theory T of a lan-
guage L , if ∃ M |= T and |M | ≥ ℵ0, then there exist models of arbitrarily large
cardinality that are elementarily equivalent to M.

We will prove this by considering the ultraproduct N := Mλ
/

U and we will see

that we can make N as large as we want. This will prove the above theorem since

by  Loś’s Theorem M ≡Mλ
/

U . The difficult part of the proof lies in determining

the cardinality of the ultraproduct. In general, this question is open, but certain
restraints on the ultrafilter can enable us to bound the cardinality of the ensuing
ultrapower. In particular, we will need the notion of regular ultrafilters.

Definition 4.8. Given a cardinal λ, an ultrafilter over I is λ-regular if and only if
∃ V ∈ U with |V | = λ so that each i ∈ I is a member of only finitely many elements
of V .

These regular ultrafilters will enable us to prove the theorem, but we first need
to prove that they exist.

Lemma 4.9. For any set I with |I| = λ ≥ ℵ0, there exists a λ-regular ultrafilter U
over I.

Proof. We need to find a J of cardinality λ that has a λ-regular ultrafilter over it.
To do this, we take J = Sω(λ), the set of finite subsets of λ. Then for each l ∈ λ,
Vj := {j ∈ J | l ∈ j} and we take V := {Vj | l ∈ λ}. It is immediate that |V | = λ
and that each j ∈ J is in only finitely many Vj ∈ V since j ∈ Vj means l ∈ j
and j is finite. Moreover, V satisfies the finite intersection property since given
Vj1 , . . . , Vjn ∈ V we can see that

l1, . . . , ln ∈ Vj1 ∩ . . . ∩ Vjn .

Therefore by Theorem 3.5 there is an ultrafilter U over λ that contains V . And we
saw that V contains all of the properties needed to ensure that U be regular. �

Now the theorem follows directly from the next lemma.

Lemma 4.10. For a λ-regular ultrafilter U over I, if A is infinite, then |
∏

U A| =
|Aλ|.

Proof. Of course |
∏

U A| ≤ |A
λ| follows immediately from the construction of the

ultraproduct. The tricky part will be to show that

|
∏

U

A| ≥ |Aλ|.

Let J be the set of finite sequences of elements of A. Then since |A| ≥ ℵ0, we have
|A| = |J |. Now, since U is regular it must have a subset V with |V | = |U | and each
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i ∈ I belongs to only finitely many elements of V . It therefore suffices for us to
exhibit an injective map

g : V A →
∏

u

J.

where V A denotes the set of functions from V to A.
We define an order ≤ on V and define a function h : I → B. We define h(i)

so that given (v1, . . . , vn) the finite sequence of all vj ∈ V so that i ∈ vj and we
arrange them in their order according to ≤. Then taking an h′ : V → A will enable
us to write

h(i) = (h′(v1), . . . , h′(vn)).

Taking the corresponding element in the ultraproduct we define g(h′) = hU . We
need to show that g is injective. Take s′, t′ ∈ V A with s′ 6= t′. This means that
there is some v ∈ V where s′(v) 6= t′(v). Taking any i ∈ v, we know that v appears
in the sequence of vj ’s that contain i, say at the kth spot, so v = vk. Then by
construction

s(i) = (. . . , s′(ek), . . .) 6= (. . . , h′(ek), . . .) = t′(i).

Therefore, s′(i) 6= t′(i) for all i ∈ v and we know that v ∈ U , so they are not equal
on a “large” set of I, hence

g(s′) = sU 6= tU = g(t′).

Thus g is the injective function we are looking for. �

This theorem gets its full power when paired which its counterpart, the Down-
ward Löwenheim-Skolem Theorem which states that given a theory T of a language
L , if ∃M |= T with |M | = κ ≥ ℵ0, then for any ℵ0 ≤ λ ≤ κ, there exists an N ≡M

with |N | = λ. We will not prove this result, but confine ourselves to pointing out
that this result combined with Theorem 4.7 implies the following powerful result.

Theorem 4.11 (Löwenheim-Skolem). Given a theory T of a language L and a
model M |= T , if |M | = κ ≥ ℵ0 then for all λ ≥ ℵ0 there exists a model N ≡ M

with |N | = λ.

5. Elementary Classes

Definition 5.1. A class of models K for L is called an elementary class if and
only if there exists a theory T such that K is exactly the class of all models of T .

Definition 5.2. A class of models K is closed under elementary equivalence if and
only if given a model M ∈ K, if a model N ≡M then N ∈ K.

Definition 5.3. A class of models K is closed under ultraproducts if and only if
every ultraproduct

∏

U Vi ∈ K provided that each Vi ∈ K.

Theorem 5.4. Take K to be a class of models. K is an elementary class if and
only if K is closed under ultraproducts and elementary equivalence.

Proof. For the forward direction, given a class K of models of a theory T , if a model
M ∈ K and a model N ≡M then it is clear that N is also a model of T , and so is
an element of K. Thus, K is trivially closed under elementary equivalence. Given
an ultraproduct

∏

U Mi where Mi is a family of models in K, for all sentences
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φ, if Mi |= φ, then by  Loś’s theorem
∏

U Mi |= φ. Therefore K is closed under
ultraproducts.

For the backwards direction, let K be a class of models that is closed under
elementary equivalence and under ultraproducts. We wish to consider T the set of
all sentences in L that are true in every V ∈ K. Hence T is a theory in L and
every V ∈ K is a model of T . Given U a model of T , take Σ to be the set of all
sentences of L that are true in U. We call I the set of finite subsets of Σ. Given
i = {σ1, σ2, ..., σn} ∈ I, there exists a model Vi ∈ K that is a model of i since
otherwise the sentence ¬(σ1 ∧ . . . ∧ σn) would be in T even though it is false in U,
a model of T . We can therefore pick a model Vi for each i ∈ I.

By the Compactness Theorem, there exists an ultraproduct
∏

U Vi which is a
model of Σ. Then

∏

U Vi ∈ K since K is closed under ultraproducts. And since
∏

U Vi is a model of Σ, which we defined as the set of sentences true in U, it follows
that every model of Σ is elementarily equivalent to U. Therefore

∏

U Vi ≡ U, so
U ∈ K. Therefore K is the class of all models of T , so K is an elementary class. �
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