
First Order Logic and Nonstandard Analysis

Julian Hartman

September 4, 2010

Abstract

This paper is intended as an exploration of nonstandard analysis, and the rigorous
use of infinitesimals and infinite elements to explore properties of the real numbers. I
first define and explore first order logic, and model theory. Then, I prove the compact-
ness theorem, and use this to form a nonstandard structure of the real numbers. Using
this nonstandard structure, it it easy to to various proofs without the use of limits that
would otherwise require their use.
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1 Introduction

The founders of modern calculus had a less than perfect understanding of the nuts and bolts
of what made it work. Both Newton and Leibniz used the notion of infinitesimal, without a
rigorous understanding of what they were. Infinitely small real numbers that were still not
zero was a hard thing for mathematicians to accept, and with the rigorous development of
limits by the likes of Cauchy and Weierstrass, the discussion of infinitesimals subsided. Now,
using first order logic for nonstandard analysis, it is possible to create a model of the real
numbers that has the same properties as the traditional conception of the real numbers, but
also has rigorously defined infinite and infinitesimal elements.

2 An Introduction to First Order Logic

2.1 Propositional Logic

The most basic form of logic is propositional logic, an it serves a building block for first
order logic. Propositional logic takes statements, and links them together with ”and” or
”or”. Basic sentence symbols are regarded as well-formed formulas, and combine with each
other in specific ways to make larger well-formed formulas. However, there are no quantifiers
in this basic form of logic. First order logic remedies this lack.

2.2 Logical Symbols

Predicate logic serves as a refinement of basic propositional calculus, or sentential logic. First
order logic allows for the expression of more complicated conditions such as ”for all” or ”for
some”; it allows for the quantification of the basic propositions first seen in propositional
logic. There are a few basic symbols used in first order logical systems that come from
propositional logic: the implication arrow (⇒), the negation symbol (¬), the ’and’ symbol
(∧), the inclusive ’or’ symbol (∨), and the inference symbol (`).

In addition to these symbols from propositional logic, we introduce the quantifier symbols
∀, the universal quantifier, and ∃, the existential quantifier.

2.3 Predicates, Constants and Functions

In first order logic, the equivalent of an english noun or noun phrase is what is called a term.

Definition 1. A term is as follows:
1. A variable, or individual constant is a term.
2. If t1, t2, ..., tn are all terms, fn

j (t1, t2, ..., tn) is a term, where f is a function letter.
3. An expression is a term if an only if it is a term as defined in 1 or 2.

It is easiest to think of terms in the intuitive sense mentioned above as nouns that are
then combined with predicate letters to form atomic formulas. Predicates define relations
between different terms.

2



Definition 2. P n
j (t1, t2, ..., tn) is an atomic formula, when P is a predicate letter, and ti is

a term ∀ i.

These atomic phrases further combine to form well-formed formulas, which are the es-
sential building blocks for a first order logic.
An example of an atomic formula is < xy, or x is less than y, where x and y are both
terms. The symbol < is a two-place predicate symbol, which means that it defines a relation
between the two components x and y.

2.4 Well-Formed Formulas

Well-formed formulas, or ’wffs’, are expressions made from atomic formulas, and various
quantifiers.

Definition 3. The classification of expressions as a Well-Formed Formula is dependent on
three rules:
1. Every atomic formula is a wff.
2. If A and B are wfs, and x is a variable, then (¬A), A ⇒ B, and ((∀y)A) are wffs.
3. An expression is a wff if an only if it is a wff as defined in 1 or 2.

Though by the definition of a well-formed formula, the above example of an atomic for-
mula also serves as an example of a wff, you can make more complicated wffs out of the
atomic phrases. For example, the phrase < xy ⇒ ¬ ≈ xy is a wff because ”x is less than y”
and ”x equals y” are both atomic formulas, and the implication and negation are allowed
under section two of the definition.

Note: At first, it would seem that the quantifier ∃ cannot be in a wff, due to the defini-
tion’s lack of provision for this quantifier. However, upon further examination we see that
∃ is logically equivalent to ¬((∀y)¬X). That is, ”there exists y such that y has property X”
is logically equivalent to the statement ”it is not true that for all y, y does not have the
property X”. Therefore, wffs can use the existential quantifier.

Using well formed phrases and quantifier logic, it becomes much easier to translate various
phrases from english to mathematical language that it was using propositional logic. For
example, the sentence, ”Every person has a mother.” can be translated as ”∀y, ∃x such that
xMy, with aMb indicating that a is the mother of b.

3 Models

3.1 Structure

A structure of a first order logical language is roughly defined as the universe in which a first
order logic operates. All of the parameters of a first order language must be accounted for
in the structure.
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Definition 4. A structure, Φ, of a first order language consists of a set and functions
assigning the set of parameters of the first order language to specific aspects of the structure’s
set.
1. The structure, Φ assigns the universal quantifier symbol (∀) some nonempty set, φ.
2. For each n-place predicate symbol with n different components, P n

j , Φ assigns an n-place
relation in φ
3. For each n-place function with n inputs, fn

j , Φ assigns an n-place operation, (fn
j )Φ, from

φn to φ.
4. For each constant c, Φ assigns a constant cΦ in the universe φ

For an example of a structure, let us consider a language with only the 2-place predicate
relation aDb meaning a is more delicious than b. Now, we want to assign a structure to this
language. If we use a structure with the universe, φ being all the different types of fruit, and
DΦ being the set of pairs of fruit such that one fruit is more delicious than the other. This
satisfies parts one and two of the definition of structure, and as this particular language has
no functions, part three is also satisfied.

For an example of the structure of a language with an operation, let us turn to the lan-
guage of ordered abelian groups. Ordered abelian groups have one 2-place predicate relation,
≤, where a ≤ b means that a is less than or equal to b. An ordered abelian group has several
axioms that it must satisfy, including having a binary operation, and inverses. The operation
must be associative, and communative. The group must be closed, and there must be an
identity element, such that the binary operation between this element and any other element
does not change the latter element. A structure which satisfies this language is the integers,
with the operation addition. The ≤ relation is preserved in the integers, and addition a the
binary, communicative, associative operation as specified. Negative and positive numbers
are inverses of each-other, and 0 is the identity element. The integers are also closed under
addition.

In the language of well-formed formulas, the integers, variables, and expressions such as
x + y, or −y, or z + 5 are considered terms. Expressions such as 5 ≤ 4 or x + y ≤ −6 are
atomic phrases, the most basic well-formulated formulas. These can be combined into more
complex wffs, such as ∀x , x+ 5 ≤ x+ 10

3.2 Truth

A well-formulated formula is not always true, it is just generated in a specific way outlined
above.

For example, in the model and structure of abelian groups outlined above, the statement
3 + 5 ≤ 1 is a wff, although it is clearly not true. Similarly, the statement: there exists an
integer, x, such that for every integer y, x is less than or equal to y, is a wff, but is not true.
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If a sentence is true in a structure Φ, we say that that structure is a model of that sentence.
Extending this, a structure Φ is a model for a set of wffs if and only if every wff in the set
is true for Φ. However, to make a statement about truth, it is necessary to give a rigorous
definition of truth. To this end, we introduce the concept of satisfaction.

3.2.1 Satisfaction

Let Φ be a structure of a language β. φ is the domain, or universe, of Φ. Σ is the set of all
the sequences in φ, the domain of the structure Φ. We know that any n-tuple of numbers in
Φ is included in Σ because if you assign the ith dimension of the n-tuple to the ith term of
a sequence in φ, you can describe any n-tuple as a sequence in φ and therefore in Σ. Let s
be a sequence in Σ, and M be a wff in the language β. We will now define what it means
for s to satisfy M, or Φ to satisfy M with s.

Definition 5. To do this we must define s*, a function that essentially takes the language
to its structure.
1. s*(xj) = sj, where xj is any variable, and sj is a corresponding term in the universe φ.
2. For a constant cj, s*(cj) = (cj)

Φ, the representation of the constant in the universe φ.
3. If t1, t2, ..., tn are terms in the language β, then s*(fn

k (t1, t2, ..., tn)) = (fn
k )(s∗(t1), s∗(t2), ..., s∗(tn)).

That is, s* is such that the representation of a function map f in the universe of Φ is the
same whether the function maps the terms to an output before the output is mapped to φ
or the terms are mapped to φ, and then mapped to an output by the function f.

Now that we have the language mapped into an arbitrary structure through the function
s*, we can define satisfaction inductively for wffs, based on and axiomatic definition for the
simplest of wffs, atomic formulas.

Definition 6. The definition of satisfaction is inductive, based on an axiomatic definition
of satisfaction for atomic formulas.
1. An atomic formula, M in the language β is an n-place relation. Let us call that relation
Mn

j . It also has a corresponding n-place relation in the structure, Φ. Let’s call that relation
(Mn

j )Φ. Then, the sequence s satisfies M if and only if (s∗(t1), s∗(t2), ..., s∗(tn)) is in the
relation (Mn

j )Φ. This essentially means that the sequence s satisfies a wff if it is still regulated
by the n-place relation even though it has been converted from an abstract set to a set in φ.
2. s satisfies ¬M iff s does not satisfyM. 3. s satisfiesM⇒N iff s does not satisfyM or
s satisfies N .
4. s satisfies (∀(xi)M) iff all sequences sn that differ from s at the ith component satisfyM

Now that the notion of satisfaction is formally defined, we can give a formal definition of
truth, and of a model.

Definition 7. Truth and Models
1. A wff, M, is true for the structure Φ iff every sequence in Σ satisfies M.
2. A wff, M, is false for the structure Φ iff every sequence in Σ does not satisfy M
3. A structure Φ is a model for a set of wffs, iff every wff in the set is true for Φ
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Along with the notion of truth, we get the notion of logical implication.

Definition 8. Logical Implication
For whatever structure for the language this implication is in, and for whatever function
mapping the statements to the structure, if a structure Φ and a sequence s satisfy every
member of F , then they satisfy M

4 The Compactness Theorem

Now that we have developed the concept of a first order logical language, and concrete
definitions for truth and models, it would seem that the only thing left to do is create a
model for the real numbers which includes infinite elements. However, since the set of real
numbers is an infinite one, it becomes harder to decide whether we can form a nonstandard
structure with the same properties as the real numbers. This is where the compactness
theorem comes in.

Theorem 1. The Compactness Theorem
1. If a set of wffs, S, implies another wff, M, then there is some finite subset of S, S ′, that
implies M.
2. If every finite subset of S is satisfiable, then S is satisfiable.

To prove this theorem, we need to use the Completeness Theorem, and to that end we
will introduce the concepts of soundness and completeness.

4.1 Soundness and Completeness

Definition 9. Theorem
Let F be a set of formulas. Taking a number of these formulas to be axiomatically true,
or true with out proof, a theorem is a new formula that is deductible from the axiomatic
formulas in F . The rule of inference that we will use is that from the formulas α and α⇒ β,
we can infer β

Before we prove the soundness theorem, it is necessary to mention a lemma, which we
will use to prove the theorem.

Lemma 1. Every logical axiom is valid. This means that any axiom that can be deduced is
true logically valid, or true for every structure and every function mapping the language to
the structure. There are 6 different types of logical axioms based on the method of deduction.

Theorem 2. The Soundness Theorem
Let F continue to be a set of formulas. M is a theorem of F ⇒ F ` M, that it, that F
logically implies M.

Proof. If M is logical, or already an element of S, then this theorem is obviously true.
Otherwise, M is obtained from S through the process of deduction, where M ⇒ T and
T ` M.
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Coupled to the soundness theorem is its converse, the completeness theorem. To prove
the Completeness theorem, we first prove the following lemma.

Lemma 2. Any logically valid wff M of S is a theorem of S

Proof. Suppose that for the set of wffs S,M is logically valid, but not a theorem. SinceM
is not a theorem of S, it can not be proved from S, which means that we can add 6 M to
S as an axiom, and S is still consistent. If we make a model for S ′, which includes 6 M, we
find that M is both false, as specified by S ′, and true, because it is logical, for M. This is
a contradiction.

Theorem 3. The Completeness Theorem
If S implies M, then M is a theorem of S

Proof. Coupled with the soundness theorem, the preceding lemma proves that

With these two theorems, we can prove the Compactness Theorem.

Theorem 4. The Compactness Theorem
1. If a set of wffs, S, implies another wff, M, then there is some finite subset of S, S ′, that
implies M.
2. If every finite subset of S is satisfiable, then S is satisfiable.

Proof. 1.S implies M. Then, by the completeness theorem, M is a theorem of T. Because
a deduction must take a finite number of steps, there must be a finite subset of T that M
is a theorem of. Then, we know by the soundness theorem that this subset logically implies
M.
2. If every finite subset of S is satisfiable, then every finite set is consistent, that is, a set
doesn’t imply M and ¬M. Since deductions are finite, no deduction in the infinite set S
will be longer than the longest finite subsets. Therefore S is consistent, which means, by the
completeness theorem, that S is satisfiable.

5 Nonstandard Analysis

5.1 Making a Nonstandard Structure

The language that we want to use for nonstandard analysis needs to include symbols for all
operations on R. We will call the standard structure for this language R. This structure has
a universe R, the real numbers. This structure is very familiar, since the real numbers and
operations on the real numbers are among the most basic aspects of mathematics.

However, we want to create a nonstandard structure for the language that usually op-
erates on the real numbers. Not only this, but we also want this structure to be a model
for the same wffs asR, so we can use this structure to prove theorems that are also true inR.
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Let S be the union of the set of true sentences of R, also known as the theory of R
and constants cn such that cn < r, cn being an element of R. By changing r to a large
real number, any finite set S can be satisfied. Therefore, by the compactness theorem,
there is an infinite structure Φ, with a universe φ and a a constant c in φ that satisfies
S. This structure, Φ, is a model for the theory of R. This means that R and Φ are ele-
mentarily equivalent, meaning that any wff that is true for one structure is true for the other.

We easily can show that any function or operation that is true in R is true in Φ, by
creating an isomorphic map from R into Φ. Assuming that the universes R and φ are not
originally the same, we can modify the universe φ by replacing the elements of φ elements
of R mapped to with elements of R. This leaves φ with all the elements of the real numbers,
and possibly more. Now, since R and Φ are elementarily equivalent, any theorem, relation,
or operation have the same properties in both R and φ. Because of the isomorphic function
between these two structures, properties, operations, and relations are directly comparable
from R to φ, and back from the image of R in φ to R.

However, this does not yet tell us that this ”nonstandard” structure is any different from
the standard structure of R, as we have not discerned any distinguishing features. Now we
want to show that R is a substructure of Φ. First of all, we know that there is a point a in
φ such that if r=a, then S is satisfied. This element b must not be a real number, because
for every real number x, there is a corresponding x* in φ, due to the isomorphism between
R and φ described above. We know that the structure Φ and the universe φ satisfy S. If b
were a real number, then only real numbers less than b would be included in the universe
φ. However, since there is a x* in φ that corresponds with every x in R, then b must be an
infinite element. Additionally its reciprocal, 1/b, is an infinitesimal element of φ.

The most obvious aspect of nonstandard structures applicable to basic proofs in calculus
and analysis is the existence of infinitesimal elements. However, before we use infinitesimal
elements too freely, we must outline some basic properties of being infinitesimal.

Definition 10. Infinitesimal
1. Let I denote the set of infinitesimals.
2. I is the set of x in φ such that x < y for all positive y in R
3. x is infinitely close to y (x ≈ y) if x-y is infinitesimal.

Theorem 5. I is closed under addition, subtraction, and multiplication from F , the set of
finite elements of φ.

Proof. Let x and y be infinitesimals. Suppose that z is a positive real element of φ. Since
real numbers can be divided by other real numbers to yield a third real number, z/2 is real.
Since infinitesimals are smaller than any real number, x < z/2 and y < z/2, for any positive
real z. Then, we know that |x± y| < z, and therefore the infinitesimals are closed under
addition and subtraction. Since z is finite, z < b, for some finite element b. Then, x < z/b,
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since z/b is finite. Thus, x ∗ b < z/b ∗ b = z. Since z an b are any real numbers, we have just
proven that I is closed for finite elements of φ.

In order to use the concept of ”infinitely close” to its full potential, we must prove some
basic properties of ”infinite closeness”.

Theorem 6. 1.≈ is an equivalence relation.
2. If a ≈ b and c ≈ d, then a+ c ≈ b+ d
3. If a ≈ b and c ≈ d, then a ∗ c ≈ b ∗ d

Proof. 1. To be an equivalence relation, ≈ must be reflexive, symmetric, and transitive.
≈ is obviously reflexive, as 0 is an infinitesimal. ≈ is also symmetric, because if b is an
infinitesimal, so is -b. Finally, it is transitive, because if d is an infinitesimal and a, b and
c are real numbers, and a − b ≤ d and b − c ≤ d, then a − c ≤ 2d. Since 2d is also an
infinitesimal (Theorem 5), ≈ is transitive. Thus, ≈ is an equivalence relation.
2.Let a ≈ b and c ≈ d. Let e be an infinitesimal. Assume, without loss of generality, that
a > b and c > d. Then, a− b ≤ e, and c− d ≤ e. We know that 2e is still infinitesimal, and
also that a− b+ c− d ≤ 2e⇒ (a+ c)− (b+ d) ≤ 2e⇒ a+ c ≈ b+ d
3. Assuming that a∗ c > b∗d, a∗ c ≈ b∗d if a∗ c− b∗d ≤ e∗ (a+ b), where a,b,c,d are finite
and e is an infinitesimal. Assuming that a > b and c > d, since a ≈ b and c ≈ d, a ≤ b + e
and c ≤ d + e. Thus, a ∗ c ≤ (b + e)c = b ∗ c + e ∗ c ≤ b ∗ (d + e) + e ∗ c = b ∗ d + e(c + b).
Thus, a ∗ c− b ∗ d ≤ b ∗ d+ e(c+ b)− b ∗ d = e(c+ b).

5.2 Applications of a Nonstandard Structure

Now, let’s do some mathematical proofs using the concept of infinitesimals instead of limits.

One of the basic concepts in the study of functions is the concept of continuity. Contin-
uous functions are important in the study of calculus and analysis, and it is easy to redefine
the notion of continuity using infinitesimals

Definition 11. Continuity
The traditional definition of continuity is that a function f is continuous if for every ε there
exists a real δ > 0 such that if |x− y| < δ then |f(x)− f(y)| < ε. We can rephrase that
using infinitesimals, by defining f as continuous if when f(x) is infinitely close to f(y), x is
infinitely close to y. Of course, we need to show that these two definitions of continuity are
equivalent.

Proof. Suppose x and y are infinitely close, |x− y| < δ is obviously true, for any real δ > 0.
If f(x) and f(y) are infinitely close, it is also obviously true that |f(x)− f(y)| < ε for any
real ε > 0.
Suppose that for every ε, ∃δ > 0 such that if |x− y| < δ, then |f(x)− f(y)| < ε. Now
suppose that delta is an infinitesimal. Since the infinitesimal delta is smaller than any real
delta, for that delta, |f(x)− f(y)| < ε for any real epsilon. Therefore, f(x) and f(y) are
infinitely close.
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Instead of taking a limit of a variable going to zero for things such as derivatives, we can
just use an infinitesimal.

Definition 12. Limits
4 lima→b f(a) = c traditionally means that for any real ε > 0, there exists a δ such that if
|a− b| < δ, then |f(a)− c| < ε. This is equivalent to the statement that when a and b are
infinitesimally close, f(a) and c are infinitesimally close.

Proof. The arguments for the nonstandard definition of limits works in the same way as the
arguments for the nonstandard definition of continuity detailed above.

Definition 13. Derivative
In basic calculus, a derivative is defined as f ′(x) = limh→0

f(x+h)−f(x)
h

. Now that we can use
infinitesimals, however, we can define a derivative as follows: Let a be an infinitesimal, x
be a variable in φ, and f be function. f ′(x) = f(x+a)−f(x)

a
. This is obviously similar to the

traditional definition of a derivative, only without the limit notation.

Using this definition, we can prove some basic theorems of calculus.

Theorem 7. Differentiability Implies Continuity
If f ′(a) exists, the f is continuous at a. Since f’(x) exists, f ′(x) ≈ f(x+a)−f(x)

a
. Since a is an

infinitesimal, and f’(x) is finite, f ′(x) ∗ a is an infinitesimal, and therefore f(x-a) and f(x) are
infinitely close. Thus, f is continuous.
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