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Abstract. Morse Theory is greatly utilized to find and decompose structures

on manifolds. The concept of a manifold, as a generalization of objects into

n dimensions, is crucial in many areas of geometry. Manifolds range from
the very simple (e.g. the plane) to the very complicated and unimaginable

(e.g. the Klein bottle). However, despite their various forms and complexities,

Morse Theory allows us to capture them in terms of Euclidean space, hence
allowing us to conduct calculus on manifolds. Much of what Morse Theory can

do will be beyond the scope of this paper. Our ultimate goal will be to famil-
iarize ourselves with manifolds and be able to understand and prove the Morse

Lemma. The Morse Lemma is a gateway theorem of Morse Theory which al-

lows us to directly analyze the neighborhood of a nondegenerate critical point
on a manifold in a useful, intuitive manner, akin to the slopes around a hole in

3-D space. This paper will lend an introductory discussion of manifolds and

their preoccupations with Euclidean geometry. We will start by assuming the
basic tenets of linear algebra and multivariable calculus.
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1. Preliminaries: What is a Manifold?

Before we begin to define a manifold, we need a few preliminary definitions.

Definition 1.1. Let U and V be open sets. A function f : U → V is Cp at a
point u ∈ U (read “f is class p at a point u”) if all partial derivatives of order
k ≤ p exist and are continuous at u. We say that the function f is of class Cp if
f is Cp at every point in U .

Definition 1.2. f is smooth at a point u ∈ U if all partial derivatives of any
finite order exist and are continuous at u. Such functions are also called C∞ at u.
We say that f is a smooth function, or f is of class C∞, if it is smooth at every
point in U .

Date: September 7, 2010.

1



2 AMY HUA

Definition 1.3. Let X and Y be topological spaces. The map h : X → Y is
a homeomorphism if h is bijective and continuous, and it has a continuous in-
verse. We consider X to be homeomorphic to Y if there exists a homeomorphism
between X and Y .

Remark 1.4. Notice that the inverse of a homeomorphism and a composition of
homeomorphisms are also homeomorphisms.

Definition 1.5. A diffeomorphism is a smooth homeomorphism with a smooth
inverse.

We are now ready to define manifolds.

Definition 1.6. A space M is an n-dimensional manifold (without boundary),
or an n-manifold, if there exists an open cover {Uα}α∈I on M (where I is some
interval on N) and open sets {Vα}α∈I ⊂ Rn such that for every α ∈ I, a homeo-
morphism ϕα : Uα → Vα exists.

Surfaces are merely defined as two-dimensional manifolds. Examples of surfaces
include the sphere, plane, cylinder, prism, and torus.

One example of a manifold is the (n-1)-dimensional unit sphere

(1.7) Sn =
{

(x1), . . . , xn)|x21 + . . .+ x2n = 1
}

Sn is a generalization of the unit circle (S1) and the unit sphere (S2) to higher
dimensions. We may think of the Earth as the surface S2 whereby the terrain
of a small area around every point can be captured in a “chart”, and the entire
topology of the Earth may be expressed in terms of a collection of charts, or a
two-dimensional “atlas”.

Definition 1.8. Such a function ϕα (defined above) with its domain Uα is called a
chart or a local coordinate system, denoted as (Uα, ϕα). If Uα is a neighborhood
around a point p in M , then we call (Uα, ϕα) a chart (or local coordinate system)
centered at p.

A chart is endowed with a set of local coordinates, say, (x1, . . . , xn), where
xi ∈ R for every i ∈ [1, n], and for which Uα can be “charted” upon. That is,
if ϕα : Uα → Vα is a chart defined by ϕ(x) = (x1, . . . , xn) for x ∈ Uα, then
(x1, . . . , xn) are local coordinates.

Definition 1.9. An atlas of M , denoted as A = {(Uα, ϕα)}, is defined by open
sets Uα on M and a set of charts ϕα : Uα → Vα such that

M =
⋃
α

ϕα(Uα)

In other words, the charts form an open cover of M .

Definition 1.10. Let ϕα : Uα → Vα and ϕβ : Uβ → Vβ be charts on the n-manifold
M . Suppose that Uα ∩ Uβ 6= ∅. Then we say that the function

ϕβ ◦ ϕ−1α : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ)

is a transition map or a gluing map, which maps from a set in Rn to the
manifold and then back to another (or the same, if ϕα = ϕβ) set in Rn.

We may think of an atlas as a union of charts glued together with gluing maps.
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Remarks 1.11. Since ϕ−1α and ϕβ are homeomorphisms, then the transition map
is also a homeomorphism. So we can change from the local coordinates of one
local coordinate system to the local coordinates of another local coordinate system
continuously. A smooth function f : M → R can be expressed in a certain way
with respect to a local coordinate system by implicitly applying a transition map
to it.

This paper will only discuss the case of general manifolds, but there are also
other types of manifolds which are important in Morse Theory. Some of them are
defined below.

Definition 1.12. A manifold M with an atlas A = {(Uα, ϕα)} is a smooth man-
ifold if every transitions map on A is a diffeomorphism. On a smooth manifold,
the atlas A is called a smooth atlas of M , since all charts in A are smooth.

Definition 1.13. A manifoldM with an atlasA = {(Uα, ϕα)} is an n-dimensional
manifold with boundary if every open set Uα is homeomorphic to an open set

on the upper half-space Rn+

, where

Rn
+

= {(x1, . . . , xn) ⊆ Rn : xn ≥ 0}

It is conventional to say that an n-manifold is a manifold without boundary
unless specified.

Definition 1.14. A manifold M as a topological space is compact if every infinite
open cover of M has a finite subcover. In other words, for every infinite collection
of open sets {Uα}α∈I where |I| =∞ and

M =
⋃
α∈I

Uα

there is a finite collection of open sets {Uα}α∈J where |J | <∞ and

M =
⋃
α∈J

Uα

2. Basics of Morse Theory

For this section, let M be an n-manifold and f : M → R be a smooth function.

Definition 2.1. If we choose local coordinates (x1, . . . , xn) centered at a point p0
on M , then p0 is a critical point of f if all of the first-order derivatives ∂f

∂x1
, . . . , ∂f∂xn

are zero when evaluated at p0. That is,

∂f

∂x1
(p0) = . . . =

∂f

∂xn
(p0) = 0

In this case, we say that the number f(p0) ∈ R is a critical value of f .

Definition 2.2. Let (x1, . . . , xn) be local coordinates centered at a point p. Then
the Hessian of the function f at p, denoted as Hf (p), is the n × n matrix of
second-order derivatives
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Hf =


∂2f
∂x2

1

∂2f
∂x1x2

. . . ∂2f
∂x1xn

∂2f
∂x2x1

∂2f
∂x2

2
. . . ∂2f

∂x2xn

...
...

. . .
...

∂2f
∂xnx1

∂2f
∂xnx2

. . . ∂2f
∂x2

n


evaluated at the point p.

The Hessian is a useful tool for defining characteristics on critical points, such
as degeneracy.

Definition 2.3. Let p0 ∈ M be a critical point on a function f : M → R which
is C2 at p0. p0 is a nondegenerate critical point if the determinant of its
Hessian det(Hf (p0)) 6= 0. On the other hand, p0 is a degenerate critical point
if det(Hf (p0)) = 0.

Remark 2.4. We previously defined the Hessian in such a way that the Hessian
of f at a point p depends on the local coordinates chosen at p, and so it may
seem that the degeneracy (that is, the characteristic of being degenerate or non-
degenerate) of a function at a point would also depend upon the choice of local
coordinates. However, the opposite is actually true. We will verify this statement
in the discussion below.

Definition 2.5. Let (x1, . . . , xn) and (X1, . . . , Xn) be local coordinate systems
around a point p ∈ M . Then the Jacobian matrix at p, denoted as J(p), is the
n× n matrix of the coordinate transformation from one local coordinate system to
the other

J =


∂x1

∂X1

∂x1

∂X2
. . . ∂x1

∂Xn
∂x2

∂X1

∂x2

∂X2
. . . ∂x2

∂Xn

...
...

. . .
...

∂xn

∂X1

∂xn

∂X2
. . . ∂xn

∂Xn


evaluated at the point p.

Definition 2.6. Let A be an l × k matrix, A = (αij)k×l. Then the transpose
of A is the matrix AT = (αji)l×k. Moreover, if l = k and A = AT , then A is a
symmetric matrix.

Definition 2.7. A function f : M → R on an n-manifold M is a Morse function
if every critical point of f is nondegenerate.

Observe that on a smooth, real-valued function f : M → R on an n-manifold M ,

the Hessian Hf (p0) is symmetric, because ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

for every i, j ∈ [1, n].

We now have the necessary knowledge to establish the following lemma.

Lemma 2.8. Let f be a real-valued, smooth function defined on the n-manifold M .
Let (x1, . . . , xn) and (X1, . . . , Xn) be two coordinate systems at a critical point p0
of f with Hessians Hf (p0) and Hf (p0), respectively. Then,

(2.9) Hf (p0) = JT (p0)Hf (p0)J(p0).
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The proof is a rather complicated calculation of the left and right-hand sides of
the statement after applying the chain rule. To avoid unnecessary tediousness, only
the general outline of the proof is stated below.

Proof. In order to abbreviate notation, we will only consider the case when n = 2.
The steps of the proof are the same for any n ≥ 2. Let p0 be a critical point of the
smooth function f : M → R, where M is a two-dimensional manifold. In the case
of n = 2, equation 2.1 translates to(

∂f
∂x2

1
(p0) ∂f

∂x1∂x2
(p0)

∂f
∂x2∂x1

(p0) ∂f
∂x2

2
(p0)

)

=

[
∂x1

∂X1
(p0) ∂x2

∂X1
(p0)

∂x1

∂X2
(p0) ∂x2

∂X2
(p0)

]
×

[
∂f
∂X2

1
(p0) ∂f

∂X1∂X2
(p0)

∂f
∂X2∂X1

(p0) ∂f
∂X2

2
(p0)

]
×

[
∂x1

∂X1
(p0) ∂x1

∂X2
(p0)

∂x2

∂X1
(p0) ∂x2

∂X2
(p0)

]
At this point, we may think about using the chain rule we have all learned from

high school calculus. We apply it here to coordinate systems (x1, x2) and (X1, X2)
centered at p0.

∂f

∂X1
=

∂f

∂x1

∂x1
∂X1

+
∂f

∂x2

∂x2
∂X1

(2.10)
∂f

∂X2
=

∂f

∂x1

∂x1
∂X2

+
∂f

∂x2

∂x2
∂X2

We may use the chain rule to express ∂2f
∂X2

1
, ∂2f
∂X1∂X2

, and ∂2f
∂X2

2
in terms of ∂2f

∂x2
1
,

∂2f
∂x1∂x2

, and ∂2f
∂x2

2
. Since p0 is a critical point, we observe that ∂f

∂x1
(p0) = ∂f

∂x2
(p0) = 0.

Then, we use this fact to establish the equivalence in equation 2.1, and we are
done. �

Corollary 2.11. The degeneracy of a critical point p0 is independent of the choice
of local coordinates.

Proof. This follows directly from the lemma established above, because

Hf (p0) = JT (p0)Hf (p0)J(p0)

=⇒ det(Hf (p0)) = det(JT (p0))det(Hf (p0))det(J(p0))

Observe that

J(p0)J−1(p0) = Id

where Id is the identity map. Therefore,

det[J(p0)J−1(p0)] = det(Id) = 1.

The determinant is multiplicative, and so

det(J(p0))det(J−1(p0)) = det(Id) = 1

Therefore, det(J(p0)) 6= 0. Since the Jacobian determinant is always nonzero,
then it follows that det(Hf (p0)) is zero if and only if det(Hf (p0)) is zero, and vise
versa. �

The Hessian is now clearly well-defined.
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3. Proof of the Morse Lemma

To establish the Morse Lemma, we first need the following two theorems. One
is a fundamental fact of multivariate calculus.

Theorem 3.1. Let f be a smooth function in a neighborhood Nx of x = (x1, . . . , xn)
in Rn. Suppose f(0, . . . , 0) = 0. Then, there exist n smooth functions gi, . . . , gn
defined on Nx such that gi(0, . . . , 0) = ∂f

∂xi
(0, . . . , 0) for every i, and

f(x1, . . . , xn) =

n∑
i=1

xigi(x1, . . . , xn)

Proof. Fix a point (x1, . . . , xn) in Rn. Consider the function f(tx1, . . . , txn) with
the parameter t. By knowing the chain rule, we observe the following.

f(x1, . . . , xn) =

∫ 1

0

df(tx1, . . . , txn)

dt
dt =

∫ 1

0

n∑
i=1

xi
∂f(tx1, . . . , txn)

∂xi
dt

Now, for every i, let

gi(x1, . . . , xn) =

∫ 1

0

n∑
i=1

∂f(tx1, . . . , txn)

∂xi
dt

�

The other prerequisite is what is known as the Inverse Function Theorem. We
will omit the proof here but state the theorem below.1

Theorem 3.2. (Inverse Function Theorem)2 Let f : Rn → Rn be a smooth function
on an open set U containing a ∈ Rn. Suppose that detJf (a) 6= 0.

Then there is an open set V ⊂ Rn containing a and an open set W ⊂ Rn
containing f(a) such that f : V →W is a diffeomorphism.

Theorem 3.3. (Morse Lemma) Let p0 be a non-degenerate critical point of a
smooth function f : M → R, where M is an n-manifold. Then we can choose a
local coordinate system (x1, . . . , xn) centered at p0 such that

(3.4) f = −x21 − x22 − . . .− x2λ + x2λ + . . .+ x2n + c

where c = f(p0) is some constant and λ is the index of f at p0.

The definition of an index is more formally stated below.

Definition 3.5. Let f : V → R be a bilinear map defined on the real vector space
V . Then the index of f is the maximal dimension of a subspace of V on which H
is negative definite.2

Finally, we may now go about proving the Morse Lemma. The proof of the
Morse Lemma is mostly a proof by induction. The base case for k = 1 is given
below.

1The proof may be found in Michael Spivak’s Calculus on Manifolds.
2Principally adopted from Spivak’s Calculus on Manifolds.
2This definition was adapted from John Milnor’s text Morse Theory, 1963.
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Proof. Let p0 be a non-degenerate critical point of the function f : M → R, where
M is an n-manifold. As stated before, the degeneracy of the point p0 on f is
determined independent of our choice of a local cooordinate system. Therefore, we
may assume that when we pick a local coordinate system (x1, . . . , xn) defined in a
neighborhood Np0 ,

(3.6)
∂2f

∂x21
(p0) 6= 0

or that we may pick a suitable linear transformation of the local coordinate
system such that equation 3.6 is true. We may further assume that p0 corresponds
to the origin (0, . . . , 0) ∈ Rn on the local coordinate system and that f(p0) = 0,
replacing f with f − f(p0) if necessary.

By Theorem 3.1, there exist n smooth functions gi, . . . , gn defined on Np0 such
that

(3.7) gi(0, . . . , 0) =
∂f

∂xi
(0, . . . , 0)

and

(3.8) f(x1, . . . , xn) =

n∑
i=1

xigi(x1, . . . , xn)

But since p0 is a critical point, equation 3.7 turns out to be zero on both sides at
p0. So we can apply Theorem 3.1 again to get n smooth functions hi1, . . . , hin for
every i that is defined on Np0 such that

(3.9)

n∑
j=1

xjhij(x1, . . . , xn) = gi(x1, . . . , xn).

By plugging equation 3.9 into equation 3.8, we get

(3.10) f(x1, . . . , xn) =

n∑
i=1

n∑
j=1

xixjhij(x1, . . . , xn)

We may assume that hij = hji, rewriting hij as Hij =
hij+hji

2 if necessary. Fur-
thermore,

(3.11) (hij(0, . . . , 0))n×n = (
1

2

∂2f

∂xi∂xj
(0, . . . , 0))n×n

And since we assumed equation 3.6 to be true, then h11(0, . . . , 0) 6= 0. h11 is a
smooth, hence continuous function, and so h11 is not zero in a neighborhood of the
origin. Let us call this neighborhood N̄0.

Our ultimate goal is to express f in the standard quadratic form of equation 3.4.
We do this by eliminating all terms which are not of the form ±x2i via induction
over k ≤ n steps. While we are currently dealing with k = 1, in the general case of
k, we wish to express f as a sum of terms such that k terms are of the form ±x2i
and the rest of the terms depend on coordinates in the set {xi|i 6= k}. To this end,
let

(3.12) G(x1, . . . , xn) =
√
|h11(x1, . . . , xn)|.

G is a smooth, non-zero function of x1, . . . , xn on N̄0.



8 AMY HUA

Now suppose by induction that there exists a local coordinate system (y1, . . . , yn)
defined on N̄0 such that

(3.13) yi = xi (i 6= 1)

(3.14) y1 = G ∗ (x1 +

n∑
i>1

xih1i
h11

).

It follows from the Inverse Function Theorem that y1, . . . , yn is a local coordinate

system defined on a smaller neighborhood Ñ0 ⊂ N̄0, since the determinant of the
Jacobian of the transformation from (x1, . . . , xn) to (y1, . . . , yn) may be verified to
be nonzero.

When we square y1, we get

(3.15) y21 = ±h11x21 ± 2

n∑
i=2

x1xih1i ±
(
∑n
i=2 xih1i)

2

h11

where the signs are either positive if h11 > 0 or negative if h11 < 0. Using equation
3.10, we can verify that f can be expressed in the following way with respect to

this coordinate system on the restricted domain Ñ0.

(3.16) f = ±y21 +

n∑
i=2

n∑
j=2

xixjhij −
(
∑n
i=2 xih1i)

2

h11

where the sign of the y21 term is positive if h11 > 0 or negative if h11 < 0. Staying
consistent with our goals, we notice that the first term is in the standard quadratic
form seen in equation 3.4, whereas the rest of the terms depend on local coordinates
xi whereby i 6= k (k = 1). By induction from k = 1 to k = n, we prove the Morse
Lemma. �

As important consequences,

Corollary 3.17. nondegenerate critical points are isolated.

Corollary 3.18. A Morse function defined on a compact manifold only has finitely
many critical points.

By using a convenient coordinate system, we can see how the real-valued func-
tion f behaves on the manifold near a nondegenerate critical point, allowing us to
classify an area around a nondegenerate critical points according to the index of
the function at that point. We have now proven the Morse Lemma, and we may
use our understanding of it to advance our study of Morse Theory as a whole.
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