
ELLIPTIC CURVES AND CRYPTOGRAPHY

JOHN KOPPER

Abstract. This paper begins by discussing the foundations of the study of

elliptic curves and how a the points on an elliptic curve form an additive group.

We then explore some of the interesting features of elliptic curves, including
the fact that elliptic curves are complex tori. At the end we briefly discuss

how elliptic curves can be used in cryptography.
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1. Introduction

The study of elliptic curves can be approached from many perspectives. In this
first section, we describe them as solutions to a type of polynomial. Using the
geometric properties implied by considering these curves over R, we define a group
law. The second section is devoted to showing that there is an isomorphism between
complex tori and elliptic curves. In the third section we deviate from the discussion
of elliptic curves into one of field theory so that in the final section we can discuss
cryptographic applications of elliptic curves.

Definition 1.1. An elliptic curve E over a field K is a set of points (x, y) in K×K
satisfying

(1.2) y2 +Ay = x3 +Bx2 + Cx+D

This is an unwieldy and seldom-used way of writing an elliptic curve. The
following proposition characterizes almost all elliptic curves of interest in a simpler
form.

Proposition 1.3. If K is a field with characteristic neither 2 nor 3, then (1.2) can
be written as

(1.4) y2 = x3 + bx+ c
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Proof. Because the characteristic of K is not 2, Equation 1.2 gives(
y +

A

2

)2

= x3 +Bx2 + Cx+D +
(
A2

4

)
= x3 +Bx2 + Cx+D′

Let y′ = y + A/2, and do a similar trick with x′ = x + B/3 to obtain Equation
1.4. �

An interesting property of elliptic curves, and one of the focuses of this paper,
is that an addition can be defined such that the set of points on the curve form an
additive group. The procedure for adding two points is purely geometric.

Definition 1.5. Given two distinct points P1 = (x1, y1), P2 = (x2, y2) on an elliptic
curve, construct the unique line L through P1 and P2. The line L intersects the
curve at a third point, P ′3 = (x′3, y

′
3). Define the sum P1 +P2 to be the reflection of

P3 over the x-axis, (x′3,−y′3).

From the definition alone, it is not clear that this addition is valid, much less
useful. In fact it is very nearly valid, but to make it fully so, we need to slightly
amend our definition of elliptic curves. To each elliptic curve we add a point “∞,”
which cannot be given by Cartesian coordinates. The notion of ∞ can be made
rigorous with a discussion of projective space, but it is outside the scope of this
paper to do so. For our purposes, it suffices to say that the point ∞ lies on every
elliptic curve, and every vertical line in the plane passes through it.

Now if two points on an elliptic curve lie also on the same vertical line, their sum
is ∞. Note also that ∞+ P = P, because the line through ∞ and P is the vertical
line through P, which intersects the curve a third time at precisely P ’s reflection
over the x-axis. The following definition completes the idea of addition on elliptic
curves.
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Definition 1.6. Let P be a point on an elliptic curve E. Construct the line L
tangent to E at P. L intersects E at one other point, P ′. Reflect P ′ over the x-axis
to obtain the sum P + P.

Notation 1.7. If P is a point on an elliptic curve and n is a positive integer, then
nP = P + P + · · ·+ P (with n terms in the sum). If n is a negative integer, then
nP = (−P ) + (−P ) + · · ·+ (−P ).

What remains unclear from the definitions is whether the lines L in Definitions
1.5 and 1.6 do indeed intersect the elliptic curve in the right number of places. This
issue will be addressed in the next section. It can be proven algebraically, but the
proof later in this paper is simpler. Also, we are now, in theory, able to prove the
following theorem.

Theorem 1.8. Let E be an elliptic curve. Then the set of points on E with addition
defined as in Definitions 1.5 and 1.6 forms an abelian group.

Proof. Let P1 and P2 be two points on E. Then the line through P1 and P2 is the
same as the line through P2 and P1. Addition is thus commutative. Also, from the
above remarks it is clear that the point ∞ is the identity. The point P ′ obtained
by reflecting a point P over the x-axis has the property P + P ′ = ∞. Therefore
every point has an inverse.

To finish the proof of the theorem we need to prove that addition is associative,
but the full proof is long and unnecessary. A roundabout but elegant proof will be
given in Section 2. �

Although this group law for elliptic curves has been constructed geometrically,
it can be expressed and proven completely algebraically. The following theorem,
adapted from Washington [2], is simply a reformulation of Theorem 1.8 by finding
the equations for the necessary lines.

Theorem 1.9. Let E be an elliptic curve over a field K defined by the equation
y2 = x3+bx+c. Let P1 = (x1, y1) and P2 = (x2, y2) be points on E, with P1, P2 6=∞.
Define P1 + P2 = P3 = (x3, y3) by the following:

(i) If x1 6= x2, then

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1 where m =
y2 − y1

x2 − x1
.

(ii) If x1 = x2 and y1 6= y2, then P1 + P2 =∞.
(iii) If P1 = P2 and y1 6= 0, then

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1 where m =
3x2

1 + b

2y1
.

(iv) If P1 = P2 and y1 = 0, then P1 + P2 =∞.
(v) For any P on E, define P +∞ = P.

The set of points on E with this addition forms an abelian group.

2. Elliptic Curves Over C

In this section we discuss a wholly different characterization of elliptic curves.
The following discussion eventually shows that elliptic curves over C correspond
elegantly to complex tori. To understand and justify this statement, several pre-
liminary theorems are required. For the proofs of theorems 2.1 and 2.4, see, for
example, Walter Rudin’s Real And Complex Analysis [1].
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Theorem 2.1. (Liouville’s Theorem) Every bounded entire function is constant.

Proposition 2.2. Let f be a meromorphic function on an open set Ω. Then for
every a in Ω there exists an integer m, a ball B(a, r), and a holomorphic function
g with g(a) 6= 0 such that for all z in B(a, r),

f(z) = (z − a)mg(z)

Further, there exists a positive integer k and complex numbers cn such that

f(z) =
∞∑

n=−k

cn(z − a)n

Definition 2.3. Let cn and m be as in the previous proposition. Then the order
of vanishing of f at a is va(f) = m.

Theorem 2.4. (Cauchy Integral Theorem) Let f be holomorphic on B(0, r), and
γ(t) = reit for 0 ≤ t ≤ 2π. Then for all z in B(0, r),

f(z) =
∫
γ

f(w)
w − z

dw

The following corollary is of great importance in the study of elliptic curves.

Corollary 2.5. Let Ω be an open, connected set in C, and let γ be a curve in Ω

with interior G. Then
1

2πi

∫
γ

ϕ(z)
f ′(z)
f(z)

dz =
∑
a∈G

va(f)ϕ(a)

Proof. f has finitely many zeros and poles in G, and so for each pole or zero a there
is a circle γa that contains that pole or zero but no others. Thus

1
2πi

∫
γ

ϕ(z)
f ′(z)
f(z)

dz =
∑
a∈G

(
1

2πi

∫
γa

ϕ(z)
f ′(z)
f(z)

dz

)
f is meromorphic and so by Proposition 2.2, f(z) = (z−a)mg(z) where m = va(f),
g is holomorphic, and g(a) 6= 0.Then by calculation,

ϕ(z)
f ′(z)
f(z)

= ϕ(z)
(

m

z − a
+
g′(z)
g(z)

)
Thus,

(2.6)
1

2πi

∫
γ

ϕ(z)
f ′(z)
f(z)

dz =
∑
a∈G

(
1

2πi

∫
γa

ϕ(z)
[

m

z − a
+
g′(z)
g(z)

]
dz

)
We can choose γa arbitrarily small, and g(a) 6= 0, therefore g′(z)/g(z) is holomor-

phic in γa. Thus the integral of ϕ(z)
g′(z)
g(z)

is zero around γa. By the Cauchy Integral

Theorem, ∫
γa

ϕ(z)
m

z − a
dz = mϕ(a) = va(f)ϕ(a)

Substituting this into Equation 2.6 finishes the proof. �

Definition 2.7. Let w1 and w2 be a basis for C over R. A lattice over C is a set
Λ = w1Z⊕ w2Z = {a1w1 + a2w2|a1, a2 ∈ Z}.
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The symbol Λ will now denote such a lattice with basis w1, w2. The ultimate
object of study in this section is the group C/Λ, which associates every point in C
with a point in the parallelogram spanned by w1 and w2. Because opposite sides
of this parallelogram are associated, C/Λ is topologically a torus. The following
defines a function that draws a correspondence between C/Λ and elliptic curves.

Definition 2.8. Define the Weierstrass ℘-function on C\Λ by

℘(z) =
1
z2

+
∑

w∈Λ\{0}

1
(w − z)2

− 1
w2

Note that
℘′(z) =

∑
w∈Λ

1
(z − w)3

Definition 2.9. A function f is Λ-periodic if for all w in Λ and all z in C\Λ,
f(z) = f(z + w).

Lemma 2.10. If f(z) = f(z + w1) = f(z + w2) then f is Λ-periodic.

Proof. Let w = nw1 + mw2. Clearly the statement holds if n = 1 and m = 0 or
vice versa. Now induct over m,n. i.e.,

f(z + nw1 +mw2) = f([z + (n− 1)w1 +mw2] + w1)
= f([z + (n− 1)w1 + (m− 1)w2] + w2)
= f(z + (n− 1)w1 + (m− 1)w2) = f(z)

�

Lemma 2.11. Let f be an even function and f ′ be Λ-periodic. Then f is Λ-
periodic.

Proof. Let w be in Λ and define g(z) = f(z + w)− f(z). Then

g′(z) = f ′(z + w)− f ′(z) = 0

g is therefore constant. But f is even, so g(−w/2) = f(w/2)−f(−w/2) = f(w/2)−
f(w/2) = 0. g is therefore identically zero. �

Theorem 2.12. ℘ is Λ-periodic

Proof. Let Λ′ = w1 − Λ = {w1 − w|w ∈ Λ}. Clearly Λ′ = Λ. But

℘′(z + w1) = −2
∑
w∈Λ

1
(z + w1 − w)3

= −2
∑
w∈Λ′

1
(z − w)3

= ℘′(z)

The same is true for w2 by the same argument. Thus ℘′(z) is Λ-periodic. ℘(z) is
even, and is therefore also Λ-periodic. �

Proposition 2.13. Define the Eisenstein series by

Gk(Λ) =
∑

w∈Λ\{0}

1
wk

For all k > 2, the sum in Gk converges.
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Lemma 2.14. Gk(Λ) = 0 if k is odd.

Proof. It is clear that Λ = −Λ = {−w|w ∈ Λ}, therefore Gk(Λ) = Gk(−Λ). But if
k is odd, Gk(−Λ) = −Gk(Λ). Thus Gk(Λ) must be zero. �

Lemma 2.15. For all w in C and for all z with 0 < |z| < |w|,

℘(z) =
1
z2

+
∞∑
n=1

(n+ 1)Gn+2(Λ)zn

Note that by Lemma 2.14, the odd terms of the sum are zero.

Proof. By definition, ℘(z) =
1
z2

+
∑
w∈Λ

1
(z − w)2

− 1
w2

. Expanding the sum,

∑
w∈Λ

1
(z − w)2

− 1
w2

=
∑
w∈Λ

1
w2

(
1

(1− z
w )2
− 1
)

But
1

(1− z
w )2
− 1 =

( ∞∑
n=0

( z
w

)n)2

− 1 =
∞∑
n=1

(n+ 1)
( z
w

)n
Thus, ∑

w∈Λ

1
(z − w)2

− 1
w2

=
∑
w∈Λ

1
w2

∞∑
n=1

(n+ 1)
( z
w

)n
=

∞∑
n=1

(n+ 1)zn
∑
w∈Λ

1
wn+2

=
∞∑
n=1

(n+ 1)Gn+2(Λ)zn

The result follows. �

Theorem 2.16. Let b = −60G4(Λ) and c = −140G6(Λ). Then

(℘′(z))2 = 4(℘(z))3 + b℘(z) + c

Proof. From the expansion in Lemma 2.15 we obtain the following equations.

℘(z) = z−2 + 3G4(Λ)z2 + 5G6(Λ)z4 + · · ·
(℘(z))3 = z−6 + 9G4(Λ)z−2 + 15G6(Λ) + · · ·

Differentiating ℘(z) yields

℘′(z) = −2z−3 + 6G4(Λ)z + 20G6(Λ)z3 + · · ·
(℘′(z))2 = 4z−6 − 24G4(Λ)z−2 − 80G6(Λ) +O(z2)

We then see that

4(℘(z))3 + b℘(z) + c = 4z−6 − 24z−2 − 80G6(Λ) +O(z2)

Let ∆ = 4(℘(z))3 + b℘(z) + c − (℘′(z))2. Since ∆ has order z2, is holomorphic
and Λ-periodic, it is bounded. By Liouville’s theorem it is constant. Because
∆ = O(z2), we have ∆→ 0 as z → 0. Thus ∆ must be identically zero. �
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Proposition 2.17. Let f be a Λ-periodic function and let P be the parallelogram
spanned by w1 and w2. Then

1
2πi

∫
∂P

f ′(z)
f(z)

= 0

Proof. If f is Λ-periodic, then f ′ is too. Define the Λ-periodic function g(z) =
f ′(z)/f(z).We can split the integral into four integrals along the sides of the paral-
lelogram,∫

∂P

g(z) =
∫ w1

0

g(z)dz +
∫ w1+w2

w1

g(z)dz +
∫ w2

w1+w2

g(z)dz +
∫ 0

w2

g(z)dz

By the periodicity of g,∫ w1+w2

w1

g(z)dz =
∫ w2

0

g(z)dz = −
∫ 0

w2

g(z)dz,

and ∫ w2

w1+w2

g(z)dz =
∫ 0

w1

g(z)dz = −
∫ w1

0

g(z).

Thus the four terms sum to zero. �

Corollary 2.18. If f is a Λ-periodic function, then f has the same number of
zeros as poles in P (counting multiplicity).

Proof. This follows from Corollary 2.5 with ϕ(z) = 1. �

Proposition 2.19. With b and c as defined in Theorem 2.16, let p(x) = 4x3+bx+c.
Define w3 = w1 + w2 and xi = ℘(wi/2). Then

(i) p(xj) = 0.
(ii) xj 6= xi unless i = j.

Proof. (i) Since ℘′(z) is odd, we have ℘′(wi/2) = ℘′(−wi/2) = −℘′(wi/2), which
implies (℘′(wi/2))2 = 0. Then

4(℘(wi/2))3 + b℘(wi/2) + c = 0 = p(℘(wi/2))

(ii) From Corollary 2.18, ℘ has as many poles as zeros, counting multiplicity.
Define fw(z) = ℘(z)−w for w in C. Then fw has the same poles as ℘. In particular,
fw and ℘ both have poles of multiplicity 2 at 0. This implies fw has two zeros, or
one zero of multiplicity 2. Therefore ℘(z) maps P surjectively onto C, taking each
value twice.

From (i) we have ℘′(w1/2) = 0. Thus fxi
(wi/2) = 0 = f ′xi

(wi/2). Or, fxi
(z) has

a zero of multiplicity at least 2 at wi/2. Therefore ℘(z) cannot take on the value
xi anywhere except at wi/2, or else fxi

(z) would have too many zeros. �

Proposition 2.20. Let f be a Λ-periodic function and let γ be the parallelogram
spanned by w1 and w2. Then

1
2πi

∫
γ

z
f ′(z)
f(z)

∈ Λ

Proof. This follows from an argument identical to the proof of Proposition 2.17. �

Corollary 2.21.
∑
a∈P

va(f)a ∈ Λ
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Proof. This follows from Corollary 2.5 with ϕ(z) = z. �

We are now in a position to reconsider the group law on elliptic curves. First,
Theorem 2.16 ensures that there is a map F : C/Λ→ {(x, y)|y2 = 4x3 + bx+ c} ∪
{∞}, where z + Λ 7→ (℘(z), ℘′(z)) and 0 + Λ 7→ ∞. It Is not difficult to show that
F is bijective.

Suppose now two points (℘(z1), ℘′(z1)), (℘(z2), ℘′(z2)) are given. Then they lie
on the curve y2 = 4x3+bx+c, and there exists a line between them Ax+By+C = 0.
Let F (z) = A℘(z) + B℘′(z) + C. F is clearly periodic. We know that ℘′(z) has
a pole of multiplicity 3, so if B 6= 0, F has three zeros by Corollary 2.18. By
construction, z1 and z2 are two of them.

To find the third zero of F we employ Corollary 2.21 interpreted in C/Λ,

(2.22)
∑
a∈P

va(f)(a+ Λ) = 0 + Λ

F is Λ-periodic and has a pole of multiplicity 3 at 0, so letting f = F in Equation
2.22,

(2.23) (z1 + Λ) + (z2 + Λ) + (z3 + Λ) = 0 + Λ

where z3 is the third zero of F. This is an equation in the group C/Λ, and can
therefore be rewritten as (z1 + z2) + Λ = −z3 + Λ. In the case B = 0, we have
(z1 + z2) + Λ = 0 + Λ, so we let z3 = 0 and define F(0) =∞. In any case, if P1, P2

are two points on an elliptic curve, we can define their sum,

(2.24) P1 + P2 = F(−z3 + Λ)

Note that if z3 6= 0, then F(−z3 + Λ) = (℘(z3),−℘(z3)), which is precisely the
group law described in the first section. Equations 2.23 and 2.24 show that the
function F is a group isomorphism.

This proves the group law for complex elliptic curves. However, Theorem 1.9
shows that the group law can be expressed in purely algebraic terms, independent
of the field K. Suppose now that there existed a field K ′ for which the group law
did not hold. Then the group law would not hold for any field. Thus by proving
the group law for C we have proven it for every field.

3. Finite Fields

The aim of this section is to construct and prove the existence of finite fields of
order q = pn where p is prime and n is a positive integer. The use of finite fields for
elliptic curves is less elegant than the use of C, but has many applications, some of
which will be discussed in Section 4.

Definition 3.1. Let F be a field. The derivative map D : F [x] → F [x] is the
map defined by D(x) = 1, D(fg) = gD(f) + fD(g), D(f + g) = D(f) +D(g), and
D(ax) = a, for a in F and f, g in F [x].

Proposition 3.2. If f, g are polynomials in F [x] and a, b are in F, then

(i) D(1) = D(a) = 0
(ii) D(xn) = nxn−1

(iii) D(af + bg) = aD(f) + bD(g)
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Definition 3.3. Let F be a field and L be a field containing F. An element a in L
is algebraic over F if there exists an f in F [x] such that f(a) = 0. L is an algebraic
extension of F if every a in L is algebraic. F is algebraically closed if for every f
in F [x] there is an c in F such that f(c) = 0.

Theorem 3.4. Every field F has an algebraic extension F such that F is alge-
braically closed. Furthermore, if F

′
is an algebraically closed algebraic extension of

F, then F
′

= F . We can pick F so that every algebraic extension of F is contained
in F .

Proposition 3.5. Let K be a finite extension of a field F. Then K is algebraic
over F.

Proof. If K is a finite extension of F then K is an ndimensional vector space over
F. Let a be an element of K. Then the set {1, a, a2, . . . , an} has n+ 1 elements and
therefore is a linearly dependent set over F. That is, there exist β0, . . . , βn in F not
all zero such that

β0 + β1a+ · · ·+ βna
n = 0

Then a is a zero of the polynomial f(x) = β0 + β1x+ · · ·+ βnx
n. �

Definition 3.6. If F is a field and F its algebraic closure, then a polynomial f in
F [x] of degree n is separable if it has n distinct roots over F .

Proposition 3.7. A polynomial f is separable if and only if gcd(f,D(f)) = 1.

Proof. Suppose f is separable. Then f(x) = (x− α1) · · · (x− αn) for n distinct αi
in F . This imples

D(f(x)) = (x− α2) · · · (x− αn) + · · ·+ (x− α1)(x− α3) · · · (x− αn) + · · ·

=
n∑
i=1

∏
j 6=i

(x− αj)

Since the x − αi are irreducible and F[x] is a unique factorization domain, we see
that the gcd is 1

Suppose now that f is not separable. Then f(x) = (x−α1)m1(x−α2)m2 · · · (x−
αn)mn where the mi are positive integers, not all 1. Without loss of generality,
suppose m1 > 1. Then

D(f(x)) = m1(x− α1)m1−1(x− α2)m2 · · · (x− αn)mn + · · ·
Thus (x− α1) divides both f and D(f) so gcd(f,D(f)) 6= 1. �

Definition 3.8. The symbol Fp denotes Z/pZ for prime p.

Proposition 3.9. Fp is a field.

Proof. Fp is a finite commutative ring with no zero divisors if p is prime. �

Proposition 3.10. Let F = Fp for some prime p and q = pn for some positive
integer n. Then the polynomial f over F defined by f(x) = xq − x is separable.

Proof. If f(x) = xq − x then D(f) = qxq−1 − 1 = −1. Proposition 3.7 implies the
result. �

Proposition 3.11. Let F be a field of characteristic p. Let q = pn for some positive
integer n. Then for any a, b in F, (a+ b)q = aq + bq.
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Proof. By the binomial theorem,

(a+ b)q = aq +
(
q

1

)
aq−1b+ · · ·

(
q

q − 1

)
abq−1 + bq,

but p divides
(
q

k

)
for k = 1, . . . , q − 1. �

The following theorem constructs a single field of order q.

Theorem 3.12. There exists a field of order q = pn for every prime p and positive
integer n.

Proof. Let F = Fp and F be the algebraic closure of F. Define Fq to be the set
{α ∈ F |αq = α}. By Proposition 3.10, Fq has q elements.

(i) Fq is closed under multiplication since if a, b ∈ Fq then (ab)q = aqbq = ab.
(ii) It is closed under addition since (a+b)q = aq+bq = a+b using Proposition

3.11
(iii) It contains multiplicative inverses since (a−1)q = (aq)−1 = a−1.

The remaining field properties can be verified directly. �

Lemma 3.13. Let F be a field with q = pn elements. Then for every a in F,
aq = a.

Proof. Clearly 0q = 0. The multiplicative group F× has q − 1 elements. By La-
grange’s theorem, for any a in F×, the order of the subgroup generated by a is k,
where k divides q − 1. That is, ak = 1, and for some m, aq−1 = akm = (ak)m = 1.
Then aq = a. �

Theorem 3.14. Suppose F and F ′ are two fields with q = pn elements. Then F
= F ′.

Proof. Let F and F ′ be two such fields. Both contain the field Fp and so both
are contained within its algebraic closure Fp. Then the set E = {a ∈ Fp | aq = a}
contains both F and F ′ by Lemma 3.13. But each set has q elements, so F = E =
F ′. �

4. Elliptic Curve Cryptography

Having established the existence of Fq, we can now discuss elliptic curves over
finite fields in the context of cryptography. A cryptosystem is a method of secretly
exchanging information between two parties in such a way that the two parties can
communicate easily and freely, while anyone eavesdropping would have a difficult
or impossible time understanding anything.

A common type of cryptography is called public key cryptography. In public key
cryptography, if Alice wants to send a message to Bob, she encrypts a message with
his public key, which is a piece of information Bob makes available to everyone. Bob
can then decrypt the message using his private key, which he keeps secret. A secure
cryptosystem uses private keys that are very difficult to compute given the public
key. One such system is ElGamal Public Key Encryption described below.

Construction 4.1. (ElGamal Public Key Encryption) Before anything can be
encrypted, Bob must first choose a public key. To do so, he first chooses an elliptic
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curve E on a finite field Fq. He then selects a point P on E and an integer n. Let
A = nP. Then

(4.2) {E,Fq, P,A}
is Bob’s public key. His private key is n. It may appear that computing A would be
a tedious task for Bob, but there exist algorithms for computing nP very efficiently.
The relative ease with which Bob can find A is central to usefulness of this method
of encryption.

Now, for Alice to send a message to Bob, she must do several things.
(i) She must somehow encode her message M as a point on E.

(ii) Choose an integer m and compute M1 = mP.
(iii) Compute M2 = M +mA

There are many ways to do (i). For example, if q is sufficiently large (and in
practical applications it usually is), Alice can associate an integer with each letter
of her message. e.g., “hello” 7→ (8050, 120120150) in which “h” maps to 80, “e” to
50, and so on. The comma placement is arbitrary. Alice sends {M1,M2} to Bob.
Bob can now decrypt her message with the following calculation.

M = M2 − nM1

Proposition 4.3. The described method of decryption works.

Proof. By definition, M2 − nM1 = (M + mA) − n(mP ). But mA = m(nP ), so
M2 − nM1 = M +m(nP )− n(mP ) = M. �

Suppose now an eavesdropper, Eve, tries to read Alice’s message to Bob. Eve
knows E,Fq, P,A,M1,M2. To decrypt M, she needs to calculate n. This is roughly
analogous to Eve solving an ≡ b (mod p) for n. This is known as the discrete loga-
rithm problem, and it is computationally very difficult. In practical situations, the
integer n is several hundred digits long. Eve’s calculation, even with a powerful
computer, could take years.

There are numerous other cryptographic algorithms based on the group law of
elliptic curves, and some are even used in modern security software. But elliptic
curves have applications in other areas, too. The various understandings of elliptic
curves—as geometric or algebraic objects, as complex tori, etc.—allow for applica-
tions in many areas of math. For example, Andrew Wiles’ proof of Fermat’s Last
Theorem involves reducing the claim, ultimately, to one about elliptic curves.
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